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Abstract 

The proliferation of distributed computing infrastructures has necessitated advanced 
resource management strategies that can operate across heterogeneous multi-cluster 
environments while preserving data privacy and system autonomy. This paper 
proposes a novel federated graph learning framework that leverages Graph Neural 
Networks (GNN) for intelligent resource allocation and scheduling in distributed 
computing systems. Our approach addresses the fundamental challenges of resource 
fragmentation, heterogeneous workload characteristics, and inter-cluster 
communication overhead through a decentralized learning paradigm. The framework 
constructs dynamic resource graphs representing computational nodes, network 
topologies, and workload dependencies, enabling collaborative learning across clusters 
without centralizing sensitive operational data. We introduce a hierarchical 
architecture inspired by proven distributed systems designs, combining local graph-
based resource allocation with federated model aggregation through a master-slave 
coordination mechanism. The graph representation captures both global network 
topology and fine-grained local resource states, enabling multi-scale optimization of 
allocation decisions. We implement distributed model parallelism to achieve scalability 
across thousands of nodes while maintaining sub-second decision latencies. 
Experimental evaluation demonstrates that our federated graph learning approach 
achieves superior performance compared to traditional centralized scheduling 
methods, reducing average job completion time by 28% and improving overall cluster 
utilization by 34% across diverse workload scenarios. 
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Introduction 

Modern distributed computing environments have evolved into complex ecosystems 
comprising multiple interconnected clusters that span geographical locations, administrative 
domains, and heterogeneous hardware configurations [1]. These multi-cluster systems 
support diverse computational workloads ranging from batch processing and real-time 
analytics to machine learning training and scientific simulations, each presenting distinct 
resource requirements and performance objectives [2]. The challenge of efficiently managing 
resources across such distributed infrastructure has become increasingly critical as 
organizations seek to maximize utilization while minimizing operational costs and 
maintaining quality of service guarantees [3]. Traditional approaches to resource 
management in distributed systems have primarily relied on hierarchical architectures with 
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centralized coordination, as exemplified by systems like Mesos and YARN, which established 
foundational principles for multi-framework resource sharing [4]. 

The fundamental challenge in multi-cluster resource management stems from the tension 
between centralized control and distributed autonomy [5]. Centralized schedulers require 
complete visibility of resource availability and workload characteristics across all clusters, 
introducing substantial communication overhead and creating single points of failure [6]. As 
cluster sizes grow to thousands of nodes and workload diversity increases, centralized 
scheduling approaches face scalability bottlenecks where decision latencies grow 
proportionally to system size [7]. Furthermore, these approaches often fail to respect data 
sovereignty requirements and organizational policies that prohibit sharing sensitive 
operational metrics across administrative boundaries [8]. The increasing prevalence of edge 
computing and geo-distributed data centers has exacerbated these challenges, creating 
scenarios where network latency and bandwidth constraints make frequent centralized 
coordination impractical [9]. 

Recent advances in federated learning have demonstrated the feasibility of training machine 
learning models across distributed datasets without centralizing data, enabling collaborative 
learning while preserving data privacy through local model training and selective parameter 
sharing [10]. Concurrently, graph neural networks have emerged as powerful tools for 
modeling complex relational structures in networked systems, with successful applications in 
domains ranging from social network analysis to molecular property prediction [11]. The 
representation of computing infrastructure as graphs, where nodes correspond to 
computational resources and edges encode communication relationships, provides a natural 
framework for capturing the structural properties that influence resource allocation decisions 
[12]. The convergence of federated learning and graph neural networks presents a compelling 
opportunity to address the resource management challenges in multi-cluster computing 
environments through architectures that combine hierarchical coordination with distributed 
learning [13]. 

This paper introduces a comprehensive federated graph learning framework specifically 
designed for distributed resource management in multi-cluster computing environments. Our 
framework adopts a hierarchical master-slave architecture that enables scalable coordination 
across multiple independent clusters while maintaining local autonomy for scheduling 
decisions [14]. The system constructs multi-scale graph representations that capture both 
global network topology patterns and fine-grained local resource states, enabling 
optimization at multiple levels of granularity [15]. Through distributed model parallelism 
techniques, we partition the graph neural network across multiple computing nodes, 
achieving linear scalability even as cluster sizes extend to thousands of machines [16]. The 
framework incorporates privacy-preserving federated learning protocols that ensure 
sensitive cluster-specific information remains local while benefiting from collaborative 
learning across the distributed system [17]. 

