
Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

1

Federated Graph Learning for Distributed Resource Management
in Multi-Cluster Computing Environments

Zeyu Wang*1

1Department of Computer Science and Engineering, University of California, Santa Cruz, USA

* Corresponding author: 107265879@qq.com

Abstract

The proliferation of distributed computing infrastructures has necessitated advanced
resource management strategies that can operate across heterogeneous multi-cluster
environments while preserving data privacy and system autonomy. This paper
proposes a novel federated graph learning framework that leverages Graph Neural
Networks (GNN) for intelligent resource allocation and scheduling in distributed
computing systems. Our approach addresses the fundamental challenges of resource
fragmentation, heterogeneous workload characteristics, and inter-cluster
communication overhead through a decentralized learning paradigm. The framework
constructs dynamic resource graphs representing computational nodes, network
topologies, and workload dependencies, enabling collaborative learning across clusters
without centralizing sensitive operational data. We introduce a hierarchical
architecture inspired by proven distributed systems designs, combining local graph-
based resource allocation with federated model aggregation through a master-slave
coordination mechanism. The graph representation captures both global network
topology and fine-grained local resource states, enabling multi-scale optimization of
allocation decisions. We implement distributed model parallelism to achieve scalability
across thousands of nodes while maintaining sub-second decision latencies.
Experimental evaluation demonstrates that our federated graph learning approach
achieves superior performance compared to traditional centralized scheduling
methods, reducing average job completion time by 28% and improving overall cluster
utilization by 34% across diverse workload scenarios.

Keywords

Federated Learning, Graph Neural Networks, Resource Management, Multi-Cluster
Computing, Distributed Scheduling, Cloud Computing

Introduction

Modern distributed computing environments have evolved into complex ecosystems
comprising multiple interconnected clusters that span geographical locations, administrative
domains, and heterogeneous hardware configurations [1]. These multi-cluster systems
support diverse computational workloads ranging from batch processing and real-time
analytics to machine learning training and scientific simulations, each presenting distinct
resource requirements and performance objectives [2]. The challenge of efficiently managing
resources across such distributed infrastructure has become increasingly critical as
organizations seek to maximize utilization while minimizing operational costs and
maintaining quality of service guarantees [3]. Traditional approaches to resource
management in distributed systems have primarily relied on hierarchical architectures with

mailto:107265879@qq.com

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

2

centralized coordination, as exemplified by systems like Mesos and YARN, which established
foundational principles for multi-framework resource sharing [4].

The fundamental challenge in multi-cluster resource management stems from the tension
between centralized control and distributed autonomy [5]. Centralized schedulers require
complete visibility of resource availability and workload characteristics across all clusters,
introducing substantial communication overhead and creating single points of failure [6]. As
cluster sizes grow to thousands of nodes and workload diversity increases, centralized
scheduling approaches face scalability bottlenecks where decision latencies grow
proportionally to system size [7]. Furthermore, these approaches often fail to respect data
sovereignty requirements and organizational policies that prohibit sharing sensitive
operational metrics across administrative boundaries [8]. The increasing prevalence of edge
computing and geo-distributed data centers has exacerbated these challenges, creating
scenarios where network latency and bandwidth constraints make frequent centralized
coordination impractical [9].

Recent advances in federated learning have demonstrated the feasibility of training machine
learning models across distributed datasets without centralizing data, enabling collaborative
learning while preserving data privacy through local model training and selective parameter
sharing [10]. Concurrently, graph neural networks have emerged as powerful tools for
modeling complex relational structures in networked systems, with successful applications in
domains ranging from social network analysis to molecular property prediction [11]. The
representation of computing infrastructure as graphs, where nodes correspond to
computational resources and edges encode communication relationships, provides a natural
framework for capturing the structural properties that influence resource allocation decisions
[12]. The convergence of federated learning and graph neural networks presents a compelling
opportunity to address the resource management challenges in multi-cluster computing
environments through architectures that combine hierarchical coordination with distributed
learning [13].

This paper introduces a comprehensive federated graph learning framework specifically
designed for distributed resource management in multi-cluster computing environments. Our
framework adopts a hierarchical master-slave architecture that enables scalable coordination
across multiple independent clusters while maintaining local autonomy for scheduling
decisions [14]. The system constructs multi-scale graph representations that capture both
global network topology patterns and fine-grained local resource states, enabling
optimization at multiple levels of granularity [15]. Through distributed model parallelism
techniques, we partition the graph neural network across multiple computing nodes,
achieving linear scalability even as cluster sizes extend to thousands of machines [16]. The
framework incorporates privacy-preserving federated learning protocols that ensure
sensitive cluster-specific information remains local while benefiting from collaborative
learning across the distributed system [17].

Our research contributions encompass several key innovations in distributed resource
management. First, we develop a hierarchical architecture that combines the proven design
principles of distributed schedulers with modern federated learning techniques, enabling
scalable multi-cluster coordination without sacrificing local autonomy. Second, we introduce
multi-scale graph construction methods that effectively capture resource relationships at both
global network topology level and local cluster configuration level, enabling the GNN model to
reason about allocation decisions across multiple granularities. Third, we implement

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

3

distributed model parallelism strategies that partition graph neural network computation
across multiple machines, achieving scalability to thousands of nodes while maintaining real-
time inference capabilities. Fourth, we provide comprehensive experimental validation
demonstrating the effectiveness of our approach across diverse workload scenarios, cluster
configurations, and scale regimes.

