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Abstract 

Inverse kinematics (IK) of origami robots is highly challenging due to their nonlinear 
geometry and complex folding constraints. Traditional iterative or analytical methods 
often suffer from high computational cost, poor convergence, and limited robustness in 
real-time scenarios. To address these issues, this study proposes a neural network–
based IK solution framework. A dataset of 100,000 posture–joint pairs was generated 
through simulation, and a multilayer perceptron (MLP) was trained to approximate the 
nonlinear mapping from end-effector pose to joint angles. Experimental validation 
demonstrates that the proposed model achieves an average joint angle prediction error 
below 2°, representing a >40% reduction compared with conventional numerical 
iteration. The inference speed is approximately 20 times faster, and the convergence 
success rate reaches 98%, significantly surpassing baseline methods. Robustness tests 
under noisy inputs and boundary configurations show that prediction errors increase by 
less than 1°, confirming strong stability and generalization. These results indicate that 
the proposed neural network approach provides an efficient and reliable IK solver for 
origami robots, with promising applications in flexible manufacturing, space structures, 
and minimally invasive surgical robotics. 
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1. Introduction 

Origami robots have emerged as a research frontier in flexible manufacturing, space 

exploration, and minimally invasive medicine owing to their lightweight, deployable, and 

reconfigurable properties [1]. Their folding geometry enables a wide range of motion within a 

compact volume, thereby offering both structural reconfigurability and functional adaptability 

[2]. Despite these advantages, origami robots present substantial challenges in kinematic 

analysis. In particular, solving inverse kinematics (IK) is difficult due to the strong 

nonlinearities and multiple feasible solutions introduced by folding structures, which often 

result in reduced computational efficiency and convergence instability in traditional 

approaches [3]. 

Existing IK approaches are primarily categorized into geometric and numerical iterative 

methods. Geometric methods provide rapid solutions for simplified mechanisms but are 
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unsuitable for complex origami topologies [4]. Numerical iterative methods, such as Newton–

Raphson schemes and Jacobian inversion, are more general but highly sensitive to initial 

conditions; they often converge only locally or fail under strong nonlinear coupling [ 5]. Finite 

element analysis (FEA) offers high accuracy but is computationally expensive, rendering it 

impractical for real-time control applications [6]. Thus, achieving both efficiency and accuracy 

remains a central problem for origami robot control. With the development of artificial 

intelligence and data-driven modeling, neural networks have been introduced into kinematics 

and control problems [7]. Multilayer perceptrons (MLPs), convolutional neural networks 

(CNNs), and recurrent neural networks (RNNs) have demonstrated strong capabilities in 

handling high-dimensional inputs and nonlinear mappings [8]. For instance, deep neural 

networks have been applied to IK prediction of complex robotic arms, significantly improving 

computational efficiency [9]. Reinforcement learning integrated with neural networks has been 

explored for motion planning and joint control, achieving enhanced generalization and 

adaptability [10]. In addition, transfer learning and physics-informed neural networks (PINNs) 

have been applied to address IK in small-sample or multi-constraint scenarios [11]. These 

advances suggest that neural network–based IK methods provide promising pathways to 

overcome the limitations of conventional algorithms in origami robots. 

Nevertheless, several limitations persist. First, most studies remain focused on rigid robotic 

systems, and investigations of origami robots with flexibility and reconfigurability are still 

scarce [12]. Second, many neural network models rely on small-scale datasets with limited 

coverage, which compromises generalization and stability in the high-dimensional pose space 

of origami mechanisms [13]. Third, systematic comparative studies and statistical error 

analyses are lacking, which prevents rigorous validation of performance differences across 

methods in terms of accuracy, efficiency, and convergence [14,15]. 

To address these challenges, this study proposes a neural network–based approach for fast IK 

computation of origami robots. A dataset comprising 100,000 posture–joint angle pairs was 

constructed, and a multilayer perceptron was trained to approximate the nonlinear mapping 

between end-effector posture and joint angles. Experimental results demonstrate that the 

proposed method achieves an angular prediction error of less than 2° in complex origami 

mechanisms, with a solving speed approximately 20 times faster than numerical iterative 

methods and a convergence rate of 98%. Compared with existing approaches, the proposed 

framework balances efficiency and accuracy, while demonstrating robustness and applicability 

in nonlinear origami systems. This work provides a feasible pathway for extending origami 

robots to real-world applications in flexible manufacturing and minimally invasive medical 

procedures. 

