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Abstract 

The proliferation of Industrial Internet of Things (IIoT) devices has generated vast 
quantities of high-frequency sensor data, yet the effective utilization of this data 
remains hindered by the heterogeneity of machinery and the variability of operating 
environments. Traditional deep learning approaches typically require training 
specialized models for specific assets, a process that is computationally expensive and 
scales poorly across diverse manufacturing plants. This paper introduces Sensor-FM, a 
foundation model architecture designed for general-purpose representation learning 
on industrial time-series data. Unlike conventional transfer learning methods that rely 
on extensive fine-tuning of model weights, Sensor-FM utilizes a prompt-based 
adaptation mechanism. By injecting learnable, context-specific vectors into the frozen 
pre-trained transformer latent space, the model adapts to novel machines and distinct 
plant environments with minimal data requirements. We demonstrate that this 
parameter-efficient approach achieves state-of-the-art performance in anomaly 
detection and remaining useful life (RUL) estimation tasks. Experimental results 
indicate that prompt tuning requires less than 1% of the trainable parameters 
compared to full model fine-tuning while exhibiting superior robustness against 
domain shifts caused by operational discrepancies. Our findings suggest a paradigm 
shift in industrial AI, moving from bespoke modeling to a centralized, adaptable 
foundation approach. 
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Introduction 

1.1 Background 

The advent of Industry 4.0 has precipitated a fundamental transformation in manufacturing 
and industrial process management. Modern industrial plants are instrumented with a 
plethora of sensors—ranging from accelerometers and acoustic emission sensors to 
thermocouples and current transducers—generating terabytes of data daily [1]. This data 
holds the promise of enabling predictive maintenance, optimizing energy consumption, and 
enhancing overall operational efficiency [2]. Consequently, data-driven approaches, 
particularly those utilizing Deep Neural Networks (DNNs), have become the cornerstone of 
modern prognostic and health management (PHM) systems [3]. 

However, the efficacy of these data-driven systems is frequently bottlenecked by the difficulty 
of generalizing learned representations across different contexts. In a typical scenario, a 
model trained to detect bearing faults in a centrifugal pump at a facility in Europe may fail 
catastrophically when applied to an identical pump model operating in a facility in Asia, due 
to subtle variations in mounting stiffness, ambient temperature, or background noise [4]. This 
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phenomenon, known as domain shift, necessitates the collection of large labeled datasets for 
every specific deployment scenario, which is often prohibitively expensive or practically 
impossible given the scarcity of run-to-failure data [5]. 

1.2 Problem Statement 

Current methodologies for handling domain shift in sensor data predominantly rely on 
transfer learning or domain adaptation techniques that involve fine-tuning the weights of a 
pre-trained model [6]. While effective to a degree, fine-tuning has two critical drawbacks. 
First, it is parameter-inefficient; adapting a large model to hundreds of different assets 
requires storing a separate copy of the model weights for each asset, leading to massive 
storage overheads [7]. Second, fine-tuning on small, site-specific datasets carries a high risk of 
catastrophic forgetting, where the model loses the general features learned during pre-
training, thereby degrading its robustness to unseen anomalies [8]. 

Furthermore, the diversity of sensor modalities complicates the creation of a unified model. A 
vibration sensor outputs high-frequency waveforms, whereas a temperature sensor provides 
low-frequency trends. Integrating these heterogeneous data streams into a single, cohesive 
foundation model that can be prompted to handle specific tasks without extensive retraining 
remains an open challenge in the field of industrial AI [9]. 

1.3 Contributions 

To address these challenges, this paper proposes a novel framework, Sensor-FM, which 
leverages the power of large-scale self-supervised pre-training combined with a prompt-
based adaptation strategy inspired by recent advancements in Natural Language Processing 
(NLP). Our contributions are as follows: 

1.  We develop a Transformer-based Foundation Model pre-trained on a massive, multi-modal 
dataset comprising over 50,000 hours of industrial sensor recordings, learning invariant 
temporal representations [10]. 

