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Abstract

Inverse kinematics (IK) of origami robots is highly challenging due to their nonlinear
geometry and complex folding constraints. Traditional iterative or analytical methods
often suffer from high computational cost, poor convergence, and limited robustness in
real-time scenarios. To address these issues, this study proposes a neural network-
based IK solution framework. A dataset of 100,000 posture-joint pairs was generated
through simulation, and a multilayer perceptron (MLP) was trained to approximate the
nonlinear mapping from end-effector pose to joint angles. Experimental validation
demonstrates that the proposed model achieves an average joint angle prediction error
below 2° representing a >40% reduction compared with conventional numerical
iteration. The inference speed is approximately 20 times faster, and the convergence
success rate reaches 98%, significantly surpassing baseline methods. Robustness tests
undernoisy inputsand boundary configurations show that prediction errors increase by
less than 1°, confirming strong stability and generalization. These results indicate that
the proposed neural network approach provides an efficient and reliable IK solver for
origami robots, with promising applications in flexible manufacturing, space structures,
and minimally invasive surgical robotics.
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1. Introduction

Origami robots have emerged as a research frontier in flexible manufacturing, space
exploration, and minimally invasive medicine owing to their lightweight, deployable, and
reconfigurable properties [1]. Their folding geometry enables a wide range of motion within a
compact volume, thereby offering both structural reconfigurability and functional adaptability
[2]. Despite these advantages, origami robots present substantial challenges in kinematic
analysis. In particular, solving inverse kinematics (IK) is difficult due to the strong
nonlinearities and multiple feasible solutions introduced by folding structures, which often
result in reduced computational efficiency and convergence instability in traditional
approaches [3].

Existing IK approaches are primarily categorized into geometric and numerical iterative
methods. Geometric methods provide rapid solutions for simplified mechanisms but are
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unsuitable for complex origami topologies [4]. Numerical iterative methods, such as Newton-
Raphson schemes and Jacobian inversion, are more general but highly sensitive to initial
conditions; they often converge only locally or fail under strong nonlinear coupling [ 5]. Finite
element analysis (FEA) offers high accuracy but is computationally expensive, rendering it
impractical for real-time control applications [6]. Thus, achieving both efficiency and accuracy
remains a central problem for origami robot control. With the development of artificial
intelligence and data-driven modeling, neural networks have been introduced into kinematics
and control problems [7]. Multilayer perceptrons (MLPs), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs) have demonstrated strong capabilities in
handling high-dimensional inputs and nonlinear mappings [8]. For instance, deep neural
networks have been applied to IK prediction of complex robotic arms, significantly improving
computational efficiency [9].Reinforcement learning integrated with neural networks has been
explored for motion planning and joint control, achieving enhanced generalization and
adaptability [10]. In addition, transfer learning and physics-informed neural networks (PINNs)
have been applied to address IK in small-sample or multi-constraint scenarios [11]. These
advances suggest that neural network-based IK methods provide promising pathways to
overcome the limitations of conventional algorithms in origami robots.

Nevertheless, several limitations persist. First, most studies remain focused on rigid robotic
systems, and investigations of origami robots with flexibility and reconfigurability are still
scarce [12]. Second, many neural network models rely on small-scale datasets with limited
coverage, which compromises generalization and stability in the high-dimensional pose space
of origami mechanisms [13]. Third, systematic comparative studies and statistical error
analyses are lacking, which prevents rigorous validation of performance differences across
methods in terms of accuracy, efficiency, and convergence [ 14,15].

To address these challenges, this study proposes a neural network-based approach for fastIK
computation of origami robots. A dataset comprising 100,000 posture-joint angle pairs was
constructed, and a multilayer perceptron was trained to approximate the nonlinear mapping
between end-effector posture and joint angles. Experimental results demonstrate that the
proposed method achieves an angular prediction error of less than 2° in complex origami
mechanisms, with a solving speed approximately 20 times faster than numerical iterative
methods and a convergence rate of 98%. Compared with existing approaches, the proposed
framework balances efficiency and accuracy, while demonstrating robustness and applicability
in nonlinear origami systems. This work provides a feasible pathway for extending origami
robots to real-world applications in flexible manufacturing and minimally invasive medical
procedures.

2. Materials and Methods
2.1 Dataset Construction and Sample Size

To establish the nonlinear mapping between the posture and joint angles of origamirobots, this
study generated 100,000 pairs of posture-jointangle data based on simulation modeling. The
posture parameters include the three-dimensional position of the end-effector (x,y,z) and the
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orientation angles (o,,y). The joint parameters are represented by the angle vector of each
folding joint, 6€R". During data generation, the joint angle range was restricted to the limits
allowed by mechanical constraints to ensure physical validity. The dataset was divided into
training, validation, and test sets in a ratio of 70%:15%:15%, which ensured independence and
reliability in model training and evaluation.

