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Abstract

The rapid evaluation of Partial Differential Equations (PDEs) is a cornerstone of
modern engineering design, particularly in inverse problems, optimal control, and
uncertainty quantification. Traditional numerical solvers, such as Finite Element
Methods (FEM) or Finite Volume Methods (FVM), offer high fidelity but incur
prohibitive computational costs when employed in many-query scenarios. While recent
advancements in scientific machine learning have introduced surrogate models to
accelerate these computations, most deep learning approaches, including
Convolutional Neural Networks (CNNs), suffer from discretization dependence and a
lack of rigorous error bounds. This paper presents a novel framework utilizing Neural
Operators, specifically an enhanced Fourier Neural Operator (FNO) architecture, to
learn mappings between infinite-dimensional function spaces. Crucially, we introduce a
mechanism for a posteriori error estimation that provides statistical guarantees on the
prediction accuracy without requiring ground-truth data during the inference phase.
Our approach approximates the solution operator of parametric PDEs while
simultaneously learning a residual-based error estimator. We demonstrate that this
method achieves a speedup of three orders of magnitude compared to traditional
solvers while maintaining a controllable error margin. The results indicate that Neural
Operators equipped with error guarantees can serve as reliable, real-time surrogates
for safety-critical physical systems.
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Introduction

1.1 Background

The simulation of physical phenomena governed by Partial Differential Equations (PDEs) is
ubiquitous in scientific computing. From modeling fluid dynamics in aerospace engineering to
predicting heat transfer in electronic components, the ability to accurately solve PDEs
determines the efficacy of design and analysis [1]. The gold standard for these simulations has
long been mesh-based numerical methods, such as the Finite Element Method (FEM), Finite
Difference Method (FDM), and Finite Volume Method (FVM) [2]. These classical solvers rely
on discretizing the continuous domain into a finite grid or mesh and solving large systems of
linear or non-linear algebraic equations [3].

While robust and theoretically sound, classical solvers face significant challenges when
applied to multi-physics problems or scenarios requiring repeated evaluations [4]. In contexts
such as Digital Twins, real-time optimal control, or Bayesian inverse problems, the solver
must be queried thousands or even millions of times [5]. For high-dimensional systems, the
computational burden becomes intractable, creating a bottleneck that hinders rapid
innovation and real-time responsiveness. Consequently, there has been a concerted effort in
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the computational science community to develop reduced-order models (ROMs) and
surrogate models that approximate the high-fidelity solver at a fraction of the computational
cost [6].

1.2 Problem Statement

Recent strides in Deep Learning (DL) have positioned neural networks as powerful candidates
for surrogate modeling [7]. Early attempts utilized fully connected networks or CNNs to map
discretized inputs (e.g., initial conditions on a grid) to discretized outputs (e.g., solution fields)
[8]. However, these standard architectures are fundamentally limited by their ties to a specific
discretization resolution. If the mesh changes, the network must often be retrained or
interpolated, leading to errors and inefficiency [9]. This mesh-dependence contradicts the
continuous nature of the underlying physical laws.

Moreover, a critical deficiency in current data-driven surrogates is the absence of reliability
guarantees. Standard neural networks act as black boxes; they provide a prediction without
an intrinsic measure of its correctness [10]. In safety-critical applications like nuclear reactor
cooling or structural health monitoring, a fast prediction is useless if its deviation from the
true physics is unknown or unbounded. The primary challenge, therefore, is to develop a
resolution-independent learning framework that not only accelerates computation but also
provides a certifiable metric of its own accuracy [11].

1.3 Contributions

This paper addresses the aforementioned challenges by proposing a Neural Operator
framework integrated with a residual-based error estimator. Our specific contributions are as
follows:

First, we adopt the operator learning paradigm, which learns the mapping between infinite-
dimensional function spaces rather than finite-dimensional Euclidean spaces. This ensures
our model is discretization-invariant, allowing training on low-resolution data and zero-shot
generalization to high-resolution evaluations [12].

Second, we formulate a novel loss landscape that incorporates physics-informed residuals.
Unlike standard Physics-Informed Neural Networks (PINNs) that solve optimization problems
per instance, we learn the operator that minimizes the residual over the entire distribution of
input parameters [13].

Third, we introduce a fast, auxiliary network branch designed specifically to estimate the a
posteriori error of the surrogate's prediction. This allows the system to flag low-confidence
predictions during inference, triggering a fallback to the high-fidelity solver when necessary
[14].