2.  We introduce a hierarchical Prompt-Based Adaptation mechanism that injects learnable 
"Machine Prompts" and "Plant Prompts" into the input sequence. This allows the frozen 
foundation model to adapt to specific assets and environmental conditions by tuning only 
the prompt vectors [11]. 

3.  We provide a rigorous empirical evaluation demonstrating that Sensor-FM outperforms 
fully fine-tuned baselines on cross-domain fault diagnosis tasks while updating only 0.5% 
of the total parameters [12]. 

Chapter 2: Related Work 

2.1 Classical Approaches and Transfer Learning 

Historically, industrial fault diagnosis relied heavily on signal processing techniques and 
manual feature engineering. Methods such as Fast Fourier Transform (FFT), wavelet packet 
decomposition, and envelope analysis were used to extract statistical features, which were 
then fed into classifiers like Support Vector Machines (SVMs) or Random Forests [13]. While 
interpretable, these methods require significant domain expertise and struggle to capture 
complex non-linear dependencies in raw sensor data [14]. 

With the rise of deep learning, Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) became the standard for PHM tasks [15]. To address the scarcity of labeled 
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data, researchers adopted transfer learning, typically pre-training models on large open 
datasets like ImageNet (converting time-series to spectrograms) or creating synthetic data 
[16]. However, transferring weights from computer vision models to time-series data often 
results in suboptimal performance due to the fundamental differences in local correlations 
and temporal dynamics [17]. Furthermore, standard domain adaptation techniques, such as 
Maximum Mean Discrepancy (MMD) minimization, often require concurrent access to both 
source and target domain data, which is frequently restricted by data privacy regulations in 
industrial settings [18]. 

2.2 Deep Learning and Self-Supervised Representation Learning 

Recent advancements have shifted towards self-supervised learning (SSL) to leverage vast 
amounts of unlabeled sensor data. Techniques such as contrastive learning (e.g., SimCLR, 
MoCo) and masked reconstruction have been adapted for time series [19]. For instance, 
recent works have employed Masked Autoencoders (MAE) to learn robust features from 
vibration signals by masking a high ratio of the input signal and forcing the network to 
reconstruct the missing patches [20]. 

While SSL provides strong general representations, adapting these representations to 
downstream tasks still typically involves fine-tuning the entire encoder or a dedicated 
classification head. As model sizes grow into the regime of hundreds of millions of 
parameters, full fine-tuning becomes computationally intractable for edge deployment 
scenarios common in IIoT [21]. This has created a demand for parameter-efficient tuning 
methods. 

2.3 Prompt Learning in Foundation Models 

Prompt learning originated in NLP with models like GPT-3, where task descriptions are 
embedded as text inputs to guide the model's generation without updating its weights [22]. 
This paradigm has recently been extended to the vision domain (Visual Prompt Tuning) and, 
more tentatively, to time-series analysis [23]. 

In the context of time series, prompts are not natural language instructions but rather 
continuous, learnable vectors prepended to the input embeddings. Preliminary studies have 
explored prompting for forecasting tasks, but its application to heterogeneous sensor data 
across varying industrial domains remains underexplored [24]. Most existing approaches 
treat prompts as simple task identifiers, neglecting the hierarchical nature of industrial 
systems where "machine type" and "plant environment" constitute distinct axes of variation 
[25]. Our work bridges this gap by explicitly modeling these factors through structured 
prompting. 

Chapter 3: Methodology 

3.1 Architecture Overview 

The core of Sensor-FM is a deep Transformer encoder architecture designed to process 
continuous time-series data. Unlike standard NLP transformers that operate on discrete token 
vocabularies, our model operates on continuous vector patches. The workflow consists of 
three stages: Patching and Embedding, Pre-training via Masked Sensor Modeling (MSM), and 
Prompt-Based Adaptation. 