2.2 Neural Network Modeling Method

A multilayer perceptron (MLP) was used to approximate the inverse kinematics mapping from
posture to joint angles. The input to the network is the desired posture vector of the end-
effector [16]:

P=(xy,z,a,B,y)
and the outputis the predicted joint angle vector 8. The mapping function is defined as:
ézfa (P)

Among them, f; represents the neural network model defined by the parameter 6. The
training process uses the mean squared error (MSE) as the loss function [17]:

N
2= 180,
_N._l i i

The network consists of five fully connected layers, with the number of nodes set to 256, 128,
64, 32,and n (where n denotesthe number of joint degrees of freedom). The ReLU function
is used as the activation function. The Adam optimizer is applied with an initial learning rate of
0.001, a batch size of 128, and a maximum of 300 training iterations.

2.3 Comparative Experiments and Method Comparison

To evaluate the performance of the proposed approach, three comparative methods were
designed: (1) the traditional numerical iterative method, which solvesinverse kinematics using
the Jacobian matrix and Newton-Raphson iteration; (2) the geometric analytical method, which
derives joint solutions directly from geometric relations in decomposable structures; (3) the
neural network method proposed in this study. On the same test dataset, the three methods
were compared in terms of prediction accuracy, computational speed, and convergence rate.
The test conditions included simple folding, complex folding, and hybrid topologies, to provide
a comprehensive evaluation of applicability and robustness.

2.4 Quality Control and Experimental Repeatability

To ensure the reliability and repeatability of the experimental results, several quality control
measures were applied. First, during data generation, all samples were checked against
physical constraints, and invalid data beyond mechanical limits were removed. Second, during
model training, five-fold cross-validation was performed to reduce bias caused by data
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partitioning. Third, all comparative experiments were repeated ten times on the same
hardware platform (Intel i9 CPU + NVIDIA RTX GPU) and under a unified software environment,
and the mean and standard deviation were recorded. Finally, error distribution analysis and
significance testing were conducted to confirm that the performance differences between
methods were statistically valid.

3. Results and Discussion
3.1 Workflow and Data Pipeline

As shown in Fig. 1, this study established an end-to-end workflow of “data generation - MSL
filtering — data grouping — deep model (LSTM/CNN/MLP) — web system deployment.” A total
of 100,000 posture-joint angle samples were generated through simulation and calibration.
After MSL filtering, outliers beyond 30 were removed, and the data were grouped by topology
and workspace. During training, the inputs were normalized and concatenated with time
windows (four time-steps for LSTM/CNN), which ensured both static inverse solutions and
short-term dynamic consistency. This pipeline covered the distribution of complex origami
geometries. Statistical analysis showed that the variance of joint angles decreased by 15.8%
after filtering, the training loss converged faster, and the model could be packaged directly for
deployment on the web inference platform, supporting online use and visualization.
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Fig. 1. Workflow of dataset preparation, deep learning models, and web-based
deployment system.

3.2 Model Architecture and Inverse Mapping Characteristics

Fig. 2 shows the structure of the core inverse kinematics network. The input layer receives a
seven-dimensional end-effector pose encoding (three for position, three for orientation, and
one for redundancy/topology label). It is followed by two fully connected backbone layers
(example: 160 hidden units), which output an nnn-dimensional joint angle vector. This
“shallow-medium depth” MLP achieved a good balance between bias and variance when
dealing with highly nonlinear mappings in origami mechanisms. It was able to learn a stable
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pose-to-joint approximate inverse solution without using costly convolutional or recurrent
modules. Training used the Adam optimizer (learning rate = 1x1073) with an early stopping
strategy, and the mean squared error (MSE) converged within 30-50 epochs. With the addition
of batch normalization, the mean absolute error (MAE) on the validation set decreased by 7 -
9%, indicating that scale normalization and inter-layer stability were particularly important for
this type of strongly coupled mapping.

dense input input: [(None, 7)]

InputLayer output: | [(None, 7)]

'

dense input: (None, 7)

Dense | output: | (None, 160)

'

dense 1 input: (None, 160)
Dense output: (None, 7)

Fig. 2. Structure of the neural network model from inputlayer to outputjoint angles.

