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Abstract

The growing demand for transparency in digital advertising decision-making has
become a critical concern for industry practitioners and regulators alike. Traditional
advertising allocation strategies often rely on black-box algorithms that lack sufficient
explainability, posing significant challenges in environments where user privacy and
regulatory compliance are paramount. This paper proposes a novel Explainable
Hierarchical Reinforcement Learning (EHRL) framework specifically designed for
transparent decision-making in digital advertising ecosystems. The framework
integrates option-critic architectures with deep Q-networks and incorporates
sophisticated state representation mechanisms to achieve both efficient and
interpretable advertising strategies. Our approach utilizes a three-tier hierarchical
structure that mirrors natural advertising decision-making processes, from high-level
strategic planning to tactical execution. Experimental results on large-scale real-world
advertising datasets demonstrate that the proposed EHRL framework significantly
improves decision transparency and explainability while maintaining competitive
performance. Compared to traditional Deep Q-Network (DQN) approaches, EHRL
achieves a 12.3% improvement in click-through rate prediction accuracy, an 8.7%
increase in user satisfaction scores, and a 34.5% enhancement in human
comprehensibility of decision explanations.
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1. Introduction

The digital advertising ecosystem has evolved into a complex multi-stakeholder environment
where transparency and explainability have become increasingly critical for sustainable
business practices[1]. The proliferation of sophisticated machine learning algorithms in
advertising platforms has created unprecedented opportunities for revenue optimization and
user engagement enhancement[2]. However, these advances have simultaneously introduced
significant challenges regarding algorithmic transparency, particularly in light of evolving
regulatory landscapes and growing consumer awareness of data privacy rights[ 3].

The implementation of the European Union's General Data Protection Regulation (GDPR)
marked a pivotal moment in the evolution of algorithmic accountability requirements. Article
22 of GDPR explicitly grants individuals the right to receive meaningful information about the
logic involved in automated decision-making processes that significantly affect them[4]. This
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regulatory framework has fundamentally altered the operational requirements for digital
advertising systems, necessitating the development of algorithms that can provide clear
explanations for their decision-making processes. The ripple effects of these regulatory changes
extend far beyond European borders, with similar legislation emerging in California through

the California Consumer Privacy Act (CCPA) and comparable frameworks being developed
globally[5].

In the context of digital advertising, the complexity of stakeholder relationships amplifies the
importance of transparent decision-making. Advertisers require clear understanding of how
their budget allocations translate into user engagement and conversion outcomes|6].
Publishers and platform operators must balance revenue maximization with user experience
preservation while maintaining compliance with diverse regulatory requirements. Users
increasingly demand insight into how their personal data influences the advertising content
they encounter. This multi-faceted stakeholder landscape creates a unique challenge where
technical solutions must simultaneously address performance optimization, regulatory
compliance, and user trust maintenance[7].

Traditional approaches to digital advertising optimization have primarily focused on
maximizing immediate performance metrics such as click-through rates, conversion rates, and
revenue per impression[8]. These methods typically employ sophisticated deep learning
architectures that excel at pattern recognition and prediction accuracy but provide limited
insight into their decision-making processes. The resulting "black box" nature of these systems
creates significant barriers to stakeholder trust and regulatory compliance[9]. Furthermore,
the lack of explainability limits the ability of domain experts to identify potential biases, verify
decision correctness, and implement necessary corrections or improvements[ 10].

ReinforcementLearning (RL) has emerged asa particularly promising paradigm for addressing
the sequential decision-making challenges inherent in digital advertising. Unlike supervised
learning approaches that optimize for immediate outcomes, RL algorithms can learn to
maximize long-term rewards through interaction with dynamic environments[11]. This
capability is especially valuable in advertising scenarios where the impact of individual
decisions may not be immediately apparent but can significantly influence long-term user
engagement and advertiser satisfaction[12]. However, deep RL methods inherit the
explainability challenges of their underlying neural network components, creating obstacles to
adoption in transparency-sensitive environments.

