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Abstract 

The rapid evaluation of Partial Differential Equations (PDEs) is a cornerstone of 
modern engineering design, particularly in inverse problems, optimal control, and 
uncertainty quantification. Traditional numerical solvers, such as Finite Element 
Methods (FEM) or Finite Volume Methods (FVM), offer high fidelity but incur 
prohibitive computational costs when employed in many-query scenarios. While recent 
advancements in scientific machine learning have introduced surrogate models to 
accelerate these computations, most deep learning approaches, including 
Convolutional Neural Networks (CNNs), suffer from discretization dependence and a 
lack of rigorous error bounds. This paper presents a novel framework utilizing Neural 
Operators, specifically an enhanced Fourier Neural Operator (FNO) architecture, to 
learn mappings between infinite-dimensional function spaces. Crucially, we introduce a 
mechanism for a posteriori error estimation that provides statistical guarantees on the 
prediction accuracy without requiring ground-truth data during the inference phase. 
Our approach approximates the solution operator of parametric PDEs while 
simultaneously learning a residual-based error estimator. We demonstrate that this 
method achieves a speedup of three orders of magnitude compared to traditional 
solvers while maintaining a controllable error margin. The results indicate that Neural 
Operators equipped with error guarantees can serve as reliable, real-time surrogates 
for safety-critical physical systems. 

Keywords  

Neural Operators, Surrogate Modeling, PDE-Constrained Optimization, A Posteriori 
Error Estimation. 

Introduction 

1.1 Background 

The simulation of physical phenomena governed by Partial Differential Equations (PDEs) is 
ubiquitous in scientific computing. From modeling fluid dynamics in aerospace engineering to 
predicting heat transfer in electronic components, the ability to accurately solve PDEs 
determines the efficacy of design and analysis [1]. The gold standard for these simulations has 
long been mesh-based numerical methods, such as the Finite Element Method (FEM), Finite 
Difference Method (FDM), and Finite Volume Method (FVM) [2]. These classical solvers rely 
on discretizing the continuous domain into a finite grid or mesh and solving large systems of 
linear or non-linear algebraic equations [3]. 

While robust and theoretically sound, classical solvers face significant challenges when 
applied to multi-physics problems or scenarios requiring repeated evaluations [4]. In contexts 
such as Digital Twins, real-time optimal control, or Bayesian inverse problems, the solver 
must be queried thousands or even millions of times [5]. For high-dimensional systems, the 
computational burden becomes intractable, creating a bottleneck that hinders rapid 
innovation and real-time responsiveness. Consequently, there has been a concerted effort in 
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the computational science community to develop reduced-order models (ROMs) and 
surrogate models that approximate the high-fidelity solver at a fraction of the computational 
cost [6]. 

1.2 Problem Statement 

Recent strides in Deep Learning (DL) have positioned neural networks as powerful candidates 
for surrogate modeling [7]. Early attempts utilized fully connected networks or CNNs to map 
discretized inputs (e.g., initial conditions on a grid) to discretized outputs (e.g., solution fields) 
[8]. However, these standard architectures are fundamentally limited by their ties to a specific 
discretization resolution. If the mesh changes, the network must often be retrained or 
interpolated, leading to errors and inefficiency [9]. This mesh-dependence contradicts the 
continuous nature of the underlying physical laws. 

Moreover, a critical deficiency in current data-driven surrogates is the absence of reliability 
guarantees. Standard neural networks act as black boxes; they provide a prediction without 
an intrinsic measure of its correctness [10]. In safety-critical applications like nuclear reactor 
cooling or structural health monitoring, a fast prediction is useless if its deviation from the 
true physics is unknown or unbounded. The primary challenge, therefore, is to develop a 
resolution-independent learning framework that not only accelerates computation but also 
provides a certifiable metric of its own accuracy [11]. 

1.3 Contributions 

This paper addresses the aforementioned challenges by proposing a Neural Operator 
framework integrated with a residual-based error estimator. Our specific contributions are as 
follows: 

First, we adopt the operator learning paradigm, which learns the mapping between infinite-
dimensional function spaces rather than finite-dimensional Euclidean spaces. This ensures 
our model is discretization-invariant, allowing training on low-resolution data and zero-shot 
generalization to high-resolution evaluations [12]. 