Our research contributions encompass several key innovations in distributed resource 
management. First, we develop a hierarchical architecture that combines the proven design 
principles of distributed schedulers with modern federated learning techniques, enabling 
scalable multi-cluster coordination without sacrificing local autonomy. Second, we introduce 
multi-scale graph construction methods that effectively capture resource relationships at both 
global network topology level and local cluster configuration level, enabling the GNN model to 
reason about allocation decisions across multiple granularities. Third, we implement 
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distributed model parallelism strategies that partition graph neural network computation 
across multiple machines, achieving scalability to thousands of nodes while maintaining real-
time inference capabilities. Fourth, we provide comprehensive experimental validation 
demonstrating the effectiveness of our approach across diverse workload scenarios, cluster 
configurations, and scale regimes. 

2. Literature Review 

The evolution of distributed resource management systems has been shaped by decades of 
research addressing the fundamental challenges of coordinating computational resources 
across multiple machines. Early cluster management systems such as Condor and Platform 
LSF established foundational concepts including job queuing, priority-based scheduling, and 
fairness policies [18]. The emergence of data-intensive computing frameworks like 
MapReduce necessitated new resource management paradigms that could efficiently handle 
short-lived tasks and support data locality optimization [19]. Apache YARN introduced a two-
level scheduling architecture that separates cluster resource management from application-
specific scheduling logic, enabling multiple diverse frameworks to coexist on shared 
infrastructure [20]. This architectural pattern, where a central resource manager negotiates 
resource allocations with application-level schedulers, has become a dominant paradigm in 
modern cluster computing systems. 

Mesos extended the two-level scheduling concept through its resource offer mechanism, 
where the master node offers available resources to framework schedulers, which then decide 
whether to accept offers and which tasks to launch on allocated resources [21]. This design 
philosophy emphasizes delegation of scheduling decisions to frameworks while maintaining 
cluster-wide fairness through a central allocation module. The Mesos architecture 
demonstrates key principles relevant to our work, including hierarchical coordination 
between masters and slaves, support for multiple concurrent frameworks through scheduler 
multiplexing, and fault tolerance through standby masters and distributed state management. 
However, traditional systems like Mesos employ heuristic-based allocation policies that lack 
the ability to learn from historical workload patterns and adapt to evolving resource demands 
[22]. 

The containerization revolution and rise of orchestration platforms like Kubernetes 
transformed resource management practices by introducing declarative deployment models 
and automated reconciliation loops [23]. Kubernetes employs a control plane architecture 
where controllers continuously observe system state and take actions to drive actual state 
toward desired state specifications. While Kubernetes provides powerful abstractions for 
application deployment and scaling, its default scheduler relies on relatively simple heuristics 
for pod placement decisions, considering factors like resource requests, node affinity rules, 
and spreading constraints [24]. Recent efforts have explored integrating machine learning 
techniques into Kubernetes scheduling through custom schedulers and admission webhooks, 
but these approaches typically operate within single clusters and do not address federated 
multi-cluster scenarios [25]. 

Federated learning emerged as a paradigm for training machine learning models across 
distributed data sources while preserving data privacy, with foundational work 
demonstrating that iterative local training and global aggregation can achieve convergence 
comparable to centralized training [26]. The core challenge in federated learning involves 
handling statistical heterogeneity when data distributions vary significantly across 
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participants, requiring specialized aggregation strategies and adaptive optimization methods 
[27]. Recent advances have extended federated learning to graph-structured data, addressing 
unique challenges including graph partitioning strategies, handling missing edges between 
subgraphs, and aggregating models trained on heterogeneous graph structures [28]. These 
developments provide essential building blocks for applying federated learning to resource 
management scenarios where computational clusters maintain private operational data while 
benefiting from collective intelligence. 