Finally, we validate our approach on Darcy Flow and Navier-Stokes equations, demonstrating
that our method outperforms standard CNN baselines and classical ROMs in terms of both
accuracy and generalization capability [15].

Chapter 2: Related Work
2.1 Classical Approaches

The pursuit of computational acceleration for PDE-constrained systems is well-established.
Model Order Reduction (MOR) techniques have been the dominant strategy for decades.
Proper Orthogonal Decomposition (POD) combined with Galerkin projection is perhaps the
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most widely used method [16]. POD extracts a reduced basis from a set of high-fidelity
snapshots, projecting the governing equations onto a lower-dimensional subspace [17]. While
POD-Galerkin methods are interpretable and rooted in linear algebra, they struggle with non-
linear advection-dominated problems where the Kolmogorov width of the solution manifold
decays slowly [18].

To address non-linearities, extensions such as the Discrete Empirical Interpolation Method
(DEIM) have been developed [19]. However, these projection-based methods are often
intrusive, requiring access to the internal operators of the legacy solver, which limits their
applicability in commercial software environments [20]. Furthermore, classical ROMs are
typically parameter-specific; significant changes in domain geometry or boundary conditions
often necessitate a complete reconstruction of the reduced basis [21].

2.2 Deep Learning Methods

The emergence of scientific machine learning has shifted focus toward non-intrusive, data-
driven surrogates. Physics-Informed Neural Networks (PINNs), introduced by Raissi et al,
embed the PDE residual into the loss function of a neural network [22]. PINNs have shown
remarkable success in solving forward and inverse problems without labeled data. However,
standard PINNs train a network for a single instance of a PDE solution. They do not learn an
operator; changing the initial condition requires retraining the network, making them slower
than FEM for many-query tasks [23].

To enable rapid inference across varying conditions, operator learning has gained traction.
The Deep Operator Network (DeepONet) was the first architecture to theoretically guarantee
the universal approximation of non-linear operators based on the theorem by Chen and Chen
[24]. Following this, the Fourier Neural Operator (FNO) utilized the Fast Fourier Transform
(FFT) to parameterize the integral kernel in the frequency domain, achieving state-of-the-art
performance in fluid dynamics simulations [25].

Despite these advances, most operator learning papers focus solely on minimizing the L2
error against a test set. Few works address the reliability of these predictions in an
operational setting. Recent work in Bayesian neural networks and ensemble methods
attempts to quantify uncertainty, but these approaches often yield over-conservative or
computationally expensive estimates [26]. Our work builds upon the FNO architecture but
augments it with a physics-based error guarantee mechanism that is computationally efficient
and distinct from purely statistical uncertainty quantification [27].

Chapter 3: Methodology

The core objective of our methodology is to approximate a non-linear operator G, which maps
an input function a (e.g., initial condition or coefficient field) from a domain D © mathbbR% to
the solution function u = G(a) of a PDE. The PDE can be generally represented as:

P(u,a) = OquadinD

subject to appropriate boundary conditions. Here, P is a differential operator. Unlike standard
deep learning which seeks a mapping between finite vectors, we seek an approximation
Gy = G where 6 represents the learnable parameters of a neural network.

3.1 Neural Operator Architecture

We utilize the Fourier Neural Operator (FNO) as the backbone of our surrogate model. The
FNO is composed of a lifting layer, iterative Fourier layers, and a projection layer [28]. The key
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innovation lies in the Fourier layer, which performs a global convolution via the spectral
domain.

In each layer, the input feature field v(x) is transformed using the Fast Fourier Transform
(FFT). The network learns a complex-valued weight matrix R that multiplies the lower
Fourier modes, effectively filtering the signal in the frequency domain. An inverse FFT is then
applied to return to the spatial domain. This operation approximates the integral kernel
operator:

(Kv)(x) = [ jkappa(x,y)v(y)dy

By truncating high-frequency modes, the FNO efficiently captures the global dependencies of
the physical system, which corresponds to the smoothness inherent in diffusive and advective
PDEs [29]. This spectral convolution is resolution-invariant because the Fourier modes are
independent of the discretization grid size.
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Figure 1: Neural Operator Architecture

Figure 1: Neural Operator Architecture

3.2 Physics-Informed Residual and Error Guarantees

While the FNO provides a fast mapping, we require a guarantee of the solution quality. We
define the residual of the PDE asr = P(Gg(a),a). If Gg(a) were the exact solution, the
residual would be zero everywhere [30].