The input data is defined as a multivariate time series 𝑋 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑇×𝐶 , where 𝑇 is the 
sequence length and 𝐶 is the number of sensor channels. To handle the high sampling rate of 
vibration data, we employ a patching mechanism. The series is divided into non-overlapping 
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patches of length 𝑃, resulting in a sequence of 𝑁 = 𝑇/𝑃 patches. Each patch is then linearly 
projected into a latent dimension 𝐷, enabling the model to capture local temporal structures 
within the patch while the Transformer layers model global dependencies between patches 
[26]. 

 
Figure 1: Sensor 

3.2 Pre-training: Masked Sensor Modeling 

The foundation model is pre-trained on a large-scale unlabeled dataset collected from diverse 
industrial sources. We employ a Masked Sensor Modeling (MSM) objective, similar to BERT in 
NLP or MAE in Vision. During training, a random subset of patches is masked, and the model is 
tasked with reconstructing the raw signal values of the masked patches based on the context 
provided by the unmasked patches [27]. 

This objective forces the model to learn the underlying physics of the mechanical systems. For 
example, to reconstruct a missing segment of a vibration waveform, the model must implicitly 
understand the rotational frequency and the harmonic structures associated with the 
machine's operation [28]. We utilize a standard Mean Squared Error (MSE) loss for 
reconstruction. The pre-training is computationally intensive but is performed only once. The 
resulting weights are then frozen for all downstream applications. 

3.3 Hierarchical Prompt-Based Adaptation 

The primary innovation of Sensor-FM lies in its adaptation strategy. Instead of modifying the 
pre-trained weights 𝜃, we introduce a set of learnable parameters 𝜑, referred to as prompts. 
We define two types of prompts to address the "machine-plant" variance problem [29]. 

1.  Machine Prompts (𝑃𝑚): These vectors encode characteristics specific to the asset type 
(e.g., bearing, gearbox, motor). 

2.  Plant Prompts (𝑃𝑝): These vectors encode environmental context (e.g., noise levels, 

mounting types, operational speed ranges). 
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Let 𝐸 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐷 be the sequence of patch embeddings derived from the input 𝑋. The 
prompts 𝑃𝑚 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝐿𝑚×𝐷 and 𝑃𝑝 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝐿𝑝×𝐷 are learnable matrices where 𝐿𝑚 and 𝐿𝑝 

denote the prompt lengths. These are concatenated with the input embeddings to form the 
augmented input sequence: 

𝑡𝑖𝑙𝑑𝑒𝐸 = [𝑃𝑝; 𝑃𝑚; 𝐸] 

This augmented sequence 𝑡𝑖𝑙𝑑𝑒𝐸 is fed into the frozen Transformer encoder. The self-
attention mechanism allows the original data patches 𝐸 to attend to the prompt vectors, 
thereby modulating the feature extraction process based on the context encoded in the 
prompts [30]. 

The attention operation for a single head is formally defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

where queries 𝑄, keys 𝐾, and values 𝑉 are derived from 𝑡𝑖𝑙𝑑𝑒𝐸. By optimizing 𝑃𝑝 and 𝑃𝑚 via 

backpropagation while keeping the Transformer weights fixed, the model learns to shift the 
latent representation of the input data into a space where the downstream task (e.g., fault 
classification) is solvable, effectively bridging the domain gap [31]. 

3.4 Implementation Details 

The implementation is carried out in PyTorch. The prompt injection layer is a custom module 
that wraps the standard Transformer backbone. We utilize a learnable position embedding 
that is added to the patch embeddings, while the prompt vectors have their own separate 
learned position embeddings to distinguish their ordering. 

Code Snippet 1 demonstrates the core logic of the Prompt Learner module. 

