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Abstract

As the digital economy increasingly relies on Application Programming Interfaces
(APIs), ensuring the trustworthiness of API traffic management has become critical.
Traditional rule-based systems often fail to adapt to complex and evolving patterns of
API misuse, such as automated abuse, malicious bursts, and credential stuffing. This
paper introduces an explainable reinforcement learning (RL) framework designed for
real-time anomaly detection and proactive abuse prevention in API traffic. By
integrating interpretability methods like SHAP (SHapley Additive exPlanations) into the
RL loop, the framework offers both adaptive performance and transparent decision-
making. The proposed method is evaluated on simulated and real-world traffic data,
demonstrating improved accuracy in detecting abnormal behaviors and reducing false
positives compared to baseline models. The results suggest that explainable RL can
effectively balance security and reliability while preserving developer trust and
regulatory compliance.
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1. ntroduction

In today’s hyperconnected digital ecosystem, Application Programming Interfaces (APIs) have
become the foundational infrastructure for data exchange, platform interoperability, and the
delivery of real-time services[1]. From cloud computing and mobile applications to financial
systems and healthcare platforms, APIs are omnipresent[2]. However, their very ubiquity and
openness make them an attractive vector for misuse and abuse[3]. Malicious actors
increasingly exploit APIs through credential stuffing, scraping, distributed denial-of-service
(DDoS) attacks, and even subtle rate-limit evasion tactics, often mimicking legitimate user
behavior to avoid detection[4]. Such abuses not only compromise service availability but also
risk exposing sensitive user data, incurring compliance violations and reputational damage|[5].

Conventional approaches to API traffic management rely heavily on static rate-limiting rules,
blacklist/whitelist access controls, and manually configured anomaly detection heuristics.
While these rule-based systems offer simplicity and explainability, they struggle in the face of
dynamic, adversarial environments[6]. Attackers can rapidly evolve their methods, making
hard-coded thresholds and reactive measures insufficient. Moreover, manual rule tuning is
time-consuming and does not scale with complex traffic patterns, particularly in high-volume
environments|[7].

Recent advancements in machine learning have introduced data-driven alternatives for API
traffic analysis, notably supervised and unsupervised models for anomaly detection[8].
However, these models typically require large labeled datasets and often lack the capability to
take proactive, sequential actions in real time. Reinforcement Learning (RL), on the other hand,
provides a framework for adaptive decision-making by training agents to learn optimal control
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policies through interaction with the environment[9]. RL has demonstrated success in network
security, intrusion detection, and adaptive rate limiting[10]. Nevertheless, a critical challenge
remains: most RL agents operate as black boxes, making their decisions difficult to interpret or
audit—particularly problematic in high-stakes security and compliance settings[11].

To bridge this gap, this paper proposes a Trustworthy API Traffic Management framework that
integrates Explainable Reinforcement Learning (XRL) into the core of anomaly detection and
abuse prevention. By coupling a deep RL agent with post-hoc explanation tools such as SHapley
Additive exPlanations (SHAP), the system not only adapts dynamically to evolving traffic
patterns but also delivers human-interpretable rationales for its decisions. This dual emphasis
on adaptability and transparency aims to foster trust among security engineers, system
architects, and regulatory stakeholders.

The contributions of this paper are threefold. First, we develop a deep RL-based API traffic
controller capable of detecting and mitigating anomalous patterns in real time. Second, we
enhance its explainability using SHAP to expose feature attributions for policy actions, enabling
accountability and debugging. Third, we validate our framework through experiments on both
simulated and real-world API traffic datasets, demonstrating improved detection accuracy,
lower false positive rates, and enhanced interpretability compared to traditional methods. The
proposed system lays the groundwork for a new generation of trustworthy, intelligent, and
transparent API security solutions.

2. iterature Review

The increasing reliance on APIs as the backbone of digital infrastructure has prompted
significant research interest in securing and managing API traffic effectively[12]. As APIs
expose key functionalities of systems and services to external environments, they become
attractive targets for misuse, including denial-of-service attacks, credential stuffing, and data
scraping[13]. Addressing these threats demands solutions that are not only effective but also
adaptive, explainable, and robust to evolving usage patterns[14]. This literature review
explores existing approaches in API traffic management, focusing on conventional mitigation
techniques, machine learning-based anomaly detection, reinforcement learning strategies for
autonomous defense, and emerging efforts to integrate explainability into intelligent
systems[15].