Graph neural networks have demonstrated remarkable effectiveness in learning 
representations from graph-structured data through message passing mechanisms that 
aggregate information from node neighborhoods [29]. The development of efficient spectral 
convolutions on graphs enabled end-to-end learning that respects graph structure while 
maintaining computational tractability [30]. Distributed training of large-scale graph neural 
networks requires careful partitioning strategies to balance computational load while 
minimizing inter-machine communication overhead, with techniques including graph 
partitioning, layer-wise model parallelism, and hybrid data-model parallelism approaches 
[31]. Applications of GNNs to systems optimization problems have shown promising results in 
domains such as chip placement, network routing, and combinatorial optimization, 
demonstrating the potential for learned approaches to outperform hand-crafted heuristics in 
complex decision-making scenarios [32-37]. 

3. Methodology 

3.1 Hierarchical System Architecture 

Our federated graph learning framework adopts a hierarchical master-slave architecture that 
draws inspiration from proven distributed systems designs while incorporating modern 
federated learning capabilities. As shown in Figure 1, the architecture comprises three 
organizational layers that enable scalable coordination across multiple autonomous clusters 
while maintaining efficient local decision-making. The master layer implements global 
coordination functions including cluster registration, federated model aggregation, and high-
level resource arbitration policies. The slave layer consists of individual computing clusters 
that maintain local resource graphs, train cluster-specific GNN models, and execute 
scheduling decisions autonomously based on local state and global model guidance. The 
executor layer encompasses the actual computational resources including physical machines, 
virtual machines, and containerized workloads that execute application tasks under the 
direction of cluster schedulers. 
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Figure 1: the hierarchical master-slave architecture 

The master node serves as the central coordination point for the federated learning process, 
maintaining the global model state and orchestrating training rounds across participating 
clusters. Unlike traditional centralized schedulers that make fine-grained task placement 
decisions, our master focuses exclusively on model aggregation and high-level coordination, 
delegating actual scheduling decisions to cluster-level slaves. This design choice reduces 
communication overhead and eliminates the master as a potential bottleneck for real-time 
scheduling operations. The master implements weighted federated averaging to combine 
model updates from heterogeneous clusters, with weights reflecting factors such as cluster 
size, data quality metrics, and recent model performance. To ensure high availability, we 
deploy multiple standby masters using a ZooKeeper quorum for leader election, enabling 
rapid failover in the event of master node failures without disrupting ongoing cluster 
operations. 

Each slave node in our architecture corresponds to a complete computing cluster with its own 
local scheduler, resource graph, and GNN model. The slave maintains comprehensive state 
information about local resources including computational capacity, memory availability, 
storage utilization, and network bandwidth metrics. Local schedulers process incoming 
workload requests and make task placement decisions by querying their trained GNN models 
to predict resource requirements and identify optimal allocation patterns. Slaves operate 
semi-autonomously, making scheduling decisions based on local information without 
requiring synchronous coordination with the master for individual task placements. This 
architectural choice ensures that scheduling latencies remain low even as the number of 
participating clusters grows, since each cluster can independently process its local workload 
without waiting for global coordination. 

The executor layer encompasses diverse resource types including bare-metal servers, virtual 
machines, and containerized environments. Each executor reports resource availability and 
task completion status to its parent slave node, which aggregates this information to maintain 
an accurate view of local cluster state. Executors implement isolation mechanisms to prevent 
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resource contention between co-located tasks, using technologies such as Linux containers, 
cgroups, and namespace isolation. The hierarchical architecture ensures that resource state 
information flows efficiently through the system, with executors reporting to slaves and 
slaves participating in federated learning with the master, while actual task execution 
proceeds independently without requiring fine-grained master intervention. 

3.2 Multi-Scale Graph Construction and Representation 

The effectiveness of our federated graph learning approach depends critically on constructing 
graph representations that capture relevant structural properties of the distributed 
computing infrastructure at multiple scales of granularity. As shown in Figure 2, we introduce 
a hierarchical graph construction methodology that maintains both global network topology 
graphs representing inter-cluster relationships and local resource graphs capturing fine-
grained intra-cluster resource configurations. This multi-scale representation enables the 
GNN model to reason about allocation decisions at different levels, from high-level cluster 
selection for workload placement to fine-grained node assignment within selected clusters. 