2. Literature Review

The evolution of distributed resource management systems has been shaped by decades of
research addressing the fundamental challenges of coordinating computational resources
across multiple machines. Early cluster management systems such as Condor and Platform
LSF established foundational concepts including job queuing, priority-based scheduling, and
fairness policies [18]. The emergence of data-intensive computing frameworks like
MapReduce necessitated new resource management paradigms that could efficiently handle
short-lived tasks and support data locality optimization [19]. Apache YARN introduced a two-
level scheduling architecture that separates cluster resource management from application-
specific scheduling logic, enabling multiple diverse frameworks to coexist on shared
infrastructure [20]. This architectural pattern, where a central resource manager negotiates
resource allocations with application-level schedulers, has become a dominant paradigm in
modern cluster computing systems.

Mesos extended the two-level scheduling concept through its resource offer mechanism,
where the master node offers available resources to framework schedulers, which then decide
whether to accept offers and which tasks to launch on allocated resources [21]. This design
philosophy emphasizes delegation of scheduling decisions to frameworks while maintaining
cluster-wide fairness through a central allocation module. The Mesos architecture
demonstrates key principles relevant to our work, including hierarchical coordination
between masters and slaves, support for multiple concurrent frameworks through scheduler
multiplexing, and fault tolerance through standby masters and distributed state management.
However, traditional systems like Mesos employ heuristic-based allocation policies that lack
the ability to learn from historical workload patterns and adapt to evolving resource demands
[22].

The containerization revolution and rise of orchestration platforms like Kubernetes
transformed resource management practices by introducing declarative deployment models
and automated reconciliation loops [23]. Kubernetes employs a control plane architecture
where controllers continuously observe system state and take actions to drive actual state
toward desired state specifications. While Kubernetes provides powerful abstractions for
application deployment and scaling, its default scheduler relies on relatively simple heuristics
for pod placement decisions, considering factors like resource requests, node affinity rules,
and spreading constraints [24]. Recent efforts have explored integrating machine learning
techniques into Kubernetes scheduling through custom schedulers and admission webhooks,
but these approaches typically operate within single clusters and do not address federated
multi-cluster scenarios [25].

Federated learning emerged as a paradigm for training machine learning models across
distributed data sources while preserving data privacy, with foundational work
demonstrating that iterative local training and global aggregation can achieve convergence
comparable to centralized training [26]. The core challenge in federated learning involves
handling statistical heterogeneity when data distributions vary significantly across

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

4

participants, requiring specialized aggregation strategies and adaptive optimization methods
[27]. Recent advances have extended federated learning to graph-structured data, addressing
unique challenges including graph partitioning strategies, handling missing edges between
subgraphs, and aggregating models trained on heterogeneous graph structures [28]. These
developments provide essential building blocks for applying federated learning to resource
management scenarios where computational clusters maintain private operational data while
benefiting from collective intelligence.

Graph neural networks have demonstrated remarkable effectiveness in learning
representations from graph-structured data through message passing mechanisms that
aggregate information from node neighborhoods [29]. The development of efficient spectral
convolutions on graphs enabled end-to-end learning that respects graph structure while
maintaining computational tractability [30]. Distributed training of large-scale graph neural
networks requires careful partitioning strategies to balance computational load while
minimizing inter-machine communication overhead, with techniques including graph
partitioning, layer-wise model parallelism, and hybrid data-model parallelism approaches
[31]. Applications of GNNs to systems optimization problems have shown promising results in
domains such as chip placement, network routing, and combinatorial optimization,
demonstrating the potential for learned approaches to outperform hand-crafted heuristics in
complex decision-making scenarios [32-37].

3. Methodology

3.1 Hierarchical System Architecture

Our federated graph learning framework adopts a hierarchical master-slave architecture that
draws inspiration from proven distributed systems designs while incorporating modern
federated learning capabilities. As shown in Figure 1, the architecture comprises three
organizational layers that enable scalable coordination across multiple autonomous clusters
while maintaining efficient local decision-making. The master layer implements global
coordination functions including cluster registration, federated model aggregation, and high-
level resource arbitration policies. The slave layer consists of individual computing clusters
that maintain local resource graphs, train cluster-specific GNN models, and execute
scheduling decisions autonomously based on local state and global model guidance. The
executor layer encompasses the actual computational resources including physical machines,
virtual machines, and containerized workloads that execute application tasks under the
direction of cluster schedulers.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

5

Figure 1: the hierarchical master-slave architecture

The master node serves as the central coordination point for the federated learning process,
maintaining the global model state and orchestrating training rounds across participating
clusters. Unlike traditional centralized schedulers that make fine-grained task placement
decisions, our master focuses exclusively on model aggregation and high-level coordination,
delegating actual scheduling decisions to cluster-level slaves. This design choice reduces
communication overhead and eliminates the master as a potential bottleneck for real-time
scheduling operations. The master implements weighted federated averaging to combine
model updates from heterogeneous clusters, with weights reflecting factors such as cluster
size, data quality metrics, and recent model performance. To ensure high availability, we
deploy multiple standby masters using a ZooKeeper quorum for leader election, enabling
rapid failover in the event of master node failures without disrupting ongoing cluster
operations.

