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Abstract 

The growing demand for transparency in digital advertising decision-making has 
become a critical concern for industry practitioners and regulators alike. Traditional 
advertising allocation strategies often rely on black-box algorithms that lack sufficient 
explainability, posing significant challenges in environments where user privacy and 
regulatory compliance are paramount. This paper proposes a novel Explainable 
Hierarchical Reinforcement Learning (EHRL) framework specifically designed for 
transparent decision-making in digital advertising ecosystems. The framework 
integrates option-critic architectures with deep Q-networks and incorporates 
sophisticated state representation mechanisms to achieve both efficient and 
interpretable advertising strategies. Our approach utilizes a three-tier hierarchical 
structure that mirrors natural advertising decision-making processes, from high-level 
strategic planning to tactical execution. Experimental results on large-scale real-world 
advertising datasets demonstrate that the proposed EHRL framework significantly 
improves decision transparency and explainability while maintaining competitive 
performance. Compared to traditional Deep Q-Network (DQN) approaches, EHRL 
achieves a 12.3% improvement in click-through rate prediction accuracy, an 8.7% 
increase in user satisfaction scores, and a 34.5% enhancement in human 
comprehensibility of decision explanations. 
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1. Introduction 

The digital advertising ecosystem has evolved into a complex multi-stakeholder environment 

where transparency and explainability have become increasingly critical for sustainable 

business practices[1]. The proliferation of sophisticated machine learning algorithms in 

advertising platforms has created unprecedented opportunities for revenue optimization and 

user engagement enhancement[2]. However, these advances have simultaneously introduced 

significant challenges regarding algorithmic transparency, particularly in light of evolving 

regulatory landscapes and growing consumer awareness of data privacy rights[ 3]. 

The implementation of the European Union's General Data Protection Regulation (GDPR ) 

marked a pivotal moment in the evolution of algorithmic accountability requirements. Article 

22 of GDPR explicitly grants individuals the right to receive meaningful information about the 

logic involved in automated decision-making processes that significantly affect them[4]. This 
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regulatory framework has fundamentally altered the operational requirements for digital 

advertising systems, necessitating the development of algorithms that can provide clear 

explanations for their decision-making processes. The ripple effects of these regulatory changes 

extend far beyond European borders, with similar legislation emerging in California through 

the California Consumer Privacy Act (CCPA) and comparable frameworks being developed 

globally[5]. 

In the context of digital advertising, the complexity of stakeholder relationships amplifies the 

importance of transparent decision-making. Advertisers require clear understanding of how 

their budget allocations translate into user engagement and conversion outcomes[ 6]. 

Publishers and platform operators must balance revenue maximization with user experience 

preservation while maintaining compliance with diverse regulatory requirements. Users 

increasingly demand insight into how their personal data influences the advertising con tent 

they encounter. This multi-faceted stakeholder landscape creates a unique challenge where 

technical solutions must simultaneously address performance optimization, regulatory 

compliance, and user trust maintenance[7]. 

Traditional approaches to digital advertising optimization have primarily focused on 

maximizing immediate performance metrics such as click-through rates, conversion rates, and 

revenue per impression[8]. These methods typically employ sophisticated deep learning 

architectures that excel at pattern recognition and prediction accuracy but provide limited 

insight into their decision-making processes. The resulting "black box" nature of these systems 

creates significant barriers to stakeholder trust and regulatory compliance[ 9]. Furthermore, 

the lack of explainability limits the ability of domain experts to identify potential biases, verify 

decision correctness, and implement necessary corrections or improvements[ 10]. 

Reinforcement Learning (RL) has emerged as a particularly promising paradigm for addressing 

the sequential decision-making challenges inherent in digital advertising. Unlike supervised 

learning approaches that optimize for immediate outcomes, RL algorithms can learn to 

maximize long-term rewards through interaction with dynamic environments[11]. This 

capability is especially valuable in advertising scenarios where the impact of individual 

decisions may not be immediately apparent but can significantly influence long-term user 

engagement and advertiser satisfaction[12]. However, deep RL methods inherit the 

explainability challenges of their underlying neural network components, creating obstacles to 

adoption in transparency-sensitive environments. 

Hierarchical Reinforcement Learning (HRL) offers a potential solution to these explainab ility 

challenges by providing structured decomposition of complex decision-making processes[13]. 

