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Abstract

The proliferation of Industrial Internet of Things (IIoT) devices has generated vast
quantities of high-frequency sensor data, yet the effective utilization of this data
remains hindered by the heterogeneity of machinery and the variability of operating
environments. Traditional deep learning approaches typically require training
specialized models for specific assets, a process that is computationally expensive and
scales poorly across diverse manufacturing plants. This paper introduces Sensor-FM, a
foundation model architecture designed for general-purpose representation learning
on industrial time-series data. Unlike conventional transfer learning methods that rely
on extensive fine-tuning of model weights, Sensor-FM utilizes a prompt-based
adaptation mechanism. By injecting learnable, context-specific vectors into the frozen
pre-trained transformer latent space, the model adapts to novel machines and distinct
plant environments with minimal data requirements. We demonstrate that this
parameter-efficient approach achieves state-of-the-art performance in anomaly
detection and remaining useful life (RUL) estimation tasks. Experimental results
indicate that prompt tuning requires less than 1% of the trainable parameters
compared to full model fine-tuning while exhibiting superior robustness against
domain shifts caused by operational discrepancies. Our findings suggest a paradigm
shift in industrial Al, moving from bespoke modeling to a centralized, adaptable
foundation approach.
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Introduction

1.1 Background

The advent of Industry 4.0 has precipitated a fundamental transformation in manufacturing
and industrial process management. Modern industrial plants are instrumented with a
plethora of sensors—ranging from accelerometers and acoustic emission sensors to
thermocouples and current transducers—generating terabytes of data daily [1]. This data
holds the promise of enabling predictive maintenance, optimizing energy consumption, and
enhancing overall operational efficiency [2]. Consequently, data-driven approaches,
particularly those utilizing Deep Neural Networks (DNNs), have become the cornerstone of
modern prognostic and health management (PHM) systems [3].

However, the efficacy of these data-driven systems is frequently bottlenecked by the difficulty
of generalizing learned representations across different contexts. In a typical scenario, a
model trained to detect bearing faults in a centrifugal pump at a facility in Europe may fail
catastrophically when applied to an identical pump model operating in a facility in Asia, due
to subtle variations in mounting stiffness, ambient temperature, or background noise [4]. This
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phenomenon, known as domain shift, necessitates the collection of large labeled datasets for
every specific deployment scenario, which is often prohibitively expensive or practically
impossible given the scarcity of run-to-failure data [5].

1.2 Problem Statement

Current methodologies for handling domain shift in sensor data predominantly rely on
transfer learning or domain adaptation techniques that involve fine-tuning the weights of a
pre-trained model [6]. While effective to a degree, fine-tuning has two critical drawbacks.
First, it is parameter-inefficient; adapting a large model to hundreds of different assets
requires storing a separate copy of the model weights for each asset, leading to massive
storage overheads [7]. Second, fine-tuning on small, site-specific datasets carries a high risk of
catastrophic forgetting, where the model loses the general features learned during pre-
training, thereby degrading its robustness to unseen anomalies [8].

Furthermore, the diversity of sensor modalities complicates the creation of a unified model. A
vibration sensor outputs high-frequency waveforms, whereas a temperature sensor provides
low-frequency trends. Integrating these heterogeneous data streams into a single, cohesive
foundation model that can be prompted to handle specific tasks without extensive retraining
remains an open challenge in the field of industrial AI [9].

1.3 Contributions

To address these challenges, this paper proposes a novel framework, Sensor-FM, which
leverages the power of large-scale self-supervised pre-training combined with a prompt-
based adaptation strategy inspired by recent advancements in Natural Language Processing
(NLP). Our contributions are as follows:

1. We develop a Transformer-based Foundation Model pre-trained on a massive, multi-modal
dataset comprising over 50,000 hours of industrial sensor recordings, learning invariant
temporal representations [10].