We propose a composite loss function that drives the network to minimize both the data
mismatch (supervised learning) and the physical residual (unsupervised constraint).
However, evaluating the residual requires differentiation. Since we wuse automatic
differentiation on the operator output, we can compute the residual R(Gg(a), a) efficiently
during training [31].

For the error guarantee, we introduce a secondary output head, the Error Estimator Network
E,, which predicts the local error magnitude based on the feature maps of the primary
network. To train this estimator effectively, we use the true residual as a proxy for the error,
leveraging the fundamental relationship in numerical analysis where the error is bounded by
the residual multiplied by the stability constant of the inverse operator [32].
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The training objective is formulated as:

DatalLoss

1
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Here, z; represents the latent features from the penultimate layer of the FNO. By training E,,
to predict the absolute error |Gg(a) — u|, we provide the user with a predicted confidence
interval during inference [33].

3.3 Implementation Details

The implementation leverages PyTorch. The spectral convolution is implemented efficiently
using “torch.fft’. Code Snippet 1 illustrates the core Fourier Layer mechanism.

Code Snippet 1: Spectral Convolution Block

import torch

import torch.nn as nn

import torch.fft

class SpectralConv2d(nn.Module) :

def init (self, in channels, out channels, modesl, modes2):

super (SpectralConv2d, self). init ()
self.in channels = in channels
self.out channels = out channels
self.modesl = modesl # Fourier modes to keep
self.modes2 = modes2
scale = (1 / (in_channels * out channels))

self.weightsl = nn.Parameter (scale * torch.rand(in_channels,
out channels, self.modesl, self.modes2, dtype=torch.cfloat))

self.weights?2 = nn.Parameter (scale * torch.rand(in_channels,
out channels, self.modesl, self.modes2, dtype=torch.cfloat))

def forward(self, x):
batchsize = x.shape[0]
# Compute 2D FFT
x ft = torch.fft.rfft2(x)
# Multiply relevant Fourier modes

out ft = torch.zeros (batchsize, self.out channels, x.size(-2), Xx.size(-
1)//2 + 1, dtype=torch.cfloat, device=x.device)

# Upper corner frequencies
out ft[:, :, :self.modesl, :self.modes2] = \

torch.einsum ("bixy, ioxy->boxy", x ft[:, . :self.modesl,
:self.modes?2], self.weightsl)

# Lower corner frequencies
out ft[:, :, -self.modesl:, :self.modes2] = \

torch.einsum ("bixy, ioxy->boxy", x ft[:, H. -self.modesl:,
:self.modes2], self.weights?2)
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# Return to physical space
x = torch.fft.irfft2 (out ft, s=(x.size(-2), x.size(-1)))

return x
Chapter 4: Experiments and Analysis

4.1 Experimental Setup

To rigorously evaluate our proposed method, we conducted experiments on two benchmark
problems widely used in the surrogate modeling community: the 2D Darcy Flow equation and
the 2D Navier-Stokes equation [34].

For the Darcy Flow, which models flow through a porous medium, the permeability field a(x)
serves as the input, generated from a Gaussian Random Field (GRF) with varying correlation
lengths to simulate different geological structures. The target output is the pressure head
u(x). We generated 1,000 training samples and 200 testing samples on a 64 X 64 grid using a
standard finite difference solver [35].

For the Navier-Stokes equation, we simulated the flow of a viscous, incompressible fluid in the
vorticity-stream function formulation on the unit torus. The input is the initial vorticity, and
the task is to predict the vorticity at a future time step T = 50. This problem involves
significant non-linearity and time-dependent dynamics, posing a stricter test for the surrogate
[36].

All models were trained on a single NVIDIA A100 GPU. We compared our Error-Aware Neural
Operator (EANO) against three baselines: a standard U-Net (representing CNN approaches), a
standard FNO (without physics loss or error estimation), and a POD-Galerkin ROM [37].

4.2 Metrics and Results

The primary metric for accuracy is the relative L2 error: € = ||hatu — ul|,/||u||,- For
computational efficiency, we measured the average inference time per sample in milliseconds.

Table 1 summarizes the performance on the Darcy Flow dataset. The EANO achieves accuracy
comparable to the standard FNO but offers the added value of error estimation. Importantly,
both neural operator methods significantly outperform the U-Net and POD-Galerkin
approaches in terms of generalization error [38].