Each slave node in our architecture corresponds to a complete computing cluster with its own
local scheduler, resource graph, and GNN model. The slave maintains comprehensive state
information about local resources including computational capacity, memory availability,
storage utilization, and network bandwidth metrics. Local schedulers process incoming
workload requests and make task placement decisions by querying their trained GNN models
to predict resource requirements and identify optimal allocation patterns. Slaves operate
semi-autonomously, making scheduling decisions based on local information without
requiring synchronous coordination with the master for individual task placements. This
architectural choice ensures that scheduling latencies remain low even as the number of
participating clusters grows, since each cluster can independently process its local workload
without waiting for global coordination.

The executor layer encompasses diverse resource types including bare-metal servers, virtual
machines, and containerized environments. Each executor reports resource availability and
task completion status to its parent slave node, which aggregates this information to maintain
an accurate view of local cluster state. Executors implement isolation mechanisms to prevent

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

6

resource contention between co-located tasks, using technologies such as Linux containers,
cgroups, and namespace isolation. The hierarchical architecture ensures that resource state
information flows efficiently through the system, with executors reporting to slaves and
slaves participating in federated learning with the master, while actual task execution
proceeds independently without requiring fine-grained master intervention.

3.2 Multi-Scale Graph Construction and Representation

The effectiveness of our federated graph learning approach depends critically on constructing
graph representations that capture relevant structural properties of the distributed
computing infrastructure at multiple scales of granularity. As shown in Figure 2, we introduce
a hierarchical graph construction methodology that maintains both global network topology
graphs representing inter-cluster relationships and local resource graphs capturing fine-
grained intra-cluster resource configurations. This multi-scale representation enables the
GNN model to reason about allocation decisions at different levels, from high-level cluster
selection for workload placement to fine-grained node assignment within selected clusters.

Figure 2: illustration of the hierarchical graph construction

At the global scale, we construct an inter-cluster topology graph where nodes represent entire
computing clusters and edges encode network connectivity and administrative relationships
between clusters. Each cluster node maintains feature vectors capturing aggregate properties
including total computational capacity measured in CPU cores and memory, available storage
volumes, average network latency to other clusters, and current utilization levels across
different resource dimensions. Edge features encode network properties such as inter-cluster
bandwidth capacity, round-trip latency measurements, and historical data transfer volumes.
This global graph enables the master node to reason about high-level workload placement
decisions, determining which clusters should receive particular jobs based on factors
including current load distribution, data locality considerations when datasets span multiple
clusters, and administrative policies governing resource access permissions.

At the local scale, each cluster maintains a detailed resource graph representing its internal
infrastructure configuration. Local graph nodes correspond to individual computational

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

7

resources including physical servers, virtual machine instances, and container pods. We
implement a heterogeneous node typing scheme that distinguishes between computational
nodes providing CPU and memory resources, storage nodes hosting distributed file systems
or object stores, and network nodes representing switches and routers within the cluster.
Each node type maintains specialized feature vectors tailored to its resource category.
Computational nodes track metrics including CPU core count, clock frequency, available
memory, local disk capacity, and performance counters such as cache miss rates and
instruction throughput. Storage nodes maintain features including total capacity, available
space, read and write IOPS limits, and access latency characteristics. Network nodes track
packet forwarding capacity, buffer occupancy levels, and link utilization across different
traffic classes.

Edges in local resource graphs capture multiple relationship types that influence scheduling
decisions. Communication edges connect computational nodes that share network links, with
edge weights reflecting bandwidth capacity and measured latency. We construct these edges
based on physical network topology, distinguishing between intra-rack connections with high
bandwidth and low latency versus inter-rack links with lower bandwidth and higher latency.
Affinity edges link computational nodes to storage nodes based on data locality patterns, with
edge weights computed from historical data access frequencies and transfer volumes.
Dependency edges connect nodes hosting related workload components, capturing anti-
affinity constraints where certain tasks should not be co-located and affinity constraints
where related tasks benefit from proximity. The heterogeneous nature of edges enables the
GNN model to learn specialized aggregation functions for different relationship types through
attention mechanisms that weight neighbor contributions based on edge categories.

To accommodate the dynamic nature of distributed computing environments where resource
availability and workload characteristics continuously evolve, we implement incremental
graph update mechanisms that efficiently incorporate state changes without reconstructing
entire graphs. Each slave maintains a change buffer that tracks node feature updates resulting
from resource consumption or release, edge weight modifications due to network condition
changes, and topological changes when nodes join or leave the cluster. Updates are batched at
regular intervals and applied atomically to the local graph structure, with the updated graph
used for subsequent GNN inference operations. This incremental approach reduces
computational overhead compared to full graph reconstruction while ensuring the model
operates on current resource state information.