2. We introduce a hierarchical Prompt-Based Adaptation mechanism that injects learnable
"Machine Prompts" and "Plant Prompts" into the input sequence. This allows the frozen
foundation model to adapt to specific assets and environmental conditions by tuning only
the prompt vectors [11].

3. We provide a rigorous empirical evaluation demonstrating that Sensor-FM outperforms
fully fine-tuned baselines on cross-domain fault diagnosis tasks while updating only 0.5%
of the total parameters [12].

Chapter 2: Related Work

2.1 Classical Approaches and Transfer Learning

Historically, industrial fault diagnosis relied heavily on signal processing techniques and
manual feature engineering. Methods such as Fast Fourier Transform (FFT), wavelet packet
decomposition, and envelope analysis were used to extract statistical features, which were
then fed into classifiers like Support Vector Machines (SVMs) or Random Forests [13]. While
interpretable, these methods require significant domain expertise and struggle to capture
complex non-linear dependencies in raw sensor data [14].

With the rise of deep learning, Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) became the standard for PHM tasks [15]. To address the scarcity of labeled
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data, researchers adopted transfer learning, typically pre-training models on large open
datasets like ImageNet (converting time-series to spectrograms) or creating synthetic data
[16]. However, transferring weights from computer vision models to time-series data often
results in suboptimal performance due to the fundamental differences in local correlations
and temporal dynamics [17]. Furthermore, standard domain adaptation techniques, such as
Maximum Mean Discrepancy (MMD) minimization, often require concurrent access to both
source and target domain data, which is frequently restricted by data privacy regulations in
industrial settings [18].

2.2 Deep Learning and Self-Supervised Representation Learning

Recent advancements have shifted towards self-supervised learning (SSL) to leverage vast
amounts of unlabeled sensor data. Techniques such as contrastive learning (e.g., SimCLR,
MoCo) and masked reconstruction have been adapted for time series [19]. For instance,
recent works have employed Masked Autoencoders (MAE) to learn robust features from
vibration signals by masking a high ratio of the input signal and forcing the network to
reconstruct the missing patches [20].

While SSL provides strong general representations, adapting these representations to
downstream tasks still typically involves fine-tuning the entire encoder or a dedicated
classification head. As model sizes grow into the regime of hundreds of millions of
parameters, full fine-tuning becomes computationally intractable for edge deployment
scenarios common in IIoT [21]. This has created a demand for parameter-efficient tuning
methods.

2.3 Prompt Learning in Foundation Models

Prompt learning originated in NLP with models like GPT-3, where task descriptions are
embedded as text inputs to guide the model's generation without updating its weights [22].
This paradigm has recently been extended to the vision domain (Visual Prompt Tuning) and,
more tentatively, to time-series analysis [23].

In the context of time series, prompts are not natural language instructions but rather
continuous, learnable vectors prepended to the input embeddings. Preliminary studies have
explored prompting for forecasting tasks, but its application to heterogeneous sensor data
across varying industrial domains remains underexplored [24]. Most existing approaches
treat prompts as simple task identifiers, neglecting the hierarchical nature of industrial
systems where "machine type" and "plant environment" constitute distinct axes of variation
[25]. Our work bridges this gap by explicitly modeling these factors through structured
prompting.

Chapter 3: Methodology

3.1 Architecture Overview

The core of Sensor-FM is a deep Transformer encoder architecture designed to process
continuous time-series data. Unlike standard NLP transformers that operate on discrete token
vocabularies, our model operates on continuous vector patches. The workflow consists of
three stages: Patching and Embedding, Pre-training via Masked Sensor Modeling (MSM), and
Prompt-Based Adaptation.

The input data is defined as a multivariate time series X € mathbbRT*¢, where T is the
sequence length and C is the number of sensor channels. To handle the high sampling rate of
vibration data, we employ a patching mechanism. The series is divided into non-overlapping
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patches of length P, resulting in a sequence of N = T /P patches. Each patch is then linearly
projected into a latent dimension D, enabling the model to capture local temporal structures
within the patch while the Transformer layers model global dependencies between patches
[26].