 

Figure 2: illustration of the hierarchical graph construction 

At the global scale, we construct an inter-cluster topology graph where nodes represent entire 
computing clusters and edges encode network connectivity and administrative relationships 
between clusters. Each cluster node maintains feature vectors capturing aggregate properties 
including total computational capacity measured in CPU cores and memory, available storage 
volumes, average network latency to other clusters, and current utilization levels across 
different resource dimensions. Edge features encode network properties such as inter-cluster 
bandwidth capacity, round-trip latency measurements, and historical data transfer volumes. 
This global graph enables the master node to reason about high-level workload placement 
decisions, determining which clusters should receive particular jobs based on factors 
including current load distribution, data locality considerations when datasets span multiple 
clusters, and administrative policies governing resource access permissions. 

At the local scale, each cluster maintains a detailed resource graph representing its internal 
infrastructure configuration. Local graph nodes correspond to individual computational 
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resources including physical servers, virtual machine instances, and container pods. We 
implement a heterogeneous node typing scheme that distinguishes between computational 
nodes providing CPU and memory resources, storage nodes hosting distributed file systems 
or object stores, and network nodes representing switches and routers within the cluster. 
Each node type maintains specialized feature vectors tailored to its resource category. 
Computational nodes track metrics including CPU core count, clock frequency, available 
memory, local disk capacity, and performance counters such as cache miss rates and 
instruction throughput. Storage nodes maintain features including total capacity, available 
space, read and write IOPS limits, and access latency characteristics. Network nodes track 
packet forwarding capacity, buffer occupancy levels, and link utilization across different 
traffic classes. 

Edges in local resource graphs capture multiple relationship types that influence scheduling 
decisions. Communication edges connect computational nodes that share network links, with 
edge weights reflecting bandwidth capacity and measured latency. We construct these edges 
based on physical network topology, distinguishing between intra-rack connections with high 
bandwidth and low latency versus inter-rack links with lower bandwidth and higher latency. 
Affinity edges link computational nodes to storage nodes based on data locality patterns, with 
edge weights computed from historical data access frequencies and transfer volumes. 
Dependency edges connect nodes hosting related workload components, capturing anti-
affinity constraints where certain tasks should not be co-located and affinity constraints 
where related tasks benefit from proximity. The heterogeneous nature of edges enables the 
GNN model to learn specialized aggregation functions for different relationship types through 
attention mechanisms that weight neighbor contributions based on edge categories. 

To accommodate the dynamic nature of distributed computing environments where resource 
availability and workload characteristics continuously evolve, we implement incremental 
graph update mechanisms that efficiently incorporate state changes without reconstructing 
entire graphs. Each slave maintains a change buffer that tracks node feature updates resulting 
from resource consumption or release, edge weight modifications due to network condition 
changes, and topological changes when nodes join or leave the cluster. Updates are batched at 
regular intervals and applied atomically to the local graph structure, with the updated graph 
used for subsequent GNN inference operations. This incremental approach reduces 
computational overhead compared to full graph reconstruction while ensuring the model 
operates on current resource state information. 

3.3 Distributed Model Parallelism for Scalable Training 

Achieving scalability to thousands of nodes while maintaining real-time inference capabilities 
requires careful attention to how graph neural network computation is distributed across 
available machines. As shown in Figure 3, we implement a distributed model parallelism 
strategy that partitions GNN layers across multiple computational nodes within each cluster, 
enabling parallel execution of forward and backward passes during training and inference. 
This approach contrasts with data parallelism where each machine maintains a complete copy 
of the model, instead distributing the model itself to overcome memory constraints and 
computational bottlenecks associated with processing large graphs. 
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Figure 3: illustration of the distributed model parallelism 

Our model parallelism strategy partitions the resource graph across multiple machines using 
graph partitioning algorithms that minimize edge cuts between partitions, thereby reducing 
inter-machine communication during GNN message passing operations. We employ multilevel 
graph partitioning techniques that first coarsen the graph through vertex matching, partition 
the coarsened graph, and then uncoarsen while refining partition boundaries. The 
partitioning objective balances computational load across machines while minimizing the 
number of edges crossing partition boundaries, since these edges require network 
communication to exchange node embeddings during GNN layer computations. For dynamic 
graphs that evolve as resources join or leave clusters, we implement incremental 
repartitioning that locally adjusts partition assignments rather than computing global 
repartitions, maintaining load balance while minimizing the cost of migrating vertices 
between machines. 