3.3 Distributed Model Parallelism for Scalable Training

Achieving scalability to thousands of nodes while maintaining real-time inference capabilities
requires careful attention to how graph neural network computation is distributed across
available machines. As shown in Figure 3, we implement a distributed model parallelism
strategy that partitions GNN layers across multiple computational nodes within each cluster,
enabling parallel execution of forward and backward passes during training and inference.
This approach contrasts with data parallelism where each machine maintains a complete copy
of the model, instead distributing the model itself to overcome memory constraints and
computational bottlenecks associated with processing large graphs.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

8

Figure 3: illustration of the distributed model parallelism

Our model parallelism strategy partitions the resource graph across multiple machines using
graph partitioning algorithms that minimize edge cuts between partitions, thereby reducing
inter-machine communication during GNN message passing operations. We employ multilevel
graph partitioning techniques that first coarsen the graph through vertex matching, partition
the coarsened graph, and then uncoarsen while refining partition boundaries. The
partitioning objective balances computational load across machines while minimizing the
number of edges crossing partition boundaries, since these edges require network
communication to exchange node embeddings during GNN layer computations. For dynamic
graphs that evolve as resources join or leave clusters, we implement incremental
repartitioning that locally adjusts partition assignments rather than computing global
repartitions, maintaining load balance while minimizing the cost of migrating vertices
between machines.

Within each partition, a dedicated worker machine stores the subgraph structure including
node features, edge lists, and intermediate GNN layer activations. During forward propagation,
each worker computes message passing operations for its local nodes, aggregating features
from neighbor nodes. For neighbors residing in remote partitions, workers initiate
communication to retrieve necessary node embeddings, overlapping computation and
communication when possible to hide network latency. We implement asynchronous message
passing where workers can proceed with computations for nodes whose neighbor
information is available while waiting for remote data, maximizing hardware utilization.
Backward propagation during training follows a similar pattern, with gradients flowing in

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

9

reverse through the network and requiring communication for nodes with neighbors in
remote partitions.

The distributed training process coordinates multiple workers through a parameter server
architecture where a dedicated server node maintains the global copy of GNN model
parameters. During each training iteration, workers retrieve current parameters from the
parameter server, compute forward and backward passes on their local graph partitions,
calculate parameter gradients, and push gradient updates back to the parameter server. The
parameter server aggregates gradients from all workers using specified update rules such as
synchronous SGD where all workers must complete before parameter updates, or
asynchronous SGD where parameter updates occur as gradient updates arrive. We employ
gradient compression techniques to reduce communication volume, including gradient
quantization to lower precision representations and gradient sparsification that transmits
only the largest magnitude gradients, with periodic full gradient synchronization to maintain
model quality.

3.4 Federated Learning Protocol for Cross-Cluster Collaboration

The federated learning protocol orchestrates collaborative model training across multiple
autonomous clusters while preserving the privacy of cluster-specific operational data. Our
protocol operates in iterative rounds, each comprising four phases: local training where
clusters independently update their GNN models based on local resource graphs and recent
scheduling decisions, model upload where clusters transmit model updates to the master
node, global aggregation where the master combines updates from all participating clusters,
and model distribution where the updated global model is broadcast back to clusters. This
cyclical process enables clusters to benefit from cross-cluster learning while maintaining
control over their local data and scheduling decisions.

During the local training phase, each cluster performs multiple gradient descent iterations to
optimize its GNN model parameters based on recent scheduling experiences. The training
objective combines multiple loss components capturing different aspects of scheduling quality.
A utilization loss penalizes underutilization of available resources by comparing predicted
resource requirements against actual usage, encouraging the model to make allocation
decisions that fully utilize available capacity. A completion time loss minimizes job completion
latencies by rewarding scheduling decisions that reduce queue wait times and optimize task
placement to minimize data transfer overhead. A fairness loss ensures equitable resource
distribution across concurrent workloads according to specified policies such as proportional
share guarantees or priority-based allocation. The composite loss function weights these
components based on cluster-specific priorities, allowing different clusters to optimize for
different objectives while still benefiting from collaborative learning.

After completing local training, clusters generate model updates by computing the difference
between their updated model parameters and the previous global model received from the
master. To preserve privacy of cluster-specific scheduling patterns, we implement differential
privacy mechanisms that add calibrated noise to model updates before transmission. The
noise magnitude is tuned using the Gaussian mechanism to provide epsilon-delta differential
privacy guarantees with formal bounds on information leakage. Additionally, we employ
secure aggregation protocols that enable the master to compute weighted averages of model
updates without observing individual cluster contributions, using cryptographic techniques
such as secret sharing or homomorphic encryption. These privacy-preserving mechanisms

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

10

ensure that clusters can participate in federated learning without exposing sensitive
operational information that could reveal proprietary workload patterns or competitive
insights.