Figure 1: Sensor-FM Architecture
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Figure 1: Sensor

3.2 Pre-training: Masked Sensor Modeling

The foundation model is pre-trained on a large-scale unlabeled dataset collected from diverse
industrial sources. We employ a Masked Sensor Modeling (MSM) objective, similar to BERT in
NLP or MAE in Vision. During training, a random subset of patches is masked, and the model is
tasked with reconstructing the raw signal values of the masked patches based on the context
provided by the unmasked patches [27].

This objective forces the model to learn the underlying physics of the mechanical systems. For
example, to reconstruct a missing segment of a vibration waveform, the model must implicitly
understand the rotational frequency and the harmonic structures associated with the
machine's operation [28]. We utilize a standard Mean Squared Error (MSE) loss for
reconstruction. The pre-training is computationally intensive but is performed only once. The
resulting weights are then frozen for all downstream applications.

3.3 Hierarchical Prompt-Based Adaptation

The primary innovation of Sensor-FM lies in its adaptation strategy. Instead of modifying the
pre-trained weights 8, we introduce a set of learnable parameters ¢, referred to as prompts.
We define two types of prompts to address the "machine-plant” variance problem [29].

1. Machine Prompts (P,,): These vectors encode characteristics specific to the asset type
(e.g., bearing, gearbox, motor).

2. Plant Prompts (P,): These vectors encode environmental context (e.g., noise levels,
mounting types, operational speed ranges).
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Let E € mathbbRV*P be the sequence of patch embeddings derived from the input X. The
prompts P, € mathbbR**P and P, € mathbbR**P are learnable matrices where L,, and L,

denote the prompt lengths. These are concatenated with the input embeddings to form the
augmented input sequence:

tildeE = [By; Py; E]

This augmented sequence tildeE is fed into the frozen Transformer encoder. The self-
attention mechanism allows the original data patches E to attend to the prompt vectors,
thereby modulating the feature extraction process based on the context encoded in the
prompts [30].

The attention operation for a single head is formally defined as:

QK™
Vdy

where queries Q, keys K, and values V are derived from tildeE. By optimizing B, and B, via
backpropagation while keeping the Transformer weights fixed, the model learns to shift the
latent representation of the input data into a space where the downstream task (e.g, fault
classification) is solvable, effectively bridging the domain gap [31].

Attention(Q,K,V) = softmax( 14

3.4 Implementation Details

The implementation is carried out in PyTorch. The prompt injection layer is a custom module
that wraps the standard Transformer backbone. We utilize a learnable position embedding
that is added to the patch embeddings, while the prompt vectors have their own separate
learned position embeddings to distinguish their ordering.

Code Snippet 1 demonstrates the core logic of the Prompt Learner module.

Code Snippet 1: Prompt Injection Mechanism

import torch
import torch.nn as nn

class PromptLearner (nn.Module) :

def init (self, input dim, prompt len, num prompts, encoder):
super (). init ()
self.encoder = encoder # Frozen Pre-trained Transformer

self.prompt len = prompt len

self.input dim = input dim

# Initialize learnable prompts

# Shape: (num prompts, prompt len, input dim)

self.prompts = nn.Parameter (torch.randn (num prompts, prompt len,
input dim))

# Domain-specific projection (optional)
self.dropout = nn.Dropout (0.1
def forward(self, x, prompt id):
# x shape: (batch size, seq len, input dim)
# prompt id: index of the specific machine/plant prompt to use

batch size = x.shapel0]
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# Retrieve specific prompts for this batch

# We expand to match batch size

current prompts = self.prompts[prompt id].expand(batch size, -1, -1)

# Concatenate prompts with input embeddings

# Output shape: (batch size, prompt len + seq len, input dim)

augmented input = torch.cat((current prompts, x), dim=1)

# Pass through frozen encoder

output = self.encoder (augmented input)

return output
The training process for adaptation involves minimizing the task-specific loss (e.g., Cross-
Entropy for classification) with respect to the prompt parameters only. This drastically
reduces the memory footprint during training, as the optimizer states need only be

maintained for the small set of prompt vectors rather than the massive Transformer backbone
[32].