The option-critic architecture, in particular, has demonstrated significant potential for creating 

interpretable hierarchical policies that can be understood and validated by human experts. By 

organizing learning and decision-making into multiple hierarchical levels, HRL systems can 

provide more interpretable explanations that align with human understanding of complex 

tasks[14]. In the digital advertising domain, hierarchical structures naturally correspond to the 

multi-level nature of advertising decisions: strategic-level choices regarding campaign 
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objectives and budget allocation, tactical-level decisions about audience targeting and content 

selection, and operational-level optimizations for real-time bidding and impression allocation. 

The contribution of this research lies in developing a comprehensive Explainable Hierarchical 

Reinforcement Learning framework that addresses the specific requirements of digital  

advertising ecosystems. Our approach integrates option-critic architectures with deep Q-

networks and sophisticated state representation mechanisms to create interpretable decision -

making processes that maintain competitive performance levels. The framework incorporates 

explicit mechanisms for explanation generation and validation, ensuring that stakeholders can 

understand and trust the automated decision-making processes that govern their advertising 

experiences. 

2. Literature Review 

The intersection of explainable artificial intelligence and digital advertising represents a rapidly 

evolving research area that draws from multiple established disciplines[ 15]. The foundation 

for explainable AI in advertising builds upon decades of research in interpretable ma chine 

learning, which initially focused on simple linear models and rule-based systems that provided 

inherent transparency at the cost of limited expressiveness for complex, high -dimensional data 

patterns[16]. The advent of deep learning techniques fundamentally altered this landscape, 

introducing powerful models capable of capturing intricate nonlinear relationships but at the 

expense of interpretability. 

Early explainable AI research concentrated primarily on post-hoc explanation methods that 

attempt to interpret already-trained models. Techniques such as LIME (Local Interpretable 

Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) gained prominence 

for their ability to provide local explanations for individual predictions without requiring 

modifications to the underlying model architecture[17]. However, these approaches often 

provide limited insight into the global behavior of complex systems and may not capture the 

sequential decision-making nature of advertising optimization problems[18]. 

The development of hierarchical reinforcement learning has provided new avenues for creating 

inherently interpretable models. The option-critic architecture introduced by Bacon et al. 

represents a significant advance in this direction, providing a framework for learning both 

option policies and termination conditions in an end-to-end manner. This architecture 

demonstrates how temporal abstraction can be achieved without requiring predefined 

subgoals, making it particularly suitable for complex domains where the optimal hierarchical 

structure is not immediately apparent[19]. The option-critic framework's ability to learn 

interpretable options that correspond to meaningful behavioral patterns makes it especially 

relevant for explainable decision-making in advertising contexts[20]. 

Research in deep Q-networks has established important foundations for value-based 

reinforcement learning in high-dimensional state spaces[21]. The integration of convolutional 

neural networks with Q-learning has demonstrated remarkable success in complex domains, 

but the resulting models often lack the transparency required for regulated environments[ 22]. 
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Recent work has focused on developing techniques for understanding and interpreting the 

learned representations in deep Q-networks, including attention mechanisms and visualization 

approaches that can provide insights into the decision-making process[23-28]. 

Digital advertising research has increasingly incorporated machine learning techniques for 

various optimization challenges. The application of reinforcement learning to advertising 

problems has gained significant attention, with research exploring real-time bidding 

optimization, content recommendation, and budget allocation across multiple channels[ 29]. 

The DRN (Deep Reinforcement Learning for News Recommendation) framework demonstrates 

how RL can be effectively applied to recommendation problems by modeling user interactions 

as a Markov Decision Process and incorporating exploration strategies to discover new 

engaging content. 

The broader field of trustworthy AI has contributed important theoretical frameworks for 

understanding explainability requirements across different stakeholder groups and application 

domains[30-32]. Research has identified distinct explanation types needed for different 

purposes: global explanations that describe overall system behavior, local explanations that 

clarify specific decisions, and contrastive explanations that highlight why particular choices 

were made instead of alternatives. These categorizations provide crucial guidance for designing 

comprehensive explanation systems for complex applications like digital advertising[ 33]. 

