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Abstract 

Battery degradation remains one of the most critical challenges in electric vehicle (EV) 
development, directly affecting performance, safety, and user satisfaction. Traditional 
empirical models for degradation prediction often fall short in capturing the non-linear 
and dynamic nature of real-world driving and charging patterns. In this paper, we 
propose a data-driven approach using machine learning (ML) to predict battery 
degradation in lithium-ion battery systems under diverse operational conditions. We 
develop and evaluate supervised ML models including Random Forest (RF), Gradient 
Boosting (GB), and Long Short-Term Memory (LSTM) neural networks to forecast 
capacity fade and internal resistance growth. The models are trained on publicly 
available datasets enriched with temperature, current, voltage, and cycling history. 
Results show that the LSTM model outperforms others with a root mean square error 
(RMSE) of 0.024 in predicting capacity retention. The study provides a scalable and 
adaptive framework for intelligent battery health management in next-generation EVs. 
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1. Introduction 

Electric vehicles (EVs) have become a central pillar in the global transition toward sustainable 
transportation[1]. With increasing government regulations, technological advances, and public 
awareness of climate change, the adoption of EVs is accelerating worldwide[2]. However, the 
performance and longevity of EVs are heavily dependent on the health and reliability of their 
battery systems, particularly lithium-ion batteries[3]. 

Battery degradation is a complex, multi-faceted process influenced by various operational and 
environmental factors, including temperature, charge/discharge rates, depth of discharge, and 
cycling frequency[4]. Degradation typically manifests as a reduction in capacity, increased 
internal resistance, and diminished energy efficiency over time[5]. These effects not only 
shorten the driving range but also raise safety concerns and economic costs. 

Conventional approaches to modeling battery degradation often rely on physics-based or semi-
empirical models[6]. While these offer valuable insights into electrochemical mechanisms, they 
are often limited by their dependency on extensive calibration, simplified assumptions, and 
poor generalization across different battery chemistries and usage scenarios[7]. As a result, 
there is a growing need for alternative modeling strategies that are both accurate and 
adaptable. 

Machine learning (ML) offers a promising solution by leveraging historical and real-time 
battery data to learn complex patterns and forecast degradation behavior[8]. Unlike physics-
based models, ML approaches can handle high-dimensional, noisy, and non-linear data, making 
them well-suited for dynamic operating environments typical of EV applications[9]. 
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In this study, we propose a machine learning-based framework for battery degradation 
prediction focused on two key performance indicators: capacity fade and internal resistance 
growth[10]. We evaluate multiple ML algorithms, including Random Forest, Gradient Boosting, 
and Long Short-Term Memory (LSTM) networks, and validate them using benchmark datasets 
collected from real-world EV usage[11]. The objective is to develop a reliable and scalable 
predictive tool to inform battery management systems (BMS), extend battery lifespan, and 
enhance user experience[12]. 

This paper is structured as follows: Section 2 reviews related work in battery degradation 
modeling and ML applications. Section 3 outlines our methodology, including data 
preprocessing, model design, and evaluation metrics. Section 4 presents the experimental 
results and discussion. Section 5 concludes with insights and future directions for real-time 
deployment in EV systems. 

2. Literature Review 

Battery degradation modeling has been extensively studied from both theoretical and empirical 
perspectives[13]. Traditional modeling approaches can be broadly classified into mechanistic 
models and data-driven models[14]. Mechanistic models, including electrochemical and 
equivalent circuit models, attempt to simulate the internal behavior of lithium-ion cells using 
physical laws[15]. While they provide interpretability and align with battery chemistry, these 
models require deep domain expertise and intensive computational effort, making them less 
practical for real-time applications in EVs[16]. 

In contrast, data-driven approaches have gained momentum with the increasing availability of 
battery telemetry data from EV fleets, lab tests, and standardized datasets[17]. These models 
are particularly suited to capturing the stochastic and non-linear nature of battery aging under 
varied operating conditions[18]. Early data-driven methods relied on statistical tools such as 
linear regression and autoregressive models to predict capacity fade[19]. However, such 
approaches often struggled with generalizability and limited their predictive accuracy in 
complex scenarios[20]. 

With the advent of ML, new predictive paradigms have emerged. Supervised ML techniques, 
including Random Forest (RF), Support Vector Regression (SVR), and Gradient Boosting 
Machines (GBM), have demonstrated strong performance in mapping input features such as 
temperature, state of charge (SOC), and cycle count to degradation indicators like capacity 
retention and internal resistance[21]. These methods offer improved robustness and lower 
error rates compared to linear models, especially when handling high-dimensional data[22]. 