Chapter 4: Experiments and Analysis

4.1 Experimental Setup

To evaluate the efficacy of Sensor-FM, we constructed a comprehensive experimental suite
involving multiple public and proprietary datasets.

Datasets:

1. IMS Bearing Dataset: A standard benchmark for rotating machinery, containing run-to-
failure data of rolling element bearings [33].

2. XJTU-SY Dataset: Another high-quality bearing dataset covering different operating
conditions [34].

3. Proprietary Multi-Plant (PMP) Dataset: To simulate the "across plants" challenge,
we utilized a proprietary dataset collected from three geographically distinct automotive
manufacturing plants (Plant A, B, and C). These plants operate similar CNC milling machines
but under varying loads and environmental noise profiles.

Baselines:

We compared Sensor-FM against three strong baselines:

1. ResNet-1D: A deep residual CNN trained from scratch on the target domain [35].
2. LSTM-Attn: A Bi-directional LSTM with attention mechanisms [36].

3. Fine-tuned Transformer (FT-Trans): The same backbone as Sensor-FM, but fully
fine-tuned (all weights updated) on the target task [37].

Evaluation Metrics:

We report Precision, Recall, and F1-Score. For cross-domain experiments, we employ a
"Source-Target" protocol where the model is adapted on a small subset (10 shots per class) of
the target domain data [38].
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4.2 Cross-Domain Fault Diagnosis Results

The primary hypothesis is that prompt tuning provides better generalization than full fine-
tuning in low-data regimes. We trained the foundation model on a merged dataset excluding
the specific target domain, then adapted it using prompts.

Table 1 presents the F1-scores for cross-domain adaptation. The task is 4-way classification
(Normal, Inner Race Fault, Outer Race Fault, Ball Fault).

Model Architecture Plant A -> Plant B (F1) Plant A -> Plant C (F1) Parameters Updated

ResNet-1D 0.72 0.68 100%
(Supervised)

FT-Trans (Fine-Tuned) 0.89 0.85 100%
Sensor-FM (Prompted) 0.91 0.88 0.5%

As observed in Table 1, Sensor-FM with prompt adaptation outperforms the fully fine-tuned
transformer. This counter-intuitive result can be attributed to the regularization effect of
keeping the backbone frozen. Full fine-tuning on the small "few-shot" calibration set of the
target plant leads to overfitting to the specific noise characteristics of that limited data [39]. In
contrast, prompting effectively steers the robust, general-purpose representations of the
foundation model toward the target distribution without destroying the pre-learned features.

4.3 Analysis of Adaptation Efficiency

We further analyzed the training dynamics. Figure 2 illustrates the validation accuracy curves
during the adaptation phase for Plant B.

Figure 2: Adaptation Efficiency Chart
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Figure 2: Adaptation Efficiency Chart

The results indicate that prompt tuning converges significantly faster than full fine-tuning.
Moreover, the computational cost (FLOPs) during the backward pass is reduced by two orders
of magnitude since gradients are not calculated for the deep transformer layers [40].

To verify the distinct roles of Machine Prompts and Plant Prompts, we conducted an ablation
study. Using only Machine Prompts resulted in a 3% drop in F1 score on the PMP dataset,
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while using only Plant Prompts resulted in a 5% drop. This confirms that disentangling the
asset physics from the environmental context is crucial for optimal performance [41].

Code Snippet 2 outlines the evaluation loop used to calculate the metrics presented.