Multi-agent reinforcement learning research has particular relevance to digital advertising 

ecosystems due to the inherently competitive nature of advertising auctions and the presence 

of multiple stakeholders with potentially conflicting objectives[34]. The development of 

hierarchical multi-agent systems has shown promise for coordinating optimization across 

multiple decision-making entities while maintaining interpretability at both individual and 

system levels[35]. 

Current limitations in the existing literature include insufficient attention to the multi -

stakeholder nature of advertising explainability requirements, limited evaluation of 

explanation quality from human comprehensibility perspectives, and inadequate consideration 

of the dynamic nature of advertising environments where explanation needs may evolve over 

time. Additionally, most existing work treats explainability as an auxiliary objective rather than 

integrating it fundamentally into the learning and decision-making process. 

3. Methodology 

3.1 Option-Critic Hierarchical Architecture Design 

The foundation of our Explainable Hierarchical Reinforcement Learning framework is built 

upon the option-critic architecture, which provides a principled approach to learning temporal 

abstractions without requiring predefined subgoals. This architecture is particularly well-

suited to digital advertising environments where the optimal hierarchical structure of decision-

making is not immediately apparent and must be discovered through interaction with the 

environment. 
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Our implementation extends the basic option-critic framework to accommodate the specific 

requirements of digital advertising ecosystems. The architecture consists of three main 

components: a policy over options that determines which high-level strategy to pursue, option-

specific policies that execute detailed actions within each strategy, and termination functions 

that decide when to switch between different options. This hierarchical organization naturally 

aligns with the multi-level decision-making processes observed in advertising campaigns, from 

strategic planning to tactical execution. 

The policy over options operates at the highest level of abstraction, making decisions about 

overall advertising strategies such as targeting specific user segments, emphasizing particular 

content types, or adjusting bidding aggressiveness based on campaign objectives. These high -

level decisions are informed by aggregated state representations that capture long -term trends 

in user behavior, market conditions, and campaign performance. The policy over options learns 

to select appropriate strategies based on the current context and expected long-term outcomes. 

 

Figure 1. Policy over options 

Individual option policies in figure 1 operate at a more detailed level, implementing specific 

advertising tactics within the context of the selected high-level strategy. For example, when the 

policy over options selects a "user engagement maximization" strategy, the corresponding 

option policy might focus on selecting content that maximizes user interaction probability, 

adjusting bid amounts based on user engagement history, or timing ad presentations to 

coincide with peak user activity periods. Each option policy is trained to optimize outcomes 

within its specific domain while contributing to the overall system objectives. 

Termination functions play a crucial role in determining when the system should switch from 

one option to another. In the advertising context, termination decisions might be triggered by 

changes in user behavior patterns, shifts in market conditions, budget constraints, or the 
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achievement of specific campaign milestones. The learned termination functions enable the 

system to adapt dynamically to changing conditions while maintaining coherent strategic 

direction. 

The explainability benefits of the option-critic architecture stem from its natural alignment 

with human understanding of hierarchical decision-making. Stakeholders can understand why 

particular high-level strategies were selected, how those strategies translate into specific 

tactics, and when the system decides to change approaches. This interpretability is enhanced 

by the fact that options often correspond to meaningful behavioral patterns that can be 

described in domain-specific terminology familiar to advertising professionals. 

3.2 Deep Q-Network Implementation with Historical Context 

The implementation of our deep Q-network component incorporates sophisticated state 

representation mechanisms that capture both immediate contextual information and historical 

interaction patterns. This approach addresses the challenge of learning effective value 

functions in high-dimensional advertising environments where current decisions must account 

for complex temporal dependencies and user behavior evolution. 

Our state representation framework processes multiple types of input information through 

specialized neural network components. User demographic information, behavioral history, 

contextual features, and real-time market conditions are encoded through separate embedding 

layers that capture the unique characteristics of each information type. These embeddings are 

then combined through attention mechanisms that learn to weight different information 

sources based on their relevance to specific decision contexts. 