Within each partition, a dedicated worker machine stores the subgraph structure including 
node features, edge lists, and intermediate GNN layer activations. During forward propagation, 
each worker computes message passing operations for its local nodes, aggregating features 
from neighbor nodes. For neighbors residing in remote partitions, workers initiate 
communication to retrieve necessary node embeddings, overlapping computation and 
communication when possible to hide network latency. We implement asynchronous message 
passing where workers can proceed with computations for nodes whose neighbor 
information is available while waiting for remote data, maximizing hardware utilization. 
Backward propagation during training follows a similar pattern, with gradients flowing in 
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reverse through the network and requiring communication for nodes with neighbors in 
remote partitions. 

The distributed training process coordinates multiple workers through a parameter server 
architecture where a dedicated server node maintains the global copy of GNN model 
parameters. During each training iteration, workers retrieve current parameters from the 
parameter server, compute forward and backward passes on their local graph partitions, 
calculate parameter gradients, and push gradient updates back to the parameter server. The 
parameter server aggregates gradients from all workers using specified update rules such as 
synchronous SGD where all workers must complete before parameter updates, or 
asynchronous SGD where parameter updates occur as gradient updates arrive. We employ 
gradient compression techniques to reduce communication volume, including gradient 
quantization to lower precision representations and gradient sparsification that transmits 
only the largest magnitude gradients, with periodic full gradient synchronization to maintain 
model quality. 

3.4 Federated Learning Protocol for Cross-Cluster Collaboration 

The federated learning protocol orchestrates collaborative model training across multiple 
autonomous clusters while preserving the privacy of cluster-specific operational data. Our 
protocol operates in iterative rounds, each comprising four phases: local training where 
clusters independently update their GNN models based on local resource graphs and recent 
scheduling decisions, model upload where clusters transmit model updates to the master 
node, global aggregation where the master combines updates from all participating clusters, 
and model distribution where the updated global model is broadcast back to clusters. This 
cyclical process enables clusters to benefit from cross-cluster learning while maintaining 
control over their local data and scheduling decisions. 

During the local training phase, each cluster performs multiple gradient descent iterations to 
optimize its GNN model parameters based on recent scheduling experiences. The training 
objective combines multiple loss components capturing different aspects of scheduling quality. 
A utilization loss penalizes underutilization of available resources by comparing predicted 
resource requirements against actual usage, encouraging the model to make allocation 
decisions that fully utilize available capacity. A completion time loss minimizes job completion 
latencies by rewarding scheduling decisions that reduce queue wait times and optimize task 
placement to minimize data transfer overhead. A fairness loss ensures equitable resource 
distribution across concurrent workloads according to specified policies such as proportional 
share guarantees or priority-based allocation. The composite loss function weights these 
components based on cluster-specific priorities, allowing different clusters to optimize for 
different objectives while still benefiting from collaborative learning. 

After completing local training, clusters generate model updates by computing the difference 
between their updated model parameters and the previous global model received from the 
master. To preserve privacy of cluster-specific scheduling patterns, we implement differential 
privacy mechanisms that add calibrated noise to model updates before transmission. The 
noise magnitude is tuned using the Gaussian mechanism to provide epsilon-delta differential 
privacy guarantees with formal bounds on information leakage. Additionally, we employ 
secure aggregation protocols that enable the master to compute weighted averages of model 
updates without observing individual cluster contributions, using cryptographic techniques 
such as secret sharing or homomorphic encryption. These privacy-preserving mechanisms 
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ensure that clusters can participate in federated learning without exposing sensitive 
operational information that could reveal proprietary workload patterns or competitive 
insights. 