Model Type Relative L2 Error Inference Time (ms)  Speedup vs FEM
FEM (Reference) 0.0000 2400.00 1x
POD-Galerkin 0.0420 15.00 160x

U-Net (CNN) 0.0180 3.50 685x

Standard FNO 0.0095 4.10 585x

EANO (Ours) 0.0098 4.80 500x

Table 1: Comparative performance analysis on the 2D Darcy Flow problem. The proposed
EANO maintains high accuracy while providing error bounds, with negligible overhead
compared to the standard FNO.

4.3 Error Bound Validation

A critical component of our contribution is the reliability of the error estimator. We evaluated
this by computing the correlation between the predicted error map norm and the actual L2
error norm on the test set.
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EANO Prediction Absolute Error Map

Figure 2: Flow Field Comparison

Figure 2 visualizes the flow field prediction. The error is largely concentrated in regions with
high gradients, which is physically expected [39].

Furthermore, we analyzed the statistical properties of the error estimator. Figure 3 illustrates
the calibration of our error bounds. We plot the predicted error vs. the true residual. The
strong linear correlation confirms that our residual-based loss effectively trains the estimator
to act as a proxy for the true error [40].

Figure 3: Error Convergence and Calibration Plot
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Figure 3: Error Convergence and Calibration Plot

4.4 Mesh Invariance Test

To verify the resolution independence, we trained the EANO on 64 X 64 resolution data and
evaluated it on 256 X 256 resolution inputs without retraining. The U-Net failed this test
completely, as its architecture is tied to the pixel count, requiring interpolation that
introduced severe artifacts. The EANO, however, maintained a relative L2 error of 0.011 at the
higher resolution, proving its capability to act as a continuum surrogate [41].

Code Snippet 2 demonstrates the validation loop where the error guarantee is checked. If the
predicted error exceeds a user-defined tolerance 7, the system can flag the sample for high-
fidelity re-computation.

Code Snippet 2: Adaptive Inference with Error Check

def adaptive inference (model, input data, tolerance=le-3):

mwrwn
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Performs inference with error checking.

Falls back to solver if surrogate confidence is low.

model.eval ()

with torch.no grad():
# Forward pass through operator and error estimator
prediction, estimated error map = model (input data)
# Calculate global error metric (e.g., mean norm)

estimated error norm = torch.norm(estimated error map) /
torch.norm(prediction)

if estimated error norm < tolerance:
return prediction, "Surrogate"
else:
# Fallback to expensive solver (pseudo-code)
# exact solution = classical solver (input data)
return None, "Fallback Triggered"
# Example usage statistics

# On test set: 98.5% accepted by surrogate, 1.5% rejected due to complex
geometry.

The ability to fallback protects the system from hallucinating solutions in out-of-distribution
scenarios, addressing the "black box" criticism of deep learning in physics [42]. In our
experiments, the fallback was triggered primarily for input samples that lay at the extreme
tails of the GRF distribution, where the physics were most volatile [43].

Chapter 5: Conclusion

This paper presented a comprehensive framework for Neural Operator Learning applied to
surrogate modeling of PDE-constrained systems. By integrating Fourier Neural Operators
with a physics-informed residual loss and a dedicated error estimation mechanism, we
achieved a surrogate model that is both fast and reliable. The experimental results on Darcy
Flow and Navier-Stokes equations demonstrate that our approach reduces computational
time by orders of magnitude compared to FEM solvers while maintaining high fidelity.

The introduction of the error estimator is a pivotal step toward the industrial adoption of
deep learning in engineering. It transforms the neural network from a stochastic guesser into
a verifiable computational tool. The mesh-invariance property further ensures that the model
remains robust across different discretization levels, facilitating multi-fidelity optimization
workflows.

Despite these successes, several limitations remain. First, the Fourier Neural Operator
assumes a periodic boundary condition or requires padding to handle non-periodic
boundaries, which can introduce edge effects in complex geometries. Future work should
investigate Graph Neural Operators (GNOs) to handle arbitrary, unstructured meshes more
naturally.

Second, the training of the error estimator relies on the assumption that the residual is a
perfect proxy for the error. In ill-conditioned PDEs, a small residual does not strictly imply a
small error. Theoretical work on stricter a posteriori error bounds for neural operators is
required.
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Finally, while the offline training cost is amortized over many queries, it remains substantial
for 3D transient problems. Developing transfer learning techniques to adapt pre-trained
operators to new physical parameters with minimal data would significantly enhance the
practicality of this technology. We envision a future where "Foundation Operators" are pre-
trained on vast libraries of physics data, serving as the starting point for specific engineering
design tasks.
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