Hierarchical Reinforcement Learning (HRL) offers a potential solution to these explainability
challenges by providing structured decomposition of complex decision-making processes[13].
The option-critic architecture, in particular, has demonstrated significant potential for creating
interpretable hierarchical policies that can be understood and validated by human experts. By
organizing learning and decision-making into multiple hierarchical levels, HRL systems can
provide more interpretable explanations that align with human understanding of complex
tasks[14]. In the digital advertising domain, hierarchical structures naturally correspond to the
multi-level nature of advertising decisions: strategic-level choices regarding campaign
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objectives and budget allocation, tactical-level decisions aboutaudience targeting and content
selection, and operational-level optimizations for real-time bidding and impression allocation.

The contribution of this research lies in developing a comprehensive Explainable Hierarchical
Reinforcement Learning framework that addresses the specific requirements of digital
advertising ecosystems. Our approach integrates option-critic architectures with deep Q-
networks and sophisticated state representation mechanisms to create interpretable decision -
making processes that maintain competitive performance levels. The framework incorporates
explicit mechanisms for explanation generation and validation, ensuring that stakeholders can
understand and trust the automated decision-making processes that govern their advertising
experiences.

2. Literature Review

The intersection of explainable artificial intelligence and digital advertising represents arapidly
evolving research area that draws from multiple established disciplines[ 15]. The foundation
for explainable Al in advertising builds upon decades of research in interpretable ma chine
learning, which initially focused on simple linear models and rule-based systems that provided
inherent transparency at the cost of limited expressiveness for complex, high -dimensional data
patterns[16]. The advent of deep learning techniques fundamentally altered this landscape,
introducing powerful models capable of capturing intricate nonlinear relationships but at the
expense of interpretability.

Early explainable Al research concentrated primarily on post-hoc explanation methods that
attempt to interpret already-trained models. Techniques such as LIME (Local Interpretable
Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) gained prominence
for their ability to provide local explanations for individual predictions without requiring
modifications to the underlying model architecture[17]. However, these approaches often
provide limited insight into the global behavior of complex systems and may not capture the
sequential decision-making nature of advertising optimization problems[18].

The developmentofhierarchical reinforcementlearning has provided newavenues for creating
inherently interpretable models. The option-critic architecture introduced by Bacon et al.
represents a significant advance in this direction, providing a framework for learning both
option policies and termination conditions in an end-to-end manner. This architecture
demonstrates how temporal abstraction can be achieved without requiring predefined
subgoals, making it particularly suitable for complex domains where the optimal hierarchical
structure is not immediately apparent[19]. The option-critic framework's ability to learn
interpretable options that correspond to meaningful behavioral patterns makes it especially
relevant for explainable decision-making in advertising contexts[20].

Research in deep Q-networks has established important foundations for value-based
reinforcementlearning in high-dimensional state spaces[21]. The integration of convolutional
neural networks with Q-learning has demonstrated remarkable success in complex domains,
but the resulting models often lack the transparency required for regulated environments[ 22].
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Recent work has focused on developing techniques for understanding and interpreting the
learned representationsin deep Q-networks, including attention mechanisms and visualization
approaches that can provide insights into the decision-making process[23-28].

Digital advertising research has increasingly incorporated machine learning techniques for
various optimization challenges. The application of reinforcement learning to advertising
problems has gained significant attention, with research exploring real-time bidding
optimization, content recommendation, and budget allocation across multiple channels[29].
The DRN (Deep ReinforcementLearning for News Recommendation) framework demonstrates
how RL can be effectively applied to recommendation problems by modeling user interactions
as a Markov Decision Process and incorporating exploration strategies to discover new
engaging content.

The broader field of trustworthy Al has contributed important theoretical frameworks for
understanding explainability requirements across differentstakeholder groupsand application
domains[30-32]. Research has identified distinct explanation types needed for different
purposes: global explanations that describe overall system behavior, local explanations that
clarify specific decisions, and contrastive explanations that highlight why particular choices
were made instead of alternatives. These categorizations provide crucial guidance for designing
comprehensive explanation systems for complex applications like digital advertising[ 33].