Traditional methods for API traffic control have long been dominated by deterministic rules
and heuristics[16]. Techniques such as static rate limiting, IP blacklisting, and token-based
authentication have formed the first line of defense in many systems[17]. These approaches,
while computationally inexpensive and easy to implement, offer limited flexibility. They are
poorly equipped to distinguish between malicious actors mimicking normal usage and
legitimate users whose traffic patterns deviate from the norm. In particular, when applied to
large-scale systems with heterogeneous client behaviors, rule-based strategies frequently
result in high false positive or false negative rates, either blocking valid requests or allowing
subtle attacks to slip through[18].

In response to these limitations, researchers began to explore the use of data-driven anomaly
detection algorithms[19]. Supervised learning models such as logistic regression, decision
trees, and deep neural networks have been employed to classify traffic based on pre-labeled
historical data[20]. These models are capable of capturing complex patterns that static rules
miss, leading to improved detection accuracy[21]. However, their effectiveness is contingent
on the availability and quality of labeled datasets, which are often expensive or impractical to
obtain in API security contexts[22]. Furthermore, their generalizability to new types of attacks
remains constrained by their exposure during training[23].
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Unsupervised learning techniques have gained prominence as a promising alternative[24]. By
modeling the distribution of normal behavior without relying on labeled attack data, methods
like k-means clustering, isolation forests, and variational autoencoders can identify outliers
indicative of potential threats[25]. This paradigm is particularly attractive for detecting zero-
day attacks or subtle abuses that do not conform to known patterns[26]. However, such
systems are predominantly reactive and passive—they signal anomalies after they occur but
offer limited guidance on how to respond or adapt API behavior in real time[27].

RL, with its dynamic and sequential decision-making capability, introduces a more proactive
dimension to API traffic management[28]. In RL frameworks, an agent interacts with an
environment by taking actions to maximize a cumulative reward signal, learning over time
which strategies are most effective[29]. Applied to API traffic, this translates into adaptive rate-
limiting, context-aware throttling, and dynamic access control policies that evolve based on
observed usage patterns[30]. Several studies have demonstrated the efficacy of RL in
controlling bot traffic, optimizing resource allocation, and preventing overload scenarios.
Nonetheless, RL systems often operate as black boxes, raising significant concerns about
transparency, accountability, and trust—especially in sensitive domains like finance,
healthcare, or regulated digital services.

This has given rise to a growing demand for integrating explainable artificial intelligence (XAI)
into security-centric RL applications[31]. Explainability is essential not only for debugging and
validation, but also for compliance with regulatory frameworks such as GDPR and HIPAA, which
require clear reasoning for automated decisions affecting users. In recent years, methods like
SHAP, LIME (Local Interpretable Model-agnostic Explanations), and counterfactual reasoning
have been adapted to offer post-hoc insights into black-box models. However, while
explainability has gained traction in static prediction tasks, its incorporation into RL—
particularly in the context of real-time traffic control—remains limited. Most attempts have
focused on visualizing learned policies or generating saliency maps over input states, without
providing interpretable rationales for individual actions taken under uncertain and dynamic
conditions.

Taken together, the current body of literature reveals a gap at the intersection of adaptability
and explainability in API security systems. While RL offers powerful tools for adaptive
mitigation, and XAl provides means for transparent reasoning, the two have not yet been deeply
integrated in a manner suitable for production-level, trustworthy API traffic management. This
paper seeks to bridge this gap by proposing a novel framework that combines explainable
reinforcement learning with fine-grained anomaly detection, enabling systems to not only
respond effectively to abuse but also justify their behavior to system operators and
stakeholders in a comprehensible manner.

3. ethodology

In this study, we propose a trustworthy API traffic management system that leverages XRL for
robust anomaly detection and abuse prevention. The framework comprises three core
components: a preprocessing and anomaly detection module, a RL policy agent, and an
explainability module integrating SHAP-based explanations.

3.1. System Architecture and Data Flow

Initially, incoming API traffic is processed through a series of stages designed to extract
informative features. These features are subsequently analyzed by an unsupervised anomaly
detection model to flag potential threats as shown in Figure 1. Concurrently, the reinforcement
learning module dynamically adjusts its strategies based on continuous feedback from anomaly
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scores. An integrated explainability layer provides transparent reasoning for each action taken
by the system, facilitating trust and regulatory compliance.
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Figure 1. System Architecture