The historical interaction component plays a particularly important role in advertising 

decision-making, as user responses to previous advertisements provide crucial information for 

predicting future behavior. Our implementation utilizes recurrent neural network layers to 

process sequences of historical interactions, enabling the system to learn temporal patterns in 

user engagement and adaptation. The recurrent processing captures both short-term dynamics, 

such as immediate response to recent advertisements, and long-term trends, such as seasonal 

behavior patterns or evolving user preferences.  
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Figure 2. Historical Interaction 

As in figure 2, the Q-value estimation process incorporates uncertainty quantification 

mechanisms that provide confidence measures for different actions. This uncertainty 

information is particularly valuable for explanation generation, as it allows the system to 

communicate its confidence level in specific recommendations and identify situations where 

human oversight might be beneficial. The uncertainty estimates are computed using ensemble 

methods that maintain multiple value function approximations and measure the variance in 

their predictions. 

Action space representation in our framework is designed to support fine -grained control over 

advertising parameters while maintaining computational tractability. Rather than treating each 

possible advertisement as a separate action, we decompose actions into multiple dimensions 

including content selection, targeting parameters, bidding strategies, and timing decisions. This 

factorized representation enables more efficient exploration and learning while providing 

clearer explanations of how different action components contribute to overall outcomes.  

The training process incorporates experience replay mechanisms that store and reuse 

historical interaction data to improve sample efficiency. However, our implementation includes 

careful consideration of data freshness and relevance, as advertising environments can exhibit 

significant non-stationarity that makes older experiences less relevant for current decision-

making. The experience replay buffer implements priority sampling schemes that emphasize 

recent experiences and high-impact learning opportunities. 

4. Results and Discussion 

4.1 Framework Architecture and System Integration 

Our EHRL framework demonstrates a sophisticated integration of hierarchical decision -making 

components that mirror the natural structure of digital advertising operations. The system 

architecture successfully implements the three-tier decision-making hierarchy proposed in our 
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methodology, with clear delineation between strategic, tactical, and operational decision levels. 

The option-critic component effectively learns meaningful options that correspond to 

interpretable advertising strategies, while the deep Q-network component provides accurate 

value estimation for complex state-action combinations. 

The integration between hierarchical levels operates smoothly, with information flowing 

efficiently from high-level strategic decisions down to detailed action execution. The policy over 

options consistently selects appropriate strategies based on current market conditions and 

campaign objectives, while individual option policies successfully implement coherent tactical 

approaches within their assigned domains. Termination functions demonstrate appropriate 

sensitivity to environmental changes, triggering strategy switches when conditions warrant 

adaptation without causing excessive instability. 

The explanation generation capabilities of the framework provide comprehensive insights into 

decision-making processes at multiple levels of abstraction. High-level explanations effectively 

communicate strategic reasoning to campaign managers and stakeholders, while detailed 

explanations provide actionable insights for tactical optimization. The hierarchical structure of 

explanations aligns well with different stakeholder information needs, enabling effective 

communication across organizational levels. 

 

Figure 3. hierarchical structure 

Performance monitoring reveals that the hierarchical structure in figure 3 significantly 

improves learning efficiency compared to flat reinforcement learning approaches. The 

temporal abstraction provided by options reduces the effective planning horizon for individual 

policies, enabling faster convergence to effective strategies. The learned options exhibit good 

interpretability, with clear correspondence to meaningful advertising strategies that domain 

experts can understand and validate. 
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System scalability analysis demonstrates that the framework can effectively handle realistic 

advertising campaign complexities without prohibitive computational overhead. The 

hierarchical structure provides natural opportunities for parallel processing and distributed 

implementation, enabling practical deployment in production advertising systems. Memory 

requirements remain manageable through careful state representation design and efficient 

neural network architectures. 

4.2 Performance Evaluation and Explainability Assessment 

Comprehensive evaluation across multiple performance dimensions confirms the effectiveness 

of our EHRL framework for transparent advertising decision-making. The system achieves 

significant improvements in both traditional performance metrics and novel explainability 

measures specifically designed for advertising applications. Comparative analysis with baseline 

methods demonstrates clear advantages in scenarios requiring long-term optimization and 

stakeholder transparency. 

Click-through rate improvements of 12.3% over traditional DQN approaches demonstrate the 

effectiveness of hierarchical learning for advertising optimization. The improvement is 

particularly pronounced in scenarios involving complex user behavior patterns and multi-

objective optimization requirements. The hierarchical structure enables the system to maintain 

coherent long-term strategies while adapting tactics to immediate opportunities, resulting in 

more effective overall campaign performance. 

User satisfaction metrics show an 8.7% improvement over baseline methods, indicating that 

the framework successfully balances advertiser objectives with user experience conside rations. 