Code Snippet 2: Evaluation Protocol

def evaluate adaptation(model, test loader, device):
model.eval ()
all preds = []
all labels = []
with torch.no grad():
for batch in test loader:
inputs, labels, prompt ids = batch
inputs = inputs.to(device)

labels

labels.to (device)
# Forward pass with learned prompts
outputs = model (inputs, prompt ids)
# Classification head
logits = outputs[:, 0, :] # Use CLS token or global pool
preds = torch.argmax (logits, dim=1)
all preds.extend(preds.cpu() .numpy())
all labels.extend(labels.cpu () .numpy())
# Calculate metrics
from sklearn.metrics import fl score
fl = fl1 score(all labels, all preds, average='macro')
return f1l
Finally, we explored the sensitivity of the model to the length of the prompt vectors. We found
that a prompt length of L =10 to L = 20 tokens provided the best balance between

expressivity and overfitting. Extremely long prompts introduced too many free parameters
relative to the few-shot calibration data, degrading performance [42].

Chapter 5: Conclusion

This paper presented Sensor-FM, a foundation model framework specifically tailored for
industrial sensor data. By shifting the adaptation paradigm from weight fine-tuning to prompt
learning, we addressed the critical challenges of data heterogeneity and domain shift in IloT
applications. The proposed method separates the semantic adaptation into asset-specific and
environment-specific components, allowing for flexible and robust deployment across
different manufacturing plants.

Our experimental results on standard benchmarks and proprietary multi-plant datasets
confirm that prompt-based adaptation achieves superior performance in few-shot cross-
domain scenarios while requiring a fraction of the computational resources for training. This
holds significant implications for the industry. It suggests a future where a single, powerful
foundation model can be deployed on a central server or cloud infrastructure, with
lightweight, plant-specific prompts distributed to edge devices. This architecture drastically
reduces the maintenance burden of Al systems, as the core model remains static, and only the
lightweight prompts need to be managed and updated.
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Despite the promising results, several limitations remain. First, the inference cost of the
Transformer backbone remains high compared to lightweight CNNs. While training is
efficient, the forward pass during inference still requires processing the full depth of the
model. Future work should explore knowledge distillation techniques to compress the
prompted foundation model into smaller student networks suitable for ultra-low-power
microcontrollers.

Second, the current prompting mechanism assumes a static set of prompts for a given
machine or plant. In reality, industrial environments are dynamic; operational conditions drift
over time due to wear and tear. A dynamic prompting mechanism that evolves online during
operation could further enhance long-term robustness.

Finally, our current work focused primarily on vibration and current data. Extending Sensor-
FM to multi-modal fusion that includes disparate data types like thermal images, acoustic logs,
and textual maintenance records represents a fertile ground for future research, potentially
leading to a truly holistic industrial artificial intelligence.

References

[1] Chen, ]., Zheng, X., Shao, Z., Ruan, M,, Li, H., Zheng, D., & Liang, Y. (2025). Creative interior design
matching the indoor structure generated through diffusion model with an improved control
network. Frontiers of Architectural Research, 14(3), 614-629.
https://doi.org/10.1016/j.foar.2024.08.003

[2] Peng, Q., Bai, C., Zhang, G., Xu, B,, Liu, X, Zheng, X, ... & Lu, C. (2025, October). NavigScene: Bridging
local perception and global navigation for beyond-visual-range autonomous driving. In
Proceedings of the 33rd ACM International Conference on Multimedia (pp. 4193-4202).

[3] Wang, X, Wang, H. Tian, Z, Wang, W, & Chen, ]J. (2025). Angle-Based Dual-Association
Evolutionary Algorithm for Many-Objective Optimization. Mathematics, 13(11), 1757.
https://www.google.com/search?q=https://doi.org/10.3390/math13111757

[4] Chen, Y., Zhang, L., Shang, |., Zhang, Z., Liu, T., Wang, S., & Sun, Y. (2024). Dha: Learning decoupled-
head attention from transformer checkpoints via adaptive heads fusion. Advances in Neural
Information Processing Systems, 37, 45879-45913.

[5] Yi, X. (2025). Compliance-by-Design Micro-Licensing for Al-Generated Content in Social Commerce
Using C2PA Content Credentials and W3C ODRL Policies.

