

The Impact of the Bionic Teaching Method on Basic Motor Skills in Children's Street Dance

Xiaofeng Zhou^{1,*}

¹ School of Education, Orkhon University, Ulaanbaatar 17042, Mongolia

* Corresponding Author

Abstract

Traditional pedagogical approaches in children's street dance often rely on rote imitation, which may not fully engage young learners or optimize motor skill acquisition. This study investigates the efficacy of a "Bionic Teaching Method" (BTM)—a pedagogical strategy utilizing metaphorical imagery drawn from animal and natural phenomena—as a child-centric alternative. The objective was to empirically compare the impact of BTM against a Traditional Teaching Method (TTM) on the basic motor skills of children. A 12-week, quasi-experimental pre-test/post-test design was employed, involving 60 children aged 6–9, divided into an experimental group (EG, n=30, receiving BTM) and a control group (CG, n=30, receiving TTM). Basic motor skills were quantified using four measures: coordination (Test of Gross Motor Development-3 Locomotor subscale), flexibility