The global aggregation phase implements weighted averaging of received model updates,
with weights reflecting the contribution quality of each cluster. We compute weights based on
multiple factors including the number of scheduling decisions made by each cluster during the
local training phase, validation performance of each cluster's model on held-out scheduling
scenarios, and cluster size measured by the number of nodes under management. Clusters
with larger datasets and better validation performance receive higher weights in the
aggregation, ensuring that the global model reflects high-quality scheduling knowledge. To
handle statistical heterogeneity where different clusters experience divergent workload
patterns, we employ adaptive aggregation strategies that adjust weights based on gradient
similarity metrics, reducing the influence of outlier clusters whose updates diverge
significantly from the consensus direction.

Following aggregation, the updated global model is distributed to all participating clusters,
enabling them to benefit from collective learning. Clusters incorporate the global model by
either replacing their local models entirely or blending the global model with their local
parameters using momentum-based updates that gradually shift toward global consensus
while retaining cluster-specific adaptations. The federation protocol implements adaptive
scheduling of training rounds, dynamically adjusting the interval between rounds based on
the magnitude of model changes and the rate of workload evolution across clusters. During
periods of stable workload patterns, the protocol extends intervals between rounds to reduce
communication overhead. Conversely, when clusters report rapid model evolution or
significant performance degradation, the protocol accelerates the training cycle to ensure
timely knowledge transfer.

4. Results and Discussion

4.1 Experimental Configuration and Evaluation Methodology

We evaluate our federated graph learning framework through comprehensive experiments
using both simulated and real-world cluster traces. The simulated environment models a
distributed computing infrastructure comprising eight heterogeneous clusters with sizes
ranging from 50 to 500 nodes per cluster, representing realistic scenarios encountered in geo-
distributed cloud deployments. Each cluster maintains distinct hardware configurations
including variations in CPU architectures ranging from older Xeon processors to modern AMD
EPYC chips, memory capacities spanning 64GB to 512GB per node, and network topologies
including both hierarchical tree structures with top-of-rack switches and flatter leaf-spine
designs. We inject workload traces derived from published datasets including Google cluster
traces and Alibaba cluster traces, which capture realistic job arrival patterns, task duration
distributions, and resource requirement profiles spanning batch analytics jobs, machine
learning training workloads, and interactive query processing.

The evaluation methodology examines multiple performance dimensions critical to
distributed resource management systems. Primary metrics include average job completion
time measuring the interval from job submission to completion of all constituent tasks,
resource utilization efficiency computed as the ratio of allocated resources to total available
capacity across all clusters, scheduling decision latency quantifying the time required to make

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

11

placement decisions for incoming tasks, and communication overhead measuring network
bandwidth consumed by federated learning protocol messages. We conduct extensive
experiments across varying conditions including different workload intensities characterized
by job arrival rates, heterogeneous job size distributions with mixtures of small short-lived
tasks and large long-running jobs, and varying degrees of data locality where jobs may prefer
specific clusters due to dataset placement.

We compare our federated graph learning approach against three baseline methods
representing different resource management paradigms. The centralized scheduling baseline
implements a global scheduler with complete visibility across all clusters, using a greedy
heuristic that selects task placements to maximize immediate resource utilization while
considering basic data locality preferences. The independent scheduling baseline models
current practice where each cluster operates autonomously without coordination, using local
schedulers that optimize only for local objectives without knowledge of resource availability
or workload patterns in other clusters. The federated non-graph baseline implements
federated learning across clusters but uses traditional fully-connected neural networks rather
than graph neural networks, providing insight into the specific contribution of graph-
structured representations. Each experimental configuration is repeated across multiple
random seeds to ensure statistical reliability, and we report mean values with 95%
confidence intervals.

4.2 Performance Analysis and Comparative Evaluation

The experimental results demonstrate substantial performance improvements achieved by
our federated graph learning framework across all evaluated metrics. In terms of average job
completion time, our framework reduces latency by 28% compared to centralized scheduling,
by 42% compared to independent cluster scheduling, and by 19% compared to the federated
non-graph baseline. These improvements stem from multiple factors working in concert. The
graph representation enables the GNN model to explicitly reason about data locality
relationships, identifying placement opportunities that minimize inter-cluster data transfers
which constitute a major source of job latency in distributed systems. The multi-scale graph
structure allows the model to perform hierarchical optimization, first selecting appropriate
clusters based on global topology patterns and then refining placement to specific nodes
based on local resource graphs. The federated learning protocol enables knowledge transfer
across clusters, allowing smaller clusters with limited historical data to benefit from patterns
learned by larger clusters with more diverse workload experiences.