The global aggregation phase implements weighted averaging of received model updates, 
with weights reflecting the contribution quality of each cluster. We compute weights based on 
multiple factors including the number of scheduling decisions made by each cluster during the 
local training phase, validation performance of each cluster's model on held-out scheduling 
scenarios, and cluster size measured by the number of nodes under management. Clusters 
with larger datasets and better validation performance receive higher weights in the 
aggregation, ensuring that the global model reflects high-quality scheduling knowledge. To 
handle statistical heterogeneity where different clusters experience divergent workload 
patterns, we employ adaptive aggregation strategies that adjust weights based on gradient 
similarity metrics, reducing the influence of outlier clusters whose updates diverge 
significantly from the consensus direction. 

Following aggregation, the updated global model is distributed to all participating clusters, 
enabling them to benefit from collective learning. Clusters incorporate the global model by 
either replacing their local models entirely or blending the global model with their local 
parameters using momentum-based updates that gradually shift toward global consensus 
while retaining cluster-specific adaptations. The federation protocol implements adaptive 
scheduling of training rounds, dynamically adjusting the interval between rounds based on 
the magnitude of model changes and the rate of workload evolution across clusters. During 
periods of stable workload patterns, the protocol extends intervals between rounds to reduce 
communication overhead. Conversely, when clusters report rapid model evolution or 
significant performance degradation, the protocol accelerates the training cycle to ensure 
timely knowledge transfer. 

4. Results and Discussion 

4.1 Experimental Configuration and Evaluation Methodology 

We evaluate our federated graph learning framework through comprehensive experiments 
using both simulated and real-world cluster traces. The simulated environment models a 
distributed computing infrastructure comprising eight heterogeneous clusters with sizes 
ranging from 50 to 500 nodes per cluster, representing realistic scenarios encountered in geo-
distributed cloud deployments. Each cluster maintains distinct hardware configurations 
including variations in CPU architectures ranging from older Xeon processors to modern AMD 
EPYC chips, memory capacities spanning 64GB to 512GB per node, and network topologies 
including both hierarchical tree structures with top-of-rack switches and flatter leaf-spine 
designs. We inject workload traces derived from published datasets including Google cluster 
traces and Alibaba cluster traces, which capture realistic job arrival patterns, task duration 
distributions, and resource requirement profiles spanning batch analytics jobs, machine 
learning training workloads, and interactive query processing. 

The evaluation methodology examines multiple performance dimensions critical to 
distributed resource management systems. Primary metrics include average job completion 
time measuring the interval from job submission to completion of all constituent tasks, 
resource utilization efficiency computed as the ratio of allocated resources to total available 
capacity across all clusters, scheduling decision latency quantifying the time required to make 
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placement decisions for incoming tasks, and communication overhead measuring network 
bandwidth consumed by federated learning protocol messages. We conduct extensive 
experiments across varying conditions including different workload intensities characterized 
by job arrival rates, heterogeneous job size distributions with mixtures of small short-lived 
tasks and large long-running jobs, and varying degrees of data locality where jobs may prefer 
specific clusters due to dataset placement. 

We compare our federated graph learning approach against three baseline methods 
representing different resource management paradigms. The centralized scheduling baseline 
implements a global scheduler with complete visibility across all clusters, using a greedy 
heuristic that selects task placements to maximize immediate resource utilization while 
considering basic data locality preferences. The independent scheduling baseline models 
current practice where each cluster operates autonomously without coordination, using local 
schedulers that optimize only for local objectives without knowledge of resource availability 
or workload patterns in other clusters. The federated non-graph baseline implements 
federated learning across clusters but uses traditional fully-connected neural networks rather 
than graph neural networks, providing insight into the specific contribution of graph-
structured representations. Each experimental configuration is repeated across multiple 
random seeds to ensure statistical reliability, and we report mean values with 95% 
confidence intervals. 

4.2 Performance Analysis and Comparative Evaluation 

The experimental results demonstrate substantial performance improvements achieved by 
our federated graph learning framework across all evaluated metrics. In terms of average job 
completion time, our framework reduces latency by 28% compared to centralized scheduling, 
by 42% compared to independent cluster scheduling, and by 19% compared to the federated 
non-graph baseline. These improvements stem from multiple factors working in concert. The 
graph representation enables the GNN model to explicitly reason about data locality 
relationships, identifying placement opportunities that minimize inter-cluster data transfers 
which constitute a major source of job latency in distributed systems. The multi-scale graph 
structure allows the model to perform hierarchical optimization, first selecting appropriate 
clusters based on global topology patterns and then refining placement to specific nodes 
based on local resource graphs. The federated learning protocol enables knowledge transfer 
across clusters, allowing smaller clusters with limited historical data to benefit from patterns 
learned by larger clusters with more diverse workload experiences. 