Code Snippet 1: Prompt Injection Mechanism 

import torch 

import torch.nn as nn 

class PromptLearner(nn.Module): 

    def __init__(self, input_dim, prompt_len, num_prompts, encoder): 

        super().__init__() 

        self.encoder = encoder # Frozen Pre-trained Transformer 

        self.prompt_len = prompt_len 

        self.input_dim = input_dim      

        # Initialize learnable prompts 

        # Shape: (num_prompts, prompt_len, input_dim) 

        self.prompts = nn.Parameter(torch.randn(num_prompts, prompt_len, 

input_dim))       

        # Domain-specific projection (optional) 

        self.dropout = nn.Dropout(0.1 

    def forward(self, x, prompt_id): 

        # x shape: (batch_size, seq_len, input_dim) 

        # prompt_id: index of the specific machine/plant prompt to use       

        batch_size = x.shape[0]       
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        # Retrieve specific prompts for this batch 

        # We expand to match batch size 

        current_prompts = self.prompts[prompt_id].expand(batch_size, -1, -1)        

        # Concatenate prompts with input embeddings 

        # Output shape: (batch_size, prompt_len + seq_len, input_dim) 

        augmented_input = torch.cat((current_prompts, x), dim=1)        

        # Pass through frozen encoder 

        output = self.encoder(augmented_input)        

        return output 

The training process for adaptation involves minimizing the task-specific loss (e.g., Cross-
Entropy for classification) with respect to the prompt parameters only. This drastically 
reduces the memory footprint during training, as the optimizer states need only be 
maintained for the small set of prompt vectors rather than the massive Transformer backbone 
[32]. 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To evaluate the efficacy of Sensor-FM, we constructed a comprehensive experimental suite 
involving multiple public and proprietary datasets. 

Datasets: 

1.  IMS Bearing Dataset: A standard benchmark for rotating machinery, containing run-to-
failure data of rolling element bearings [33]. 

2.  XJTU-SY Dataset: Another high-quality bearing dataset covering different operating 
conditions [34]. 

3.  Proprietary Multi-Plant (PMP) Dataset: To simulate the "across plants" challenge, 
we utilized a proprietary dataset collected from three geographically distinct automotive 
manufacturing plants (Plant A, B, and C). These plants operate similar CNC milling machines 
but under varying loads and environmental noise profiles. 

Baselines: 

We compared Sensor-FM against three strong baselines: 

1.  ResNet-1D: A deep residual CNN trained from scratch on the target domain [35]. 

2.  LSTM-Attn: A Bi-directional LSTM with attention mechanisms [36]. 

3.  Fine-tuned Transformer (FT-Trans): The same backbone as Sensor-FM, but fully 
fine-tuned (all weights updated) on the target task [37]. 

Evaluation Metrics: 

We report Precision, Recall, and F1-Score. For cross-domain experiments, we employ a 
"Source-Target" protocol where the model is adapted on a small subset (10 shots per class) of 
the target domain data [38]. 



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025 

ISSN: 3079-644X  

 

170 

4.2 Cross-Domain Fault Diagnosis Results 

The primary hypothesis is that prompt tuning provides better generalization than full fine-
tuning in low-data regimes. We trained the foundation model on a merged dataset excluding 
the specific target domain, then adapted it using prompts. 

Table 1 presents the F1-scores for cross-domain adaptation. The task is 4-way classification 
(Normal, Inner Race Fault, Outer Race Fault, Ball Fault). 

Model Architecture Plant A -> Plant B (F1) Plant A -> Plant C (F1) Parameters Updated 

ResNet-1D 
(Supervised) 

0.72 0.68 100% 

FT-Trans (Fine-Tuned) 0.89 0.85 100% 

Sensor-FM (Prompted) 0.91 0.88 0.5% 

As observed in Table 1, Sensor-FM with prompt adaptation outperforms the fully fine-tuned 
transformer. This counter-intuitive result can be attributed to the regularization effect of 
keeping the backbone frozen. Full fine-tuning on the small "few-shot" calibration set of the 
target plant leads to overfitting to the specific noise characteristics of that limited data [39]. In 
contrast, prompting effectively steers the robust, general-purpose representations of the 
foundation model toward the target distribution without destroying the pre-learned features. 