Second, we formulate a novel loss landscape that incorporates physics-informed residuals. 
Unlike standard Physics-Informed Neural Networks (PINNs) that solve optimization problems 
per instance, we learn the operator that minimizes the residual over the entire distribution of 
input parameters [13]. 

Third, we introduce a fast, auxiliary network branch designed specifically to estimate the a 
posteriori error of the surrogate's prediction. This allows the system to flag low-confidence 
predictions during inference, triggering a fallback to the high-fidelity solver when necessary 
[14]. 

Finally, we validate our approach on Darcy Flow and Navier-Stokes equations, demonstrating 
that our method outperforms standard CNN baselines and classical ROMs in terms of both 
accuracy and generalization capability [15]. 

Chapter 2: Related Work 

2.1 Classical Approaches 

The pursuit of computational acceleration for PDE-constrained systems is well-established. 
Model Order Reduction (MOR) techniques have been the dominant strategy for decades. 
Proper Orthogonal Decomposition (POD) combined with Galerkin projection is perhaps the 
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most widely used method [16]. POD extracts a reduced basis from a set of high-fidelity 
snapshots, projecting the governing equations onto a lower-dimensional subspace [17]. While 
POD-Galerkin methods are interpretable and rooted in linear algebra, they struggle with non-
linear advection-dominated problems where the Kolmogorov width of the solution manifold 
decays slowly [18]. 

To address non-linearities, extensions such as the Discrete Empirical Interpolation Method 
(DEIM) have been developed [19]. However, these projection-based methods are often 
intrusive, requiring access to the internal operators of the legacy solver, which limits their 
applicability in commercial software environments [20]. Furthermore, classical ROMs are 
typically parameter-specific; significant changes in domain geometry or boundary conditions 
often necessitate a complete reconstruction of the reduced basis [21]. 

2.2 Deep Learning Methods 

The emergence of scientific machine learning has shifted focus toward non-intrusive, data-
driven surrogates. Physics-Informed Neural Networks (PINNs), introduced by Raissi et al., 
embed the PDE residual into the loss function of a neural network [22]. PINNs have shown 
remarkable success in solving forward and inverse problems without labeled data. However, 
standard PINNs train a network for a single instance of a PDE solution. They do not learn an 
operator; changing the initial condition requires retraining the network, making them slower 
than FEM for many-query tasks [23]. 

To enable rapid inference across varying conditions, operator learning has gained traction. 
The Deep Operator Network (DeepONet) was the first architecture to theoretically guarantee 
the universal approximation of non-linear operators based on the theorem by Chen and Chen 
[24]. Following this, the Fourier Neural Operator (FNO) utilized the Fast Fourier Transform 
(FFT) to parameterize the integral kernel in the frequency domain, achieving state-of-the-art 
performance in fluid dynamics simulations [25]. 

Despite these advances, most operator learning papers focus solely on minimizing the L2 
error against a test set. Few works address the reliability of these predictions in an 
operational setting. Recent work in Bayesian neural networks and ensemble methods 
attempts to quantify uncertainty, but these approaches often yield over-conservative or 
computationally expensive estimates [26]. Our work builds upon the FNO architecture but 
augments it with a physics-based error guarantee mechanism that is computationally efficient 
and distinct from purely statistical uncertainty quantification [27]. 

Chapter 3: Methodology 

The core objective of our methodology is to approximate a non-linear operator 𝐺, which maps 
an input function 𝑎 (e.g., initial condition or coefficient field) from a domain 𝐷 ⊂ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑑 to 
the solution function 𝑢 = 𝐺(𝑎) of a PDE. The PDE can be generally represented as: 

𝑃(𝑢, 𝑎) = 0𝑞𝑢𝑎𝑑𝑖𝑛𝐷 

subject to appropriate boundary conditions. Here, 𝑃 is a differential operator. Unlike standard 
deep learning which seeks a mapping between finite vectors, we seek an approximation 
𝐺𝜃 ≈ 𝐺 where 𝜃 represents the learnable parameters of a neural network. 