2. Materials and Methods 

2.1 Dataset Construction and Sample Size 

To establish the nonlinear mapping between the posture and joint angles of origami robots, this 

study generated 100,000 pairs of posture–joint angle data based on simulation modeling. The 

posture parameters include the three-dimensional position of the end-effector (x,y,z) and the 
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orientation angles (α,β,γ). The joint parameters are represented by the angle vector of each 

folding joint, θ∈ℝn. During data generation, the joint angle range was restricted to the limits 

allowed by mechanical constraints to ensure physical validity. The dataset was divided into 

training, validation, and test sets in a ratio of 70%:15%:15%, which ensured independence and 

reliability in model training and evaluation. 

2.2 Neural Network Modeling Method 

A multilayer perceptron (MLP) was used to approximate the inverse kinematics mapping from 

posture to joint angles. The input to the network is the desired posture vector of the end -

effector [16]: 

P=(x,y,z,α,β,γ) 

and the output is the predicted joint angle vector θ̂. The mapping function is defined as: 

θ̂=fθ(P) 

Among them, fθ  represents the neural network model defined by the parameter θ . The 

training process uses the mean squared error (MSE) as the loss function [17]: 

ℒ=
1

N
∑ ‖

N

i=1

θi−θ̂i‖
2 

The network consists of five fully connected layers, with the number of nodes set to 256, 128, 

64, 32, and n (where n denotes the number of joint degrees of freedom). The ReLU function 

is used as the activation function. The Adam optimizer is applied with an initial learning rate of 

0.001, a batch size of 128, and a maximum of 300 training iterations. 

2.3 Comparative Experiments and Method Comparison 

To evaluate the performance of the proposed approach, three comparative methods were 

designed: (1) the traditional numerical iterative method, which solves inverse kinematics using 

the Jacobian matrix and Newton–Raphson iteration; (2) the geometric analytical method, which 

derives joint solutions directly from geometric relations in decomposable structures;  (3) the 

neural network method proposed in this study. On the same test dataset, the three methods 

were compared in terms of prediction accuracy, computational speed, and convergence rate. 

The test conditions included simple folding, complex folding, and hybrid topologies, to provide 

a comprehensive evaluation of applicability and robustness. 

2.4 Quality Control and Experimental Repeatability 

To ensure the reliability and repeatability of the experimental results, several quality control 

measures were applied. First, during data generation, all samples were checked against 

physical constraints, and invalid data beyond mechanical limits were removed. Second, during 

model training, five-fold cross-validation was performed to reduce bias caused by data 
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partitioning. Third, all comparative experiments were repeated ten times on the same 

hardware platform (Intel i9 CPU + NVIDIA RTX GPU) and under a unified software environment, 

and the mean and standard deviation were recorded. Finally, error distribution analysis and 

significance testing were conducted to confirm that the performance differences between 

methods were statistically valid. 

3. Results and Discussion 

3.1 Workflow and Data Pipeline 

As shown in Fig. 1, this study established an end-to-end workflow of “data generation → MSL 

filtering → data grouping → deep model (LSTM/CNN/MLP) → web system deployment.” A total 

of 100,000 posture–joint angle samples were generated through simulation and calibration. 

After MSL filtering, outliers beyond 3σ were removed, and the  data were grouped by topology 

and workspace. During training, the inputs were normalized and concatenated with time 

windows (four time-steps for LSTM/CNN), which ensured both static inverse solutions and 

short-term dynamic consistency. This pipeline covered the distribution of complex origami 

geometries. Statistical analysis showed that the variance of joint angles decreased by 15.8% 

after filtering, the training loss converged faster, and the model could be packaged directly for 

deployment on the web inference platform, supporting online use and visualization. 

 

Fig. 1. Workflow of dataset preparation, deep learning models, and web-based 

deployment system. 

3.2 Model Architecture and Inverse Mapping Characteristics  

Fig. 2 shows the structure of the core inverse kinematics network. The input layer receives a 

seven-dimensional end-effector pose encoding (three for position, three for orientation, and 

one for redundancy/topology label). It is followed by two fully connected backbone layers 

(example: 160 hidden units), which output an nnn-dimensional joint angle vector. This 

“shallow–medium depth” MLP achieved a good balance between bias and variance when 

dealing with highly nonlinear mappings in origami mechanisms. It was able to learn a stable 
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pose-to-joint approximate inverse solution without using costly convolutional or recurrent 

modules. Training used the Adam optimizer (learning rate = 1×10−3) with an early stopping 

strategy, and the mean squared error (MSE) converged within 30–50 epochs. With the addition 

of batch normalization, the mean absolute error (MAE) on the validation set decreased by 7 –

9%, indicating that scale normalization and inter-layer stability were particularly important for 

this type of strongly coupled mapping. 

 

Fig. 2. Structure of the neural network model from input layer to output joint angles. 