Resource utilization efficiency exhibits similarly impressive gains, with our framework
achieving 34% higher utilization compared to centralized scheduling and 51% higher
utilization compared to independent scheduling. The federated learning approach proves
particularly effective at learning to pack jobs efficiently onto available resources, with the
GNN model discovering patterns such as complementary resource requirements where jobs
with high CPU but low memory demands can be co-located with memory-intensive but CPU-
light workloads. The graph structure enables the model to capture temporal patterns in
resource availability, learning when particular nodes experience periodic load fluctuations
and scheduling jobs to exploit these patterns. Cross-cluster learning accelerates the discovery
of effective packing strategies, with knowledge gained from optimizing resource usage in one
cluster rapidly transferring to others through the federated aggregation process.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

12

Scheduling decision latency represents a critical performance dimension for systems
processing high-velocity workload streams. Our framework demonstrates favorable scaling
properties, maintaining sub-second decision latencies even as cluster sizes increase to
thousands of nodes and workload arrival rates intensify. The distributed model parallelism
implementation proves essential for achieving these latencies, with GNN inference operations
distributed across multiple workers within each cluster enabling parallel processing of
scheduling queries. The hierarchical architecture eliminates the master node as a latency
bottleneck, since clusters make scheduling decisions locally without requiring synchronous
master consultation. Measurements across varying cluster sizes reveal approximately linear
scaling, where doubling the cluster size increases average scheduling latency by only 15-20%
rather than the 2x increase expected from purely sequential processing.

Communication overhead analysis reveals that our federated learning protocol imposes
modest bandwidth requirements compared to the alternative of centralizing operational data
for training. During federated learning rounds, each cluster transmits model updates sized
proportional to the number of GNN parameters, typically ranging from tens to hundreds of
megabytes depending on model architecture depth and width. In contrast, centralizing the
complete resource graphs and scheduling traces from all clusters for centralized training
would require transmitting gigabytes to terabytes of operational data per training cycle. The
protocol implements intelligent update scheduling that coordinates transmissions to avoid
network congestion, spreading model uploads across the federation interval and prioritizing
updates from clusters with larger model changes. Compression techniques including gradient
quantization and sparsification reduce communication volume by additional factors of 5-10x
with minimal impact on model convergence rates.

4.3 Ablation Studies and Architectural Analysis

To understand the individual contributions of different architectural components, we conduct
systematic ablation studies that remove or simplify specific design elements. First, we
examine the impact of the hierarchical master-slave architecture by comparing against a flat
peer-to-peer design where clusters coordinate directly without a central master. The
hierarchical approach demonstrates 31% better convergence speed during federated training,
attributed to the master's ability to implement sophisticated aggregation strategies that
handle heterogeneity across clusters. The master performs outlier detection to identify and
downweight model updates from clusters experiencing unusual conditions, preventing
temporary anomalies from corrupting the global model. Without centralized coordination,
peer-to-peer designs struggle with inconsistent model versions across clusters and require
complex gossip protocols to achieve consensus.

Second, we analyze the contribution of multi-scale graph representations by comparing
against single-scale alternatives. Experiments using only global inter-cluster graphs without
local resource graphs show 24% degradation in job completion time, as the model cannot
optimize fine-grained node placement decisions without detailed local topology information.
Conversely, using only local graphs without global topology representations increases
completion time by 18%, as the model lacks visibility into inter-cluster relationships needed
for optimal cluster selection decisions. The combined multi-scale approach enables
hierarchical optimization that first leverages global structure for coarse-grained decisions and
then exploits local structure for fine-grained refinements, achieving performance superior to
either single-scale approach alone.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

13

Third, we evaluate the impact of distributed model parallelism by comparing against data
parallel training where each worker maintains a complete model copy. The model parallel
approach demonstrates 67% reduction in memory footprint per worker, enabling training of
larger GNN models with more layers and wider hidden dimensions. This architectural choice
proves crucial for scaling to large clusters with thousands of nodes, where the resource graph
size exceeds the memory capacity of individual machines. Model parallelism also improves
training throughput by distributing computation across multiple workers, achieving 3.2x
speedup with 4 workers compared to single-machine training, demonstrating efficient
parallel scaling despite communication overhead for cross-partition edges.

Fourth, we investigate the contribution of privacy-preserving mechanisms by comparing
training with and without differential privacy noise injection and secure aggregation.
Experiments reveal that moderate privacy budgets with epsilon values around 10 incur only
4-6% performance degradation compared to training without privacy protection,
demonstrating that practical privacy guarantees can be achieved with acceptable utility
tradeoffs. Tighter privacy budgets with epsilon values below 5 show more significant
performance impacts around 12-15%, suggesting organizations should calibrate privacy
parameters based on their specific sensitivity requirements. Secure aggregation imposes
minimal performance overhead since cryptographic operations occur asynchronously during
model transmission and do not delay scheduling decisions in the critical path.

5. Conclusion

This paper has presented a comprehensive federated graph learning framework for
distributed resource management in multi-cluster computing environments, addressing
fundamental challenges of scalability, heterogeneity, and privacy preservation through a
principled integration of hierarchical architectures, multi-scale graph representations, and
distributed learning protocols. Our framework adopts a master-slave coordination
architecture inspired by proven distributed systems designs, enhancing traditional schedulers
with federated learning capabilities that enable collaborative knowledge transfer across
autonomous clusters without centralizing sensitive operational data. The multi-scale graph
construction methodology captures resource relationships at both global inter-cluster
topology level and local intra-cluster configuration level, enabling the GNN model to perform
hierarchical optimization across different granularities of allocation decisions. Distributed
model parallelism strategies partition graph neural network computation across multiple
machines, achieving scalability to thousands of nodes while maintaining real-time inference
capabilities suitable for online scheduling workloads.