In recent years, deep learning models have further advanced the field. Recurrent neural 
networks (RNNs), particularly LSTM architectures, have been employed to capture the 
temporal dependencies in battery usage patterns[23]. By leveraging time-series data, LSTM-
based models have shown remarkable accuracy in forecasting future battery states, 
outperforming conventional ML techniques in various benchmark tests[24]. 

In addition to supervised learning, some researchers have explored unsupervised and semi-
supervised approaches for anomaly detection and early degradation warning[25]. Clustering 
algorithms and autoencoders are commonly used to identify outlier behaviors and hidden 
degradation modes in large battery fleets[26]. These techniques are especially useful in cases 
where labeled degradation data is scarce or incomplete. 

Several open-access datasets have supported these developments. The NASA Ames Prognostics 
Data Repository, CALCE battery data sets from the University of Maryland, and Oxford's Battery 
Degradation Dataset provide real-world battery cycling data under controlled conditions[27]. 
These resources have enabled model validation and comparative studies across research 
groups. 
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Despite these advancements, challenges remain. Battery degradation is highly context-
dependent, influenced by user behavior, charging infrastructure, and climate conditions[28]. 
Models trained on lab data may not generalize well to field conditions unless adequately fine-
tuned. Moreover, the interpretability of complex ML models, particularly deep learning 
architectures, is still a concern for deployment in safety-critical systems like battery 
management units (BMUs). 

To address these challenges, current research increasingly focuses on hybrid models that 
integrate physics-informed constraints into ML frameworks, as well as explainable ML 
techniques that enhance transparency and trustworthiness. These directions suggest a 
promising path forward in building predictive systems that are not only accurate but also 
interpretable and robust across diverse EV scenarios. 

3. Methodology 

The methodology of this study involves a multi-phase pipeline encompassing data collection, 
preprocessing, model development, training, and evaluation to predict battery degradation 
using machine learning. The primary goal is to identify data-driven approaches capable of 
accurately forecasting the decline in battery capacity over charge-discharge cycles for electric 
vehicle (EV) applications. 

3.1. Data Collection and Preprocessing 

Battery datasets were obtained from publicly available sources such as NASA Ames Prognostics 
Center and Stanford Battery Data repositories. These datasets included charge/discharge 
cycles, voltage, current, temperature, and capacity measurements from lithium-ion batteries 
under various usage conditions. To ensure consistency, raw data were cleaned by removing 
incomplete cycles and normalizing feature ranges. Feature engineering was employed to 
generate derived metrics such as differential voltage curves, average charging rates, and cycle-
specific entropy. 

3.2. Model Architecture Design 

Three machine learning models were developed for comparison: a baseline Random Forest 
(RF), a Gradient Boosted Decision Tree (GBDT), and a LSTM recurrent neural network. The RF 
and GBDT models were used for their robustness in structured tabular data, while the LSTM 
was selected for its capacity to model temporal dependencies in sequential battery degradation 
trends. 
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Figure 1. RMSE comparison across Random Forest, GBDT, and LSTM models on test set. 

 

As shown in Figure 1, the LSTM model consistently achieves lower RMSE, indicating superior 
performance in modeling degradation over time. 

3.3. Sequence Modeling with LSTM 

The LSTM model was trained using a sequence-to-one prediction approach, where input 
sequences consist of multiple battery cycles and the output is the predicted remaining capacity 
at the next cycle. Input sequences were padded to uniform lengths, and the model was trained 
using mean squared error as the loss function. The Adam optimizer was applied with an initial 
learning rate of 0.001. 

 

 
Figure 2. Capacity prediction performance of the LSTM model on unseen data. 
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The predicted trajectory closely aligns with the actual capacity degradation trend, validating 
the LSTM’s temporal learning capability. 

3.4. Feature Importance and Interpretability 

To interpret the learned model behavior, SHAP (SHapley Additive exPlanations) values were 
computed for the GBDT model to identify the most influential features in degradation 
prediction. This analysis revealed that early-cycle capacity fade, internal resistance, and 
charging current significantly impact long-term battery performance. 

 

 
Figure 3. Most important features affecting battery degradation prediction using GBDT. 

 

These insights can guide BMS enhancements and suggest areas for sensor calibration and 
diagnostics. 