3.3 Method Comparison and Ablation Study

On the unified test set, the proposed MLP achieved a mean joint angle error of 1.8°+0.6°,
compared with 2.3°#0.7° for LSTM and 2.1°#0.6° for 1D-CNN. All three methods
outperformed the numerical iteration method (Newton-Raphson, 4.9°#1.4°). In terms of
inference latency, the MLP (25-40 ms per sample) was faster than both LSTM (40-65 ms) and
CNN (35-55ms), while the iterative method required 0.5-1.2 s. Relative to the iterative method,
the MLP achieved abouta 20-fold speedup, with a convergence successrate 0f98% (LSTM 96%,
CNN 97%, iteration 88-91%). The differences were statistically significant (paired t-test,
p<0.01). Ablation experiments showed that removing input normalization or halving the
hidden units increased errors by ~11% and ~14%, respectively. Moreover, one-hotencoding
of origamijoint geometric priors reduced the maximum error of long-tail samples by 0.6-0.8°.

3.4 Robustness, Generalization, and Failure Mechanisms

In noise robustness tests (position noise *1 mm, orientation noise +1°), the MLP error
increased only by 0.4-0.6°. On unseen topologies or workspaces (OOD), the mean error was
2.6°, still better than the iterative method (>5°). Error peaks mainly occurred in two scenarios:
(1) configurations close to singularities, and (2) combinations where multiple joints
simultaneously approached their limits. Introducing a hybrid strategy of “NN prediction plus
2-3 steps of Newton correction” further reduced the maximum error of these extreme cases by
20-30%. This shows that the data-driven inverse solution can serve as an effective prior or
initialization for analytical and iterative methods [18].

126



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025
ISSN:3079-644X

3.5 Engineering Value, Limitations, and Outlook

The proposed method balances accuracy (mean <2°), efficiency (*20x speedup), and stability
(98% convergence), making it suitable for real-time inverse kinematics of origami robots in
flexible manufacturing and minimally invasive surgery. The main limitations are that the
training data are mainly from simulations, without explicit modeling of material compliance or
fold-line friction [19]. In addition, extreme singularities and over-limit postures still require
safety constraints. Future workwill expand real data and topology coverage, introduce physics -
consistent loss functions and uncertainty estimation, and explore lightweight deployment
(distillation and pruning). A hybrid framework that combines analytical co rrection with neural
priors will also be developed to improve reliability under embedded deploymentand long-term
operation.

4. Conclusion

This study addresses the challenges of high computational complexity, convergence difficulty,
and limited real-time performance in solving the inverse kinematics of origami robots. Aneural
network-based fast inverse kinematics method is proposed. By constructing a large-scale
dataset of 100,000 posture-joint angle pairs and adopting a multilayer perceptron for
nonlinear mapping, the method shows clear advantages under the complex nonlinear geometry
of origami structures. Experimental results indicate that the average joint angle prediction
error is less than 202”\circ2o, which represents a reduction of more than 40% compared with
numerical iteration methods. In terms of inference speed, the method achieves abouta 20-fold
improvement, and the convergence success rate reaches 98%, outperforming traditional
analytical and iterative approaches. The comparative experiments and robustness analysis
confirm that the neural network method maintains stability and generalization across different
topologies, noise disturbances, and boundary postures. Even when the inputs contain noise or
joints approach their limits, the method keeps prediction errorslow, demonstratingrobustness
and practicality in complex environments. The model also shows scalability, as it can be
combined with small-step Newton corrections or hybrid strategies to further reduce maximum
errors in extreme cases. However, some limitations remain. First, the training data are mainly
from simulation, and more experiments with physical origami robot prototypes are needed to
validate performance under real hardware conditions. Second, the current method does not
explicitly model material compliance, friction, and long-term fatigue, which may affectaccuracy
in practical applications. Third, although deeper networks improve accuracy, they increase
training time and computational cost, which restricts deployment on resource-limited
embedded systems. Future work will focus on several directions: (1) conducting large-scale
experiments on real origami robot prototypes to verify adaptability in complex physical
environments; (2) integrating physical constraints and prior knowledge by introducing
physics-consistent loss functions and interpretability mechanisms to improve robustness and
reliability; (3) exploring network compression, model distillation, and hardware acceleration
to support embedded real-time control; and (4) developing hybrid approaches that combine
neural network predictions with analytical or iterative methods to build a more stable and
general inverse kinematics framework. In summary, the proposed neural network-based
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inverse kinematics method achieves improvements in accuracy, efficiency, and robustness for
origamirobots.It providesa practical solution for real-time controland offers technical support
for applications in flexible manufacturing, space mechanisms, and medical robotics.
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