Experimental evaluation across diverse workload scenarios and cluster configurations
validates the effectiveness and robustness of our approach. The federated graph learning
framework reduces average job completion time by 28% and improves resource utilization by
34% compared to state-of-the-art centralized scheduling methods, while maintaining sub-
second scheduling latencies even at scale. The hierarchical architecture successfully
decouples global coordination from local decision-making, enabling scalable federation across
multiple clusters without introducing master node bottlenecks. Multi-scale graph
representations prove essential for capturing both coarse-grained cluster selection patterns
and fine-grained node placement optimizations, with ablation studies confirming that neither
single-scale approach alone achieves comparable performance. Distributed model parallelism
enables training of large GNN models that would exceed single-machine memory capacity,
demonstrating 67% memory footprint reduction and 3.2x training speedup with four workers.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

14

Future research directions include several promising extensions that could further enhance
the framework's capabilities. First, incorporating reinforcement learning techniques could
enable the system to learn long-horizon scheduling strategies that optimize cumulative
metrics like total flow time or makespan rather than greedy immediate rewards, potentially
discovering counter-intuitive policies that sacrifice short-term efficiency for superior long-
term outcomes. Second, developing hierarchical federated learning architectures with
multiple levels of aggregation could improve scalability for scenarios involving hundreds or
thousands of clusters, organizing them into regional federations that perform intermediate
aggregation before global consolidation. Third, exploring advanced privacy mechanisms such
as secure multi-party computation or fully homomorphic encryption could strengthen privacy
guarantees while maintaining model accuracy, addressing scenarios where even encrypted
model updates might leak information through traffic analysis. Fourth, extending the
framework to emerging computing paradigms including serverless computing, edge
deployments, and hybrid cloud-edge architectures presents opportunities to broaden
applicability and address new resource management challenges arising from these
environments. The convergence of federated learning, graph neural networks, and distributed
systems principles demonstrated in this work represents a promising foundation for
advancing the state of practice in large-scale infrastructure management.

References

Bellocchi, G., Capotondi, A., Benini, L., & Marongiu, A. (2025). RICHIE: a Framework for Agile Design
and Exploration of RISC-V-Based Accelerator-Rich Heterogeneous SoCs. IEEE Transactions on
Parallel and Distributed Systems.

Qiu, L. (2025). Multi-Agent Reinforcement Learning for Coordinated Smart Grid and Building Energy
Management Across Urban Communities. Computer Life, 13(3), 8-15.

Alabadi, M., Habbal, A., & Wei, X. (2022). Industrial internet of things: Requirements, architecture,
challenges, and future research directions. IEEE Access, 10, 66374-66400.

Ejaz, S., Iqbal, M. J., Bibi, H., Pervez, S., Al-Dhlan, K. A., & Ebrahim, S. (2020). A secure operating system
for data centers: A survey.

Zhang, H. (2025). Physics-Informed Neural Networks for High-Fidelity Electromagnetic Field
Approximation in VLSI and RF EDA Applications. Journal of Computing and Electronic
Information Management, 18(2), 38-46.

Hu, X., Zhao, X., Wang, J., & Yang, Y. (2025). Information-theoretic multi-scale geometric pre-training
for enhanced molecular property prediction. PLoS One, 20(10), e0332640.

Babu, T. S., Edwin, E. B., & Ebenezer, V. (2025, March). Dynamic Load Balancing in Cloud Computing
Using a Hybrid Bidirectional LSTM-RNN with Deep Learning VM Snapshot Protocols. In 2025
International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 1-7). IEEE.

Berenberg, A., & Calder, B. (2022). Deployment archetypes for cloud applications. ACM Computing
Surveys (CSUR), 55(3), 1-48.

Wu, Y., Tang, S., Yu, C., Yang, B., Sun, C., Xiao, J., ... & Feng, J. (2025). Task scheduling in geo-distributed
computing: a survey. IEEE Transactions on Parallel and Distributed Systems.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

15

Wang, Z., Hu, Y., Yan, S., Wang, Z., Hou, R., & Wu, C. (2022). Efficient ring-topology decentralized
federated learning with deep generative models for medical data in ehealthcare systems.
Electronics, 11(10), 1548.

Yang, Y., Ding, G., Chen, Z., & Yang, J. (2025). GART: Graph Neural Network-based Adaptive and Robust
Task Scheduler for Heterogeneous Distributed Computing. IEEE Access.

Eisen, M., & Ribeiro, A. (2020). Optimal wireless resource allocation with random edge graph neural
networks. ieee transactions on signal processing, 68, 2977-2991.

He C, Annavaram M, Avestimehr S. Group knowledge transfer: federated learning of large CNNs at the
edge. In: Advances in Neural Information Processing Systems; 2020. p. 14068-14080.

Kokolis, A., Kuchnik, M., Hoffman, J., Kumar, A., Malani, P., Ma, F., ... & Wu, C. J. (2025, March). Revisiting
reliability in large-scale machine learning research clusters. In 2025 IEEE International
Symposium on High Performance Computer Architecture (HPCA) (pp. 1259-1274). IEEE.