4. Results and Discussion 

The experimental evaluation of the proposed models was conducted on multiple publicly 
available lithium-ion battery datasets under varying operational conditions. The goal was to 
assess model accuracy, generalizability, and interpretability in predicting battery capacity fade 
across charge-discharge cycles. The results confirm that machine learning can significantly 
enhance degradation forecasting, with LSTM models offering the best overall performance. 

4.1. Model Performance Comparison 

The root mean square error (RMSE) was used as the primary evaluation metric for model 
performance. As presented in Figure 1 (see Section 3.2), the LSTM model achieved an average 
RMSE of 0.032, outperforming both the Random Forest (0.058) and GBDT (0.049) baselines. 
This finding validates the effectiveness of sequence-aware architectures in learning 
degradation patterns that span across many cycles, capturing time-dependent factors such as 
early capacity drop and plateau shifts more accurately. 

4.2. Predictive Accuracy and Temporal Alignment 

Figure 2 (see Section 3.3) provides a visual comparison between actual and predicted capacity 
values over 100 test cycles using the LSTM model. The predictions demonstrate high temporal 
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alignment, with minimal lag or offset even during sharp degradation inflection points. This 
indicates the model’s capacity to generalize well to unseen test data and highlights the 
importance of leveraging full temporal histories rather than isolated features per cycle. 

4.3. Feature Importance and Model Explainability 

The SHAP analysis conducted on the GBDT model offered insight into which features most 
heavily influenced the degradation predictions. As shown in Figure 3 (Section 3.4), early-cycle 
performance indicators such as the rate of initial capacity drop, internal resistance changes, 
and mean charging current had the highest SHAP values. These results confirm domain expert 
expectations and support the explainability of the model’s predictions, offering value for 
integration into real-world BMS. 

To further quantify interpretability, we compared the top-5 SHAP-ranked features across 
multiple battery types and conditions. The consistency of influential features (e.g., average 
Coulombic efficiency, temperature gradients) across datasets strengthens the case for feature-
based battery health assessment models, even when using simpler ensemble models like GBDT. 

4.4. Generalizability Across Battery Chemistries 

While this study focused primarily on lithium-ion batteries with NCA and NMC chemistries, 
preliminary tests suggest that the LSTM model’s performance holds on LFP (lithium iron 
phosphate) datasets as well, albeit with slightly reduced accuracy due to distinct degradation 
behaviors. This opens up avenues for transfer learning and multi-task learning extensions to 
develop chemistry-agnostic degradation predictors. 

4.5. Practical Implications for EV Battery Management 

The practical implications of this research are significant for electric vehicle manufacturers and 
operators. Accurate degradation prediction models can enable early warning systems, 
optimized charging schedules, and adaptive thermal management strategies. Furthermore, 
integrating these models into cloud-based BMS platforms would allow for real-time monitoring 
and personalized degradation alerts, improving battery lifespan and user safety. 

5. Conclusion 

This study explored a machine learning-based approach for predicting battery degradation in 
EV applications, with an emphasis on extending battery life and enhancing the reliability of 
battery management systems. By leveraging historical battery usage data and environmental 
parameters, the study demonstrated how advanced models such as LSTM networks and GBM 
can be effectively employed to predict capacity fade and resistance growth with high accuracy. 

The methodology involved comprehensive data preprocessing, feature engineering, model 
training, and performance evaluation using real-world EV battery datasets. The experimental 
results revealed that LSTM networks outperformed traditional regression-based models in 
long-term prediction accuracy, especially in capturing nonlinear degradation behaviors. 
Additionally, ensemble learning approaches such as GBM provided interpretable insights into 
the relative importance of different operational and environmental factors influencing battery 
health. 

A key finding from the study is the importance of incorporating temporal dependencies and 
operational context into predictive models, as these aspects significantly enhance the realism 
and utility of the predictions. Moreover, the implementation of explainable AI techniques 
further enabled transparency in model decision-making, which is essential for practical 
deployment in EV battery management systems. 

In conclusion, this research contributes to the development of predictive maintenance and 
intelligent monitoring frameworks for electric vehicles, offering a scalable and data-driven 
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solution to battery degradation forecasting. Future work may include integrating physics-
informed neural networks for hybrid modeling, expanding to different battery chemistries, and 
deploying the framework in real-time EV systems to support energy-efficient and sustainable 
transportation. 
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