Multi-agent reinforcement learning research has particular relevance to digital advertising
ecosystems due to the inherently competitive nature of advertising auctions and the presence
of multiple stakeholders with potentially conflicting objectives[34]. The development of
hierarchical multi-agent systems has shown promise for coordinating optimization across
multiple decision-making entities while maintaining interpretability at both individual and
system levels[35].

Current limitations in the existing literature include insufficient attention to the multi-
stakeholder nature of advertising explainability requirements, limited evaluation of
explanation quality from human comprehensibility perspectives, and inadequate consideration
of the dynamic nature of advertising environments where explanation needs may evolve over
time. Additionally, most existing work treats explainability as an auxiliary objective rather than
integrating it fundamentally into the learning and decision-making process.

3. Methodology
3.1 Option-Critic Hierarchical Architecture Design

The foundation of our Explainable Hierarchical Reinforcement Learning framework is built
upon the option-critic architecture, which provides a principled approach to learning temporal
abstractions without requiring predefined subgoals. This architecture is particularly well-
suited to digital advertising environments where the optimal hierarchical structure of decision-
making is not immediately apparent and must be discovered through interaction with the
environment.
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Our implementation extends the basic option-critic framework to accommodate the specific
requirements of digital advertising ecosystems. The architecture consists of three main
components: a policy over options that determines which high-level strategy to pursue, option-
specific policies that execute detailed actions within each strategy, and termination functions
that decide when to switch between different options. This hierarchical organization naturally
aligns with the multi-level decision-making processes observed in advertising campaigns, from
strategic planning to tactical execution.

The policy over options operates at the highest level of abstraction, making decisions about
overall advertising strategies such as targeting specific user segments, emphasizing particular
content types, or adjusting bidding aggressiveness based on campaign objectives. These high -
level decisions are informed by aggregated state representations that capture long-term trends
in user behavior, market conditions, and campaign performance. The policy over optionslearns
to selectappropriate strategiesbased on the currentcontextand expected long-term outcomes.
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Figure 1. Policy over options

Individual option policies in figure 1 operate at a more detailed level, implementing specific
advertising tactics within the context of the selected high-level strategy. For example, when the
policy over options selects a "user engagement maximization" strategy, the corresponding
option policy might focus on selecting content that maximizes user interaction probability,
adjusting bid amounts based on user engagement history, or timing ad presentations to
coincide with peak user activity periods. Each option policy is trained to optimize outcomes
within its specific domain while contributing to the overall system objectives.

Termination functions play a crucial role in determining when the system should switch from
one option to another. In the advertising context, termination decisions might be triggered by
changes in user behavior patterns, shifts in market conditions, budget constraints, or the
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achievement of specific campaign milestones. The learned termination functions enable the
system to adapt dynamically to changing conditions while maintaining coherent strategic
direction.

The explainability benefits of the option-critic architecture stem from its natural alignment
with human understanding of hierarchical decision-making. Stakeholders can understand why
particular high-level strategies were selected, how those strategies translate into specific
tactics, and when the system decides to change approaches. This interpretability is enhanced
by the fact that options often correspond to meaningful behavioral patterns that can be
described in domain-specific terminology familiar to advertising professionals.

3.2 Deep Q-Network Implementation with Historical Context

The implementation of our deep Q-network component incorporates sophisticated state
representation mechanisms that capture both immediate contextual information and historical
interaction patterns. This approach addresses the challenge of learning effective value
functions in high-dimensional advertising environments where currentdecisions mustaccount
for complex temporal dependencies and user behavior evolution.

Our state representation framework processes multiple types of input information through
specialized neural network components. User demographic information, behavioral history,
contextual features, and real-time market conditions are encoded through separate embedding
layers that capture the unique characteristics of each information type. These embeddings are
then combined through attention mechanisms that learn to weight different information
sources based on their relevance to specific decision contexts.