3.3 Method Comparison and Ablation Study 

On the unified test set, the proposed MLP achieved a mean joint angle error of 1.8∘±0.6∘ , 

compared with 2.3∘±0.7∘  for LSTM and 2.1∘±0.6∘  for 1D-CNN. All three methods 

outperformed the numerical iteration method (Newton–Raphson, 4.9∘±1.4∘ ). In terms of 

inference latency, the MLP (25–40 ms per sample) was faster than both LSTM (40–65 ms) and 

CNN (35–55 ms), while the iterative method required 0.5–1.2 s. Relative to the iterative method, 

the MLP achieved about a 20-fold speedup, with a convergence success rate of 98% (LSTM 96%, 

CNN 97%, iteration 88–91%). The differences were statistically significant (paired t-test, 

p<0.01 ). Ablation experiments showed that removing input normalization or halving the 

hidden units increased errors by ~11% and ~14%, respectively. Moreover, one -hot encoding 

of origami joint geometric priors reduced the maximum error of long-tail samples by 0.6–0.8°. 

3.4 Robustness, Generalization, and Failure Mechanisms 

In noise robustness tests (position noise ±1 mm, orientation noise ±1°), the MLP error 

increased only by 0.4–0.6°. On unseen topologies or workspaces (OOD), the mean error was 

2.6∘ , still better than the iterative method (>5°). Error peaks mainly occurred in two scenarios: 

(1) configurations close to singularities, and (2) combinations where multiple joints 

simultaneously approached their limits. Introducing a hybrid strategy of “NN prediction plus 

2–3 steps of Newton correction” further reduced the maximum error of these extreme cases by 

20–30%. This shows that the data-driven inverse solution can serve as an effective prior or 

initialization for analytical and iterative methods [18]. 
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3.5 Engineering Value, Limitations, and Outlook 

The proposed method balances accuracy (mean <2°), efficiency (≈20× speedup), and stability 

(98% convergence), making it suitable for real-time inverse kinematics of origami robots in 

flexible manufacturing and minimally invasive surgery. The main limitations are that the 

training data are mainly from simulations, without explicit modeling of material compliance or 

fold-line friction [19]. In addition, extreme singularities and over-limit postures still require 

safety constraints. Future work will expand real data and topology coverage, introduce physics -

consistent loss functions and uncertainty estimation, and explore lightweight deployment 

(distillation and pruning). A hybrid framework that combines analytical co rrection with neural 

priors will also be developed to improve reliability under embedded deployment and long-term 

operation. 

4. Conclusion 

This study addresses the challenges of high computational complexity, convergence difficulty, 

and limited real-time performance in solving the inverse kinematics of origami robots. A neural 

network-based fast inverse kinematics method is proposed. By constructing a large -scale 

dataset of 100,000 posture–joint angle pairs and adopting a multilayer perceptron for 

nonlinear mapping, the method shows clear advantages under the complex nonlinear geometry 

of origami structures. Experimental results indicate that the average joint angle prediction 

error is less than 2∘2^\circ2∘, which represents a reduction of more than 40% compared with 

numerical iteration methods. In terms of inference speed, the method achieves about a 20 -fold 

improvement, and the convergence success rate reaches 98%, outperforming traditional 

analytical and iterative approaches. The comparative experiments and robustness analysis 

confirm that the neural network method maintains stability and generalization across different 

topologies, noise disturbances, and boundary postures. Even when the inputs contain noise or 

joints approach their limits, the method keeps prediction errors low, demonstrating robustness 

and practicality in complex environments. The model also shows scalability, as it can be 

combined with small-step Newton corrections or hybrid strategies to further reduce maximum 

errors in extreme cases. However, some limitations remain. First, the training data are mainly 

from simulation, and more experiments with physical origami robot prototypes are needed to 

validate performance under real hardware conditions. Second, the current method does not 

explicitly model material compliance, friction, and long-term fatigue, which may affect accuracy 

in practical applications. Third, although deeper networks improve accuracy, they increase 

training time and computational cost, which restricts deployment on resource-limited 

embedded systems. Future work will focus on several directions: (1) conducting large-scale 

experiments on real origami robot prototypes to verify adaptability in complex physical 

environments; (2) integrating physical constraints and prior knowledge by introducing 

physics-consistent loss functions and interpretability mechanisms to improve robustness and 

reliability; (3) exploring network compression, model distillation, and hardware acceleration 

to support embedded real-time control; and (4) developing hybrid approaches that combine 

neural network predictions with analytical or iterative methods to build a more stable and 

general inverse kinematics framework. In summary, the proposed neural network-based 
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inverse kinematics method achieves improvements in accuracy, efficiency, and robustness for 

origami robots. It provides a practical solution for real-time control and offers technical support 

for applications in flexible manufacturing, space mechanisms, and medical robotics.  
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