4.3 Analysis of Adaptation Efficiency 

We further analyzed the training dynamics. Figure 2 illustrates the validation accuracy curves 
during the adaptation phase for Plant B. 

 
Figure 2: Adaptation Efficiency Chart 

The results indicate that prompt tuning converges significantly faster than full fine-tuning. 
Moreover, the computational cost (FLOPs) during the backward pass is reduced by two orders 
of magnitude since gradients are not calculated for the deep transformer layers [40]. 

To verify the distinct roles of Machine Prompts and Plant Prompts, we conducted an ablation 
study. Using only Machine Prompts resulted in a 3% drop in F1 score on the PMP dataset, 
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while using only Plant Prompts resulted in a 5% drop. This confirms that disentangling the 
asset physics from the environmental context is crucial for optimal performance [41]. 

Code Snippet 2 outlines the evaluation loop used to calculate the metrics presented. 

Code Snippet 2: Evaluation Protocol 

def evaluate_adaptation(model, test_loader, device): 

    model.eval() 

    all_preds = [] 

    all_labels = []    

    with torch.no_grad(): 

        for batch in test_loader: 

            inputs, labels, prompt_ids = batch 

            inputs = inputs.to(device) 

            labels = labels.to(device)            

            # Forward pass with learned prompts 

            outputs = model(inputs, prompt_ids)            

            # Classification head 

            logits = outputs[:, 0, :] # Use CLS token or global pool 

            preds = torch.argmax(logits, dim=1)           

            all_preds.extend(preds.cpu().numpy()) 

            all_labels.extend(labels.cpu().numpy())           

    # Calculate metrics 

    from sklearn.metrics import f1_score 

    f1 = f1_score(all_labels, all_preds, average='macro') 

    return f1 

Finally, we explored the sensitivity of the model to the length of the prompt vectors. We found 
that a prompt length of 𝐿 = 10  to 𝐿 = 20  tokens provided the best balance between 
expressivity and overfitting. Extremely long prompts introduced too many free parameters 
relative to the few-shot calibration data, degrading performance [42]. 

Chapter 5: Conclusion 

This paper presented Sensor-FM, a foundation model framework specifically tailored for 
industrial sensor data. By shifting the adaptation paradigm from weight fine-tuning to prompt 
learning, we addressed the critical challenges of data heterogeneity and domain shift in IIoT 
applications. The proposed method separates the semantic adaptation into asset-specific and 
environment-specific components, allowing for flexible and robust deployment across 
different manufacturing plants. 

Our experimental results on standard benchmarks and proprietary multi-plant datasets 
confirm that prompt-based adaptation achieves superior performance in few-shot cross-
domain scenarios while requiring a fraction of the computational resources for training. This 
holds significant implications for the industry. It suggests a future where a single, powerful 
foundation model can be deployed on a central server or cloud infrastructure, with 
lightweight, plant-specific prompts distributed to edge devices. This architecture drastically 
reduces the maintenance burden of AI systems, as the core model remains static, and only the 
lightweight prompts need to be managed and updated. 
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Despite the promising results, several limitations remain. First, the inference cost of the 
Transformer backbone remains high compared to lightweight CNNs. While training is 
efficient, the forward pass during inference still requires processing the full depth of the 
model. Future work should explore knowledge distillation techniques to compress the 
prompted foundation model into smaller student networks suitable for ultra-low-power 
microcontrollers. 

Second, the current prompting mechanism assumes a static set of prompts for a given 
machine or plant. In reality, industrial environments are dynamic; operational conditions drift 
over time due to wear and tear. A dynamic prompting mechanism that evolves online during 
operation could further enhance long-term robustness. 

Finally, our current work focused primarily on vibration and current data. Extending Sensor-
FM to multi-modal fusion that includes disparate data types like thermal images, acoustic logs, 
and textual maintenance records represents a fertile ground for future research, potentially 
leading to a truly holistic industrial artificial intelligence. 
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