The historical interaction component plays a particularly important role in advertising
decision-making, as user responses to previous advertisements provide crucial information for
predicting future behavior. Our implementation utilizes recurrent neural network layers to
process sequences of historical interactions, enabling the system to learn temporal patterns in
user engagement and adaptation. The recurrentprocessing captures both short-term dynamics,
such as immediate response to recent advertisements, and long-term trends, such as seasonal
behavior patterns or evolving user preferences.
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Figure 2. Historical Interaction

As in figure 2, the Q-value estimation process incorporates uncertainty quantification
mechanisms that provide confidence measures for different actions. This uncertainty
information is particularly valuable for explanation generation, as it allows the system to
communicate its confidence level in specific recommendations and identify situations where
human oversight might be beneficial. The uncertainty estimates are computed using ensemble
methods that maintain multiple value function approximations and measure the variance in
their predictions.

Action space representation in our framework is designed to support fine -grained control over
advertising parameters while maintaining computational tractability. Rather than treating each
possible advertisement as a separate action, we decompose actions into multiple dimensions
including content selection, targeting parameters, bidding strategies, and timing decisions. This
factorized representation enables more efficient exploration and learning while providing
clearer explanations of how differentaction components contribute to overall outcomes.

The training process incorporates experience replay mechanisms that store and reuse
historical interaction data to improve sample efficiency. However, our implementation includes
careful consideration of data freshness and relevance, as advertising environments can exhibit
significant non-stationarity that makes older experiences less relevant for current decision-
making. The experience replay buffer implements priority sampling schemes that emphasize
recent experiences and high-impact learning opportunities.

4. Results and Discussion
4.1 Framework Architecture and System Integration

Our EHRL frameworkdemonstrates a sophisticated integration of hierarchical decision-making
components that mirror the natural structure of digital advertising operations. The system
architecture successfully implements the three-tier decision-making hierarchy proposedinour
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methodology, with clear delineation between strategic, tactical, and operational decision levels.
The option-critic component effectively learns meaningful options that correspond to
interpretable advertising strategies, while the deep Q-network component provides accurate
value estimation for complex state-action combinations.

The integration between hierarchical levels operates smoothly, with information flowing
efficiently fromhigh-level strategic decisions down to detailed action execution. The policy over
options consistently selects appropriate strategies based on current market conditions and
campaign objectives, while individual option policies successfully implement coherent tactical
approaches within their assigned domains. Termination functions demonstrate appropriate
sensitivity to environmental changes, triggering strategy switches when conditions warrant
adaptation without causing excessive instability.

The explanation generation capabilities of the framework provide comprehensive insights into
decision-making processes at multiple levels of abstraction. High-level explanations effectively
communicate strategic reasoning to campaign managers and stakeholders, while detailed
explanations provide actionable insights for tactical optimization. The hierarchical structure of
explanations aligns well with different stakeholder information needs, enabling effective
communication across organizational levels.
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Figure 3. hierarchical structure

Performance monitoring reveals that the hierarchical structure in figure 3 significantly
improves learning efficiency compared to flat reinforcement learning approaches. The
temporal abstraction provided by options reduces the effective planning horizon for individual
policies, enabling faster convergence to effective strategies. The learned options exhibit good
interpretability, with clear correspondence to meaningful advertising strategies that domain
experts can understand and validate.
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System scalability analysis demonstrates that the framework can effectively handle realistic
advertising campaign complexities without prohibitive computational overhead. The
hierarchical structure provides natural opportunities for parallel processing and distributed
implementation, enabling practical deployment in production advertising systems. Memory
requirements remain manageable through careful state representation design and efficient
neural network architectures.

4.2 Performance Evaluation and Explainability Assessment

Comprehensive evaluation across multiple performance dimensions confirms the effectiveness
of our EHRL framework for transparent advertising decision-making. The system achieves
significant improvements in both traditional performance metrics and novel explainability
measures specifically designed for advertising applications. Comparative analysis with baseline
methods demonstrates clear advantages in scenarios requiring long-term optimization and
stakeholder transparency.

Click-through rate improvements of 12.3% over traditional DQN approaches demonstrate the
effectiveness of hierarchical learning for advertising optimization. The improvement is
particularly pronounced in scenarios involving complex user behavior patterns and multi-
objective optimization requirements. The hierarchical structure enables the system to maintain
coherent long-term strategies while adapting tactics to immediate opportunities, resulting in
more effective overall campaign performance.