Resource utilization efficiency exhibits similarly impressive gains, with our framework 
achieving 34% higher utilization compared to centralized scheduling and 51% higher 
utilization compared to independent scheduling. The federated learning approach proves 
particularly effective at learning to pack jobs efficiently onto available resources, with the 
GNN model discovering patterns such as complementary resource requirements where jobs 
with high CPU but low memory demands can be co-located with memory-intensive but CPU-
light workloads. The graph structure enables the model to capture temporal patterns in 
resource availability, learning when particular nodes experience periodic load fluctuations 
and scheduling jobs to exploit these patterns. Cross-cluster learning accelerates the discovery 
of effective packing strategies, with knowledge gained from optimizing resource usage in one 
cluster rapidly transferring to others through the federated aggregation process. 
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Scheduling decision latency represents a critical performance dimension for systems 
processing high-velocity workload streams. Our framework demonstrates favorable scaling 
properties, maintaining sub-second decision latencies even as cluster sizes increase to 
thousands of nodes and workload arrival rates intensify. The distributed model parallelism 
implementation proves essential for achieving these latencies, with GNN inference operations 
distributed across multiple workers within each cluster enabling parallel processing of 
scheduling queries. The hierarchical architecture eliminates the master node as a latency 
bottleneck, since clusters make scheduling decisions locally without requiring synchronous 
master consultation. Measurements across varying cluster sizes reveal approximately linear 
scaling, where doubling the cluster size increases average scheduling latency by only 15-20% 
rather than the 2x increase expected from purely sequential processing. 

Communication overhead analysis reveals that our federated learning protocol imposes 
modest bandwidth requirements compared to the alternative of centralizing operational data 
for training. During federated learning rounds, each cluster transmits model updates sized 
proportional to the number of GNN parameters, typically ranging from tens to hundreds of 
megabytes depending on model architecture depth and width. In contrast, centralizing the 
complete resource graphs and scheduling traces from all clusters for centralized training 
would require transmitting gigabytes to terabytes of operational data per training cycle. The 
protocol implements intelligent update scheduling that coordinates transmissions to avoid 
network congestion, spreading model uploads across the federation interval and prioritizing 
updates from clusters with larger model changes. Compression techniques including gradient 
quantization and sparsification reduce communication volume by additional factors of 5-10x 
with minimal impact on model convergence rates. 

4.3 Ablation Studies and Architectural Analysis 

To understand the individual contributions of different architectural components, we conduct 
systematic ablation studies that remove or simplify specific design elements. First, we 
examine the impact of the hierarchical master-slave architecture by comparing against a flat 
peer-to-peer design where clusters coordinate directly without a central master. The 
hierarchical approach demonstrates 31% better convergence speed during federated training, 
attributed to the master's ability to implement sophisticated aggregation strategies that 
handle heterogeneity across clusters. The master performs outlier detection to identify and 
downweight model updates from clusters experiencing unusual conditions, preventing 
temporary anomalies from corrupting the global model. Without centralized coordination, 
peer-to-peer designs struggle with inconsistent model versions across clusters and require 
complex gossip protocols to achieve consensus. 

Second, we analyze the contribution of multi-scale graph representations by comparing 
against single-scale alternatives. Experiments using only global inter-cluster graphs without 
local resource graphs show 24% degradation in job completion time, as the model cannot 
optimize fine-grained node placement decisions without detailed local topology information. 
Conversely, using only local graphs without global topology representations increases 
completion time by 18%, as the model lacks visibility into inter-cluster relationships needed 
for optimal cluster selection decisions. The combined multi-scale approach enables 
hierarchical optimization that first leverages global structure for coarse-grained decisions and 
then exploits local structure for fine-grained refinements, achieving performance superior to 
either single-scale approach alone. 
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Third, we evaluate the impact of distributed model parallelism by comparing against data 
parallel training where each worker maintains a complete model copy. The model parallel 
approach demonstrates 67% reduction in memory footprint per worker, enabling training of 
larger GNN models with more layers and wider hidden dimensions. This architectural choice 
proves crucial for scaling to large clusters with thousands of nodes, where the resource graph 
size exceeds the memory capacity of individual machines. Model parallelism also improves 
training throughput by distributing computation across multiple workers, achieving 3.2x 
speedup with 4 workers compared to single-machine training, demonstrating efficient 
parallel scaling despite communication overhead for cross-partition edges. 