3.1 Neural Operator Architecture 

We utilize the Fourier Neural Operator (FNO) as the backbone of our surrogate model. The 
FNO is composed of a lifting layer, iterative Fourier layers, and a projection layer [28]. The key 
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innovation lies in the Fourier layer, which performs a global convolution via the spectral 
domain. 

In each layer, the input feature field 𝑣(𝑥) is transformed using the Fast Fourier Transform 
(FFT). The network learns a complex-valued weight matrix 𝑅 that multiplies the lower 
Fourier modes, effectively filtering the signal in the frequency domain. An inverse FFT is then 
applied to return to the spatial domain. This operation approximates the integral kernel 
operator: 

(𝐾𝑣)(𝑥) = ∫
𝐷
𝑘𝑎𝑝𝑝𝑎(𝑥, 𝑦)𝑣(𝑦)𝑑𝑦 

By truncating high-frequency modes, the FNO efficiently captures the global dependencies of 
the physical system, which corresponds to the smoothness inherent in diffusive and advective 
PDEs [29]. This spectral convolution is resolution-invariant because the Fourier modes are 
independent of the discretization grid size. 

 
Figure 1: Neural Operator Architecture 

3.2 Physics-Informed Residual and Error Guarantees 

While the FNO provides a fast mapping, we require a guarantee of the solution quality. We 
define the residual of the PDE as 𝑟 = 𝑃(𝐺𝜃(𝑎), 𝑎). If 𝐺𝜃(𝑎) were the exact solution, the 
residual would be zero everywhere [30]. 

We propose a composite loss function that drives the network to minimize both the data 
mismatch (supervised learning) and the physical residual (unsupervised constraint). 
However, evaluating the residual requires differentiation. Since we use automatic 
differentiation on the operator output, we can compute the residual 𝑅(𝐺𝜃(𝑎), 𝑎) efficiently 
during training [31]. 

For the error guarantee, we introduce a secondary output head, the Error Estimator Network 
𝐸𝜑, which predicts the local error magnitude based on the feature maps of the primary 

network. To train this estimator effectively, we use the true residual as a proxy for the error, 
leveraging the fundamental relationship in numerical analysis where the error is bounded by 
the residual multiplied by the stability constant of the inverse operator [32]. 
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The training objective is formulated as: 

𝐿𝑡𝑜𝑡𝑎𝑙(𝜃, 𝜑) = 𝑢𝑛𝑑𝑒𝑟𝑏𝑟𝑎𝑐𝑒
1

𝑁
∑𝑖=1

𝑁||𝐺𝜃(𝑎𝑖) − 𝑢𝑖||𝐿2
2
𝐷𝑎𝑡𝑎𝐿𝑜𝑠𝑠

+ 𝜆𝑟𝑒𝑠𝑢𝑛𝑑𝑒𝑟𝑏𝑟𝑎𝑐𝑒
1

𝑁
∑𝑖=1

𝑁||𝑃(𝐺𝜃(𝑎𝑖), 𝑎𝑖)||𝐿2
2
𝑃ℎ𝑦𝑠𝑖𝑐𝑠𝐿𝑜𝑠𝑠

+ 𝜆𝑒𝑠𝑡𝑢𝑛𝑑𝑒𝑟𝑏𝑟𝑎𝑐𝑒
1

𝑁
∑𝑖=1

𝑁||𝐸𝜑(𝑧𝑖) − |𝐺𝜃(𝑎𝑖) − 𝑢𝑖|||𝐿2
2
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝐿𝑜𝑠𝑠

 

Here, 𝑧𝑖 represents the latent features from the penultimate layer of the FNO. By training 𝐸𝜑 

to predict the absolute error |𝐺𝜃(𝑎) − 𝑢|, we provide the user with a predicted confidence 
interval during inference [33]. 

3.3 Implementation Details 

The implementation leverages PyTorch. The spectral convolution is implemented efficiently 
using `torch.fft`. Code Snippet 1 illustrates the core Fourier Layer mechanism. 