User satisfaction metrics show an 8.7% improvement over baseline methods, indicating that
the frameworksuccessfully balances advertiser objectives with user experience conside rations.
This improvement stems from the system's ability to learn user engagement patterns at
multiple temporal scales and adjust advertising strategies to minimize user annoyance while

maximizing relevant content exposure. The hierarchical approach enables more nuanced user
modeling that accounts for both immediate preferences and long-term engagement patterns.

Explainability assessment reveals a 34.5% improvement in human comprehensibility of
decision explanations compared to traditional approaches. Domain experts consistently report
higher confidence in system recommendations when provided with hierarchical explanations
that align with their mental models of advertising strategy. The option-based explanations
successfully communicate high-level strategic reasoning while providing sufficient detail for
tactical understanding.

Quantitative analysis of explanation quality demonstrates significant improvements across
multiple dimensions. Explanation consistency measures show that similar decisions receive
similar explanations, enhancing user trust in system reliability. Explanation completeness
assessments confirm that hierarchical explanations address stakeholder questions more
comprehensively than flat approaches. Explanation accuracy evaluations verify that
explanations correctly represent the factors influencing system decisions.
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The framework demonstrates robust performance across diverse advertising scenarios, from
brand awareness campaigns requiring broad reach to performance campaigns focused on
specific conversion objectives. Adaptation capabilities enable effective handling of seasonal
variations, market changes, and evolving user preferences without requiring manual
reconfiguration. The learned hierarchical policies exhibit good generalization to new scenarios
while maintaining explainability.

5. Conclusion

This research presents a comprehensive Explainable Hierarchical Reinforcement Learning
framework that successfully addresses the critical challenge of transparent decision -making in
digital advertising ecosystems. The integration of option-critic architectures with deep Q-
networks creates a powerful system capable of learning interpretable hierarchical policies
while maintaining competitive performance levels. The framework's three-tier architecture
naturally aligns with human understanding of advertising decision-making processes, enabling
effective communication between automated systems and human stakeholders.

The experimental validation demonstrates significant improvements across both performance
and explainability dimensions. The 12.3% improvement in click-through rate prediction
accuracy, combined with the 34.5% enhancement in explanation comprehensibility, provides
compelling evidence that sophisticated explainable Al techniques can deliver commercial value
while meeting transparency requirements. These results suggest that the perceived trade -off
between performance and explainability may be less fundamental than previously assumed,
particularly in complex multi-objective optimization domains.

The hierarchical structure of our framework provides natural solutions to several challenges
that have historically limited the adoption ofreinforcementlearning in advertising applications.
The temporal abstraction achieved through option learning reduces the complexity of
individual decision problems while maintaining coherent long-term strategies. The explicit
separation between strategic and tactical decision-making enables more effective human
oversight and intervention when necessary. The interpretable nature of learned options
facilitates knowledge transfer between campaigns and domains.

The implications of this work extend beyond technical contributions to address fundamental
challenges facing the digital advertising industry. As regulatory requirements continue to
evolve and consumer expectations for transparency increase, the ability to provide clear,
comprehensible explanations for algorithmic decisions will become increasingly critical for
business sustainability. The framework presented here provides a foundation for developing
advertising systems that can meet these evolving requirements while maintaining competitive
performance levels.

Future research directions include extending the framework to handle multi-platform
advertising coordination, incorporating federated learning techniques to address privacy
concerns while maintaining explainability, and developing adaptive explanation generation
that can tailor explanation content to specific stakeholder needs and contexts. Additionally,
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longitudinal studies examining the long-term impact of explainable advertising systems on user
trust and engagement would provide valuable insights for industry adoption.

The successful integration of explainability into high-performance reinforcement learning
systems represents a significant step toward trustworthy Al deployment in commercial
applications. As similar transparency challenges emerge across other domains, the principles
and techniques developed in this work may prove applicable to broader categories of
sequential decision-making problems where stakeholder trust and regulatory compliance are
essential requirements. The framework demonstrates that sophisticated Al systems can be
both powerful and transparent, paving the way for more widespread adoption of advanced
machine learning techniques in regulated and trust-sensitive environments.
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