Fourth, we investigate the contribution of privacy-preserving mechanisms by comparing 
training with and without differential privacy noise injection and secure aggregation. 
Experiments reveal that moderate privacy budgets with epsilon values around 10 incur only 
4-6% performance degradation compared to training without privacy protection, 
demonstrating that practical privacy guarantees can be achieved with acceptable utility 
tradeoffs. Tighter privacy budgets with epsilon values below 5 show more significant 
performance impacts around 12-15%, suggesting organizations should calibrate privacy 
parameters based on their specific sensitivity requirements. Secure aggregation imposes 
minimal performance overhead since cryptographic operations occur asynchronously during 
model transmission and do not delay scheduling decisions in the critical path. 

5. Conclusion 

This paper has presented a comprehensive federated graph learning framework for 
distributed resource management in multi-cluster computing environments, addressing 
fundamental challenges of scalability, heterogeneity, and privacy preservation through a 
principled integration of hierarchical architectures, multi-scale graph representations, and 
distributed learning protocols. Our framework adopts a master-slave coordination 
architecture inspired by proven distributed systems designs, enhancing traditional schedulers 
with federated learning capabilities that enable collaborative knowledge transfer across 
autonomous clusters without centralizing sensitive operational data. The multi-scale graph 
construction methodology captures resource relationships at both global inter-cluster 
topology level and local intra-cluster configuration level, enabling the GNN model to perform 
hierarchical optimization across different granularities of allocation decisions. Distributed 
model parallelism strategies partition graph neural network computation across multiple 
machines, achieving scalability to thousands of nodes while maintaining real-time inference 
capabilities suitable for online scheduling workloads. 

Experimental evaluation across diverse workload scenarios and cluster configurations 
validates the effectiveness and robustness of our approach. The federated graph learning 
framework reduces average job completion time by 28% and improves resource utilization by 
34% compared to state-of-the-art centralized scheduling methods, while maintaining sub-
second scheduling latencies even at scale. The hierarchical architecture successfully 
decouples global coordination from local decision-making, enabling scalable federation across 
multiple clusters without introducing master node bottlenecks. Multi-scale graph 
representations prove essential for capturing both coarse-grained cluster selection patterns 
and fine-grained node placement optimizations, with ablation studies confirming that neither 
single-scale approach alone achieves comparable performance. Distributed model parallelism 
enables training of large GNN models that would exceed single-machine memory capacity, 
demonstrating 67% memory footprint reduction and 3.2x training speedup with four workers. 
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Future research directions include several promising extensions that could further enhance 
the framework's capabilities. First, incorporating reinforcement learning techniques could 
enable the system to learn long-horizon scheduling strategies that optimize cumulative 
metrics like total flow time or makespan rather than greedy immediate rewards, potentially 
discovering counter-intuitive policies that sacrifice short-term efficiency for superior long-
term outcomes. Second, developing hierarchical federated learning architectures with 
multiple levels of aggregation could improve scalability for scenarios involving hundreds or 
thousands of clusters, organizing them into regional federations that perform intermediate 
aggregation before global consolidation. Third, exploring advanced privacy mechanisms such 
as secure multi-party computation or fully homomorphic encryption could strengthen privacy 
guarantees while maintaining model accuracy, addressing scenarios where even encrypted 
model updates might leak information through traffic analysis. Fourth, extending the 
framework to emerging computing paradigms including serverless computing, edge 
deployments, and hybrid cloud-edge architectures presents opportunities to broaden 
applicability and address new resource management challenges arising from these 
environments. The convergence of federated learning, graph neural networks, and distributed 
systems principles demonstrated in this work represents a promising foundation for 
advancing the state of practice in large-scale infrastructure management. 
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