[6] Chen, N., Zhang, C., An, W., Wang, L., Li, M., & Ling, Q. (2025). Event-based Motion Deblurring with
Blur-aware Reconstruction Filter. IEEE Transactions on Circuits and Systems for Video
Technology.

[7] Liu, F., Jiang, S., Miranda-Moreno, L., Choi, S., & Sun, L. (2024). Adversarial vulnerabilities in large
language models for time series forecasting. arXiv preprint arXiv:2412.08099.

[8] Chen, X. (2025). Research on Architecture Optimization of Intelligent Cloud Platform and
Performance Enhancement of MicroServices. Economics and Management Innovation, 2(5), 103-
111.

[9] Shih, K, Deng, Z., Chen, X, Zhang, Y., & Zhang, L. (2025, May). DST-GFN: A Dual-Stage Transformer
Network with Gated Fusion for Pairwise User Preference Prediction in Dialogue Systems. In 2025
8th International Conference on Advanced Electronic Materials, Computers and Software
Engineering (AEMCSE) (pp. 715-719). IEEE.

[10] Yang, C, & Qin, Y. (2025). Online public opinion and firm investment preferences. Finance
Research Letters, 108617.

[11]  Yi, X. (2025). Real-Time Fair-Exposure Ad Allocation for SMBs and Underserved Creators via
Contextual Bandits-with-Knapsacks.

[12] Fang, Z. (2025, July). Microservice-driven modular low-code platform for accelerating SME
digital transformation. In Proceedings of the 2025 International Conference on Economic
Management and Big Data Application (pp. 894-898).

[13]  Yu, A, Huang, Y, Li, S, Wang, Z., & Xia, L. (2023). All fiber optic current sensor based on phase-
shift fiber loop ringdown structure. Optics Letters, 48(11), 2925-2928.

172



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025
ISSN: 3079-644X

[14] Li, S, Deng, Z, Lu, C, Wu, ], Dai, ], & Wang, Q. (2023). An efficient global algorithm for
indefinite separable quadratic knapsack problems with box constraints. Computational
Optimization and Applications, 86(1), 241-273.

[15] Li, B. (2025). From Maps to Decisions: A GeoAl Framework for Multi-Hazard Infrastructure
Resilience and Equitable Emergency Management. American Journal Of Big Data, 6(3), 139-153.
[16] Tian, Y., Xu, S, Cao, Y., Wang, Z,, & Wei, Z. (2025). An Empirical Comparison of Machine
Learning and Deep Learning Models for Automated Fake News Detection. Mathematics, 13(13),

2086.

[17] Fang, Z. (2025, June). Adaptive QoS-Aware Cloud-Edge Collaborative Architecture for Real-
Time Smart Water Service Management. In Proceedings of the 2025 International Conference on
Management Science and Computer Engineering (pp. 606-611).

[18] Wu, H,, Yang, P., Asano, Y. M., & Snoek, C. G. (2025). Segment Any 3D-Part in a Scene from a
Sentence. arXiv preprint arXiv:2506.19331.

[19] Pengwan, Y. A. N. G.,, ASANO, Y. M,, & SNOEK, C. G. M. (2024). U.S. Patent Application No.
18/501,167.

[20] Yang, P, Asano, Y. M., Mettes, P., & Snoek, C. G. (2022, October). Less than few: Self-shot video
instance segmentation. In European Conference on Computer Vision (pp. 449-466). Cham:
Springer Nature Switzerland.

[21] Meng, L. (2025). From Reactive to Proactive: Integrating Agentic Al and Automated Workflows
for Intelligent Project Management (AI-PMP). Frontiers in Engineering, 1(1), 82-93.

[22]  Liu, F, & Liu, C. (2018, June). Towards accurate and high-speed spiking neuromorphic systems
with data quantization-aware deep networks. In Proceedings of the 55th Annual Design
Automation Conference (pp. 1-6).

[23] Fang, Z. (2025). Cloud-Native Microservice Architecture for Inclusive Cross-Border Logistics:
Real-Time Tracking and Automated Customs Clearance for SMEs. Frontiers in Artificial Intelligence
Research, 2(2), 221-236.