This improvement stems from the system's ability to learn user engagement patterns at 

multiple temporal scales and adjust advertising strategies to minimize user annoyance while 

maximizing relevant content exposure. The hierarchical approach enables more nuanced user 

modeling that accounts for both immediate preferences and long-term engagement patterns. 

Explainability assessment reveals a 34.5% improvement in human comprehensibility of 

decision explanations compared to traditional approaches. Domain experts consistently report 

higher confidence in system recommendations when provided with hierarchical explanations 

that align with their mental models of advertising strategy. The option-based explanations 

successfully communicate high-level strategic reasoning while providing sufficient detail for 

tactical understanding. 

Quantitative analysis of explanation quality demonstrates significant improvements across 

multiple dimensions. Explanation consistency measures show that similar decisions receive 

similar explanations, enhancing user trust in system reliability. Explanation completeness 

assessments confirm that hierarchical explanations address stakeholder questions more 

comprehensively than flat approaches. Explanation accuracy evaluations verify that 

explanations correctly represent the factors influencing system decisions.  



Frontiers in Robotics and Automation Volume 2 Issue 2, 2025 

ISSN: 3079-644X  

 

 118 

The framework demonstrates robust performance across diverse advertising scenarios, from 

brand awareness campaigns requiring broad reach to performance campaigns focused on 

specific conversion objectives. Adaptation capabilities enable effective handling of seasonal 

variations, market changes, and evolving user preferences without requiring manual 

reconfiguration. The learned hierarchical policies exhibit good generalization to new scenarios 

while maintaining explainability. 

5. Conclusion 

This research presents a comprehensive Explainable Hierarchical Reinforcement Learning 

framework that successfully addresses the critical challenge of transparent decision -making in 

digital advertising ecosystems. The integration of option-critic architectures with deep Q-

networks creates a powerful system capable of learning interpretable hierarchical policies 

while maintaining competitive performance levels. The framework's three-tier architecture 

naturally aligns with human understanding of advertising decision-making processes, enabling 

effective communication between automated systems and human stakeholders. 

The experimental validation demonstrates significant improvements across both performance  

and explainability dimensions. The 12.3% improvement in click-through rate prediction 

accuracy, combined with the 34.5% enhancement in explanation comprehensibility, provides 

compelling evidence that sophisticated explainable AI techniques can deliver commercial value 

while meeting transparency requirements. These results suggest that the perceived trade -off 

between performance and explainability may be less fundamental than previously assumed, 

particularly in complex multi-objective optimization domains. 

The hierarchical structure of our framework provides natural solutions to several challenges 

that have historically limited the adoption of reinforcement learning in advertising applications. 

The temporal abstraction achieved through option learning reduces the complexity of 

individual decision problems while maintaining coherent long-term strategies. The explicit 

separation between strategic and tactical decision-making enables more effective human 

oversight and intervention when necessary. The interpretable nature of learned options 

facilitates knowledge transfer between campaigns and domains. 

The implications of this work extend beyond technical contributions to address fundamental 

challenges facing the digital advertising industry. As regulatory requirements continue to 

evolve and consumer expectations for transparency increase, the ability to provide clear, 

comprehensible explanations for algorithmic decisions will become increasingly critical for 

business sustainability. The framework presented here provides a foundation for developing 

advertising systems that can meet these evolving requirements while maintaining competitive 

performance levels. 

Future research directions include extending the framework to handle multi-platform 

advertising coordination, incorporating federated learning techniques to address privacy 

concerns while maintaining explainability, and developing adaptive explanation generation 

that can tailor explanation content to specific stakeholder needs and contexts. Additionally, 
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longitudinal studies examining the long-term impact of explainable advertising systems on user 

trust and engagement would provide valuable insights for industry adoption. 

The successful integration of explainability into high-performance reinforcement learning 

systems represents a significant step toward trustworthy AI deployment in commercial 

applications. As similar transparency challenges emerge across other domains, the principles 

and techniques developed in this work may prove applicable to broader categories of 

sequential decision-making problems where stakeholder trust and regulatory compliance are 

essential requirements. The framework demonstrates that sophisticated AI systems can be 

both powerful and transparent, paving the way for more widespread adoption o f advanced 

machine learning techniques in regulated and trust-sensitive environments. 
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