3.2. RL Policy Learning Workflow

The reinforcement learning agent learns to optimize anomaly detection performance by
interacting with the real-time environment defined by API traffic. A state representation is
generated from feature vectors, anomaly scores, and historical traffic data. The policy network
within the RL agent selects appropriate actions, such as adjusting thresholds, applying rate-
limits, or initiating user challenges, based on current state conditions as in Figure 2. A reward
signal is calculated according to detection accuracy, false positives, and overall system health,
guiding the RL agent toward optimal behavior over time.
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Figure 2. RL agent

3.3. Explainability via SHAP Analysis

To ensure transparency and facilitate human oversight, we integrate SHAP into our system.
Shown in Figure 3, SHAP provides a robust and model-agnostic approach for feature
attribution, helping stakeholders understand which inputs contribute most significantly to the
RL agent’s decisions. After the RL model makes its decisions, SHAP analyzes these predictions
and generates explanations based on the computed feature contributions. These insights enable
human analysts to validate or further investigate decisions, significantly improving model
interpretability and trustworthiness.
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Figure 3. SHAP analysis

4. esults and Discussion

In this section, we present the empirical evaluation of our proposed XRL framework against
several baseline methods. We evaluate and compare its effectiveness in detecting anomalies
and preventing abuse in API traffic using metrics including accuracy, precision, recall, and F1-
score. The evaluation was conducted on both synthetic and real-world API traffic datasets,
encompassing diverse usage scenarios and attack vectors.

4.1. Comparative Performance Evaluation

Our experiments involved four distinct methodologies: a traditional rule-based approach,
supervised ML, standard RL, and our proposed XRL framework. Each method was assessed
based on its ability to accurately classify API requests as normal or anomalous.

As shown in the Figure 4 below, the XRL model consistently outperformed other methods
across all metrics:
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Figure 4. Comparison of API Anomaly Detection Methods

The results demonstrate that while rule-based systems provide a basic level of detection, they
fall short in adaptability and precision. Supervised ML approaches improve accuracy
significantly due to their ability to generalize from labeled examples. However, they still rely
heavily on static training datasets and do not dynamically adapt to shifting attack patterns.

The standard RL approach shows substantial improvements in both precision and recall due to
its adaptive policy learning mechanism, which effectively adjusts to changing behaviors in real-
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time. However, its opacity limits practical deployment in sensitive, compliance-driven
environments.

In contrast, our proposed XRL framework exhibits the highest performance across all
measures, achieving a notable F1-score of 0.92. The enhanced accuracy and precision can be
attributed to the integration of explainability methods (such as SHAP), allowing the RL model
to leverage clearer feedback loops, and enabling better policy adjustments over time.
Furthermore, explainability facilitates human oversight and improves overall trust and
compliance with regulatory standards.

4.2. Practical Implications and Deployment Insights

The superiority of the XRL method underscores the practical benefit of combining
interpretability with adaptive decision-making. Organizations deploying APIs at scale can
benefit significantly from transparent models that not only enhance security and anomaly
detection but also clearly communicate their reasoning to human analysts.

Real-time interpretability allows developers and security teams to quickly diagnose
unexpected behaviors, accelerating the response to threats while maintaining service
availability. Moreover, compliance audits are streamlined as each model decision can be
transparently justified with clearly identifiable feature contributions.

5. onclusion

This research proposed an innovative framework for trustworthy API traffic management,
combining the strengths of RL and XAl to effectively detect anomalies and proactively prevent
API abuse. Traditional approaches, such as static rule-based systems and purely supervised
machine learning methods, have demonstrated limitations in adaptability, scalability, and
interpretability when confronted with sophisticated and evolving threats. Our XRL approach
addresses these issues by dynamically adapting to real-time API traffic patterns while
providing clear explanations for its decisions.

Empirical evaluations revealed that the XRL framework significantly outperforms conventional
methods in key performance metrics, including accuracy, precision, recall, and overall F1-score.
More importantly, the integration of SHAP-based explanations has substantially improved
model transparency, enabling system operators and compliance auditors to understand, trust,
and verify automated decisions. This combination of adaptability and transparency sets a new
benchmark for reliable and secure API traffic management.

Future research directions include expanding the framework's robustness to more diverse
traffic scenarios, integrating user feedback loops to enhance explainability, and exploring the
application of other XAI methods such as LIME and counterfactual explanations. Moreover,
practical deployments could benefit from further optimization of real-time interpretability
mechanisms, ensuring the model remains both effective and efficient in high-throughput
environments.

In conclusion, the proposed explainable reinforcement learning framework provides a robust,
adaptable, and transparent solution to managing API traffic securely and effectively,
significantly enhancing both cybersecurity resilience and stakeholder trust.
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