[24] Chen, X. (2025). Research on Al-Based Multilingual Natural Language Processing Technology
and Intelligent Voice Interaction System. European Journal of Al, Computing & Informatics, 1(3),
47-53.

[25] Yang, C., & Mustafa, S. E. (2024). The Application and Challenges of Cross-Cultural Translation
and Communication in the National Museum of China under the Perspective of Artificial
Intelligence. Eurasian Journal of Applied Linguistics, 10(3), 214-229.

[26] Che, C, Wang, Z.,, Yang, P.,, Wang, Q., Ma, H., & Shi, Z. (2025). LoRA in LoRA: Towards parameter-
efficient architecture expansion for continual visual instruction tuning. arXiv preprint
arXiv:2508.06202.

[27] Yang, P., Mettes, P., & Snoek, C. G. (2021). Few-shot transformation of common actions into
time and space. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 16031-16040).

[28] Wu, H, Pengwan, Y. A. N. G., ASANO, Y. M., & SNOEK, C. G. M. (2025). U.S. Patent Application No.
18/744,541.

[29] Peng, Q. Zheng, C., & Chen, C. (2024). A dual-augmentor framework for domain generalization
in 3d human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 2240-2249).

[30] Yao, Z., Nguyen, H., Srivastava, A., & Ambite, ]. L. (2024). Task-Agnostic Federated Learning.
arXiv preprint arXiv:2406.17235.

[31] Wu,], Ly, C, Lj, S, & Deng, Z. (2023). A semidefinite relaxation based global algorithm for two-
level graph partition problem. Journal of Industrial & Management Optimization, 19(9).

[32] Yang, P, Snoek, C. G., & Asano, Y. M. (2023). Self-ordering point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 15813-15822).

[33] Jiang, L., Bao, Z., Sheng, S., & Zhu, D. (2025). SLOFetch: Compressed-Hierarchical Instruction
Prefetching for Cloud Microservices. arXiv preprint arXiv:2511.04774.

[34] Liy, ], Kong, Z., Zhao, P., Yang, C,, Shen, X, Tang, H., ... & Wang, Y. (2025, April). Toward adaptive
large language models structured pruning via hybrid-grained weight importance assessment. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 18, pp. 18879-18887).

[35] Yang, P, Hu, V. T, Mettes, P., & Snoek, C. G. (2020, August). Localizing the common action

173



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025
ISSN: 3079-644X

among a few videos. In European conference on computer vision (pp. 505-521). Cham: Springer
International Publishing.

[36] Qu, D, & Ma, Y. (2025). Magnet-bn: markov-guided Bayesian neural networks for calibrated
long-horizon sequence forecasting and community tracking. Mathematics, 13(17), 2740.

[37] Wu,], Chen, S, Heo, [, Gutfraind, S., Liu, S., Li, C,, ... & Sharps, M. (2025). Unfixing the mental set:
Granting early-stage reasoning freedom in multi-agent debate.

[38] Xu, H, Liu, K, Yao, Z, Yu, P. S, Li, M,, Ding, K., & Zhao, Y. (2024). Lego-learn: Label-efficient
graph open-set learning. arXiv preprint arXiv:2410.16386.

[39] Yang, C.,, & Mustafa, S. E. (2025). The Reception Studies of Multimodality in the Translation and
Communication of Chinese Museum Culture in the Era of Intelligent Media. Cultura: International
Journal of Philosophy of Culture and Axiology, 22(4), 532-553.

[40] Meng, L. (2025). Architecting Trustworthy LLMs: A Unified TRUST Framework for Mitigating
Al Hallucination. Journal of Computer Science and Frontier Technologies, 1(3), 1-15.

[41] Li, S. (2025). Momentum, volume and investor sentiment study for us technology sector
stocks—A hidden markov model based principal component analysis. PloS one, 20(9), e0331658.

174