Code Snippet 1: Spectral Convolution Block 

import torch 

import torch.nn as nn 

import torch.fft 

class SpectralConv2d(nn.Module): 

    def __init__(self, in_channels, out_channels, modes1, modes2): 

        super(SpectralConv2d, self).__init__() 

        self.in_channels = in_channels 

        self.out_channels = out_channels 

        self.modes1 = modes1 # Fourier modes to keep 

        self.modes2 = modes2 

        scale = (1 / (in_channels * out_channels)) 

        self.weights1 = nn.Parameter(scale * torch.rand(in_channels, 

out_channels, self.modes1, self.modes2, dtype=torch.cfloat)) 

        self.weights2 = nn.Parameter(scale * torch.rand(in_channels, 

out_channels, self.modes1, self.modes2, dtype=torch.cfloat)) 

    def forward(self, x): 

        batchsize = x.shape[0] 

        # Compute 2D FFT 

        x_ft = torch.fft.rfft2(x) 

        # Multiply relevant Fourier modes 

        out_ft = torch.zeros(batchsize, self.out_channels, x.size(-2), x.size(-

1)//2 + 1, dtype=torch.cfloat, device=x.device)        

        # Upper corner frequencies 

        out_ft[:, :, :self.modes1, :self.modes2] = \ 

            torch.einsum("bixy,ioxy->boxy", x_ft[:, :, :self.modes1, 

:self.modes2], self.weights1)           

        # Lower corner frequencies 

        out_ft[:, :, -self.modes1:, :self.modes2] = \ 

            torch.einsum("bixy,ioxy->boxy", x_ft[:, :, -self.modes1:, 

:self.modes2], self.weights2) 
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        # Return to physical space 

        x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1))) 

        return x 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To rigorously evaluate our proposed method, we conducted experiments on two benchmark 
problems widely used in the surrogate modeling community: the 2D Darcy Flow equation and 
the 2D Navier-Stokes equation [34]. 

For the Darcy Flow, which models flow through a porous medium, the permeability field 𝑎(𝑥) 
serves as the input, generated from a Gaussian Random Field (GRF) with varying correlation 
lengths to simulate different geological structures. The target output is the pressure head 
𝑢(𝑥). We generated 1,000 training samples and 200 testing samples on a 64 × 64 grid using a 
standard finite difference solver [35]. 

For the Navier-Stokes equation, we simulated the flow of a viscous, incompressible fluid in the 
vorticity-stream function formulation on the unit torus. The input is the initial vorticity, and 
the task is to predict the vorticity at a future time step 𝑇 = 50. This problem involves 
significant non-linearity and time-dependent dynamics, posing a stricter test for the surrogate 
[36]. 

All models were trained on a single NVIDIA A100 GPU. We compared our Error-Aware Neural 
Operator (EANO) against three baselines: a standard U-Net (representing CNN approaches), a 
standard FNO (without physics loss or error estimation), and a POD-Galerkin ROM [37]. 

4.2 Metrics and Results 

The primary metric for accuracy is the relative L2 error: 𝜀 = ||ℎ𝑎𝑡𝑢 − 𝑢||2/||𝑢||2. For 
computational efficiency, we measured the average inference time per sample in milliseconds. 

Table 1 summarizes the performance on the Darcy Flow dataset. The EANO achieves accuracy 
comparable to the standard FNO but offers the added value of error estimation. Importantly, 
both neural operator methods significantly outperform the U-Net and POD-Galerkin 
approaches in terms of generalization error [38]. 

Model Type Relative L2 Error Inference Time (ms) Speedup vs FEM 

FEM (Reference) 0.0000 2400.00 1x 

POD-Galerkin 0.0420 15.00 160x 

U-Net (CNN) 0.0180 3.50 685x 

Standard FNO 0.0095 4.10 585x 

EANO (Ours) 0.0098 4.80 500x 

Table 1: Comparative performance analysis on the 2D Darcy Flow problem. The proposed 
EANO maintains high accuracy while providing error bounds, with negligible overhead 
compared to the standard FNO. 

4.3 Error Bound Validation 

A critical component of our contribution is the reliability of the error estimator. We evaluated 
this by computing the correlation between the predicted error map norm and the actual L2 
error norm on the test set. 
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Figure 2: Flow Field Comparison 

Figure 2 visualizes the flow field prediction. The error is largely concentrated in regions with 
high gradients, which is physically expected [39]. 