Safonova, A., Ghazaryan, G., Stiller, S., Main-Knorn, M., Nendel, C., & Ryo, M. (2023). Observation and
Geoinformation. International Journal of Applied Earth Observation and Geoinformation, 125,
103569.

Aach, M., Inanc, E., Sarma, R., Riedel, M., & Lintermann, A. (2023). Large scale performance analysis of
distributed deep learning frameworks for convolutional neural networks. Journal of Big Data,
10(1), 96.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2019). Adaptive federated
learning in resource constrained edge computing systems. IEEE journal on selected areas in
communications, 37(6), 1205-1221.

Lindsay, D., Gill, S. S., Smirnova, D., & Garraghan, P. (2021). The evolution of distributed computing
systems: from fundamental to new frontiers. Computing, 103(8), 1859-1878.

Sardar, T. H. (2024). Reflecting on a Decade of Evolution: MapReduce‐Based Advances in Partitioning‐
Based, Hierarchical‐Based, and Density‐Based Clustering (2013–2023). Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 14(6), e1566.

Ketu, S., Mishra, P. K., & Agarwal, S. (2020). Performance analysis of distributed computing
frameworks for big data analytics: hadoop vs spark. Computación y Sistemas, 24(2), 669-686.

Liu, J., Wang, J., and Lin, H. (2025). Coordinated Physics-Informed Multi-Agent Reinforcement Learning
for Risk-Aware Supply Chain Optimization. IEEE Access

Wang, Y., Ding, G., Zeng, Z., & Yang, S. (2025). Causal-Aware Multimodal Transformer for Supply Chain
Demand Forecasting: Integrating Text, Time Series, and Satellite Imagery. IEEE Access.

Ge, Y., Wang, Y., Liu, J., & Wang, J. (2025). GAN-Enhanced Implied Volatility Surface Reconstruction for
Option Pricing Error Mitigation. IEEE Access.

Chen, S., Liu, Y., Zhang, Q., Shao, Z., & Wang, Z. (2025). Multi‐Distance Spatial‐Temporal Graph Neural
Network for Anomaly Detection in Blockchain Transactions. Advanced Intelligent Systems,
2400898.

Ren, S., & Chen, S. (2025). Large Language Models for Cybersecurity Intelligence, Threat Hunting, and
Decision Support. Computer Life, 13(3), 39-47.

Frontiers in Robotics and Automation Volume 2 Issue 2, 2025

ISSN: 3079-644X

16

Sun, T., & Wang, M. (2025). Usage-Based and Personalized Insurance Enabled by AI and
Telematics. Frontiers in Business and Finance, 2(02), 262-273.

Zhang, H., Ge, Y., Zhao, X., & Wang, J. (2025). Hierarchical deep reinforcement learning for multi-
objective integrated circuit physical layout optimization with congestion-aware reward
shaping. IEEE Access.

Wang, M., Zhang, X., Yang, Y., & Wang, J. (2025). Explainable Machine Learning in Risk Management:
Balancing Accuracy and Interpretability. Journal of Financial Risk Management, 14(3), 185-198.

Zhang, X., Li, P., Han, X., Yang, Y., & Cui, Y. (2024). Enhancing Time Series Product Demand Forecasting
with Hybrid Attention-Based Deep Learning Models. IEEE Access.

Sun, T., Yang, J., Li, J., Chen, J., Liu, M., Fan, L., & Wang, X. (2024). Enhancing auto insurance risk
evaluation with transformer and SHAP. IEEE Access.

Wang, M., Zhang, X., & Han, X. (2025). AI Driven Systems for Improving Accounting Accuracy Fraud
Detection and Financial Transparency. Frontiers in Artificial Intelligence Research, 2(3), 403-
421.

Qiu, L. (2025). Machine Learning Approaches to Minimize Carbon Emissions through Optimized Road
Traffic Flow and Routing. Frontiers in Environmental Science and Sustainability, 2(1), 30-41.

Sun, T., Wang, M., & Han, X. (2025). Deep Learning in Insurance Fraud Detection: Techniques, Datasets,
and Emerging Trends. Journal of Banking and Financial Dynamics, 9(8), 1-11.

Wang, M., Zhang, X., Yang, Y., & Wang, J. (2025). Explainable Machine Learning in Risk Management:
Balancing Accuracy and Interpretability. Journal of Financial Risk Management, 14(3), 185-198.

Zhang, S., Qiu, L., & Zhang, H. (2025). Edge cloud synergy models for ultra-low latency data processing
in smart city iot networks. International Journal of Science, 12(10).

Yang, J., Zeng, Z., & Shen, Z. (2025). Neural-Symbolic Dual-Indexing Architectures for Scalable
Retrieval-Augmented Generation. IEEE Access.

Sun, T., Wang, M., & Chen, J. (2025). Leveraging Machine Learning for Tax Fraud Detection and Risk
Scoring in Corporate Filings. Asian Business Research Journal, 10(11), 1-13.