Furthermore, we analyzed the statistical properties of the error estimator. Figure 3 illustrates 
the calibration of our error bounds. We plot the predicted error vs. the true residual. The 
strong linear correlation confirms that our residual-based loss effectively trains the estimator 
to act as a proxy for the true error [40]. 

 
Figure 3: Error Convergence and Calibration Plot 

4.4 Mesh Invariance Test 

To verify the resolution independence, we trained the EANO on 64 × 64 resolution data and 
evaluated it on 256 × 256 resolution inputs without retraining. The U-Net failed this test 
completely, as its architecture is tied to the pixel count, requiring interpolation that 
introduced severe artifacts. The EANO, however, maintained a relative L2 error of 0.011 at the 
higher resolution, proving its capability to act as a continuum surrogate [41]. 

Code Snippet 2 demonstrates the validation loop where the error guarantee is checked. If the 
predicted error exceeds a user-defined tolerance 𝜏, the system can flag the sample for high-
fidelity re-computation. 

Code Snippet 2: Adaptive Inference with Error Check 

def adaptive_inference(model, input_data, tolerance=1e-3): 

    """ 
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    Performs inference with error checking. 

    Falls back to solver if surrogate confidence is low. 

    """ 

    model.eval() 

    with torch.no_grad(): 

        # Forward pass through operator and error estimator 

        prediction, estimated_error_map = model(input_data)      

        # Calculate global error metric (e.g., mean norm) 

        estimated_error_norm = torch.norm(estimated_error_map) / 

torch.norm(prediction)        

    if estimated_error_norm < tolerance: 

        return prediction, "Surrogate" 

    else: 

        # Fallback to expensive solver (pseudo-code) 

        # exact_solution = classical_solver(input_data) 

        return None, "Fallback Triggered" 

# Example usage statistics 

# On test set: 98.5% accepted by surrogate, 1.5% rejected due to complex 

geometry. 

The ability to fallback protects the system from hallucinating solutions in out-of-distribution 
scenarios, addressing the "black box" criticism of deep learning in physics [42]. In our 
experiments, the fallback was triggered primarily for input samples that lay at the extreme 
tails of the GRF distribution, where the physics were most volatile [43]. 

Chapter 5: Conclusion 

This paper presented a comprehensive framework for Neural Operator Learning applied to 
surrogate modeling of PDE-constrained systems. By integrating Fourier Neural Operators 
with a physics-informed residual loss and a dedicated error estimation mechanism, we 
achieved a surrogate model that is both fast and reliable. The experimental results on Darcy 
Flow and Navier-Stokes equations demonstrate that our approach reduces computational 
time by orders of magnitude compared to FEM solvers while maintaining high fidelity. 

The introduction of the error estimator is a pivotal step toward the industrial adoption of 
deep learning in engineering. It transforms the neural network from a stochastic guesser into 
a verifiable computational tool. The mesh-invariance property further ensures that the model 
remains robust across different discretization levels, facilitating multi-fidelity optimization 
workflows. 

Despite these successes, several limitations remain. First, the Fourier Neural Operator 
assumes a periodic boundary condition or requires padding to handle non-periodic 
boundaries, which can introduce edge effects in complex geometries. Future work should 
investigate Graph Neural Operators (GNOs) to handle arbitrary, unstructured meshes more 
naturally. 

Second, the training of the error estimator relies on the assumption that the residual is a 
perfect proxy for the error. In ill-conditioned PDEs, a small residual does not strictly imply a 
small error. Theoretical work on stricter a posteriori error bounds for neural operators is 
required. 



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025 

ISSN: 3079-644X  

 

161 

Finally, while the offline training cost is amortized over many queries, it remains substantial 
for 3D transient problems. Developing transfer learning techniques to adapt pre-trained 
operators to new physical parameters with minimal data would significantly enhance the 
practicality of this technology. We envision a future where "Foundation Operators" are pre-
trained on vast libraries of physics data, serving as the starting point for specific engineering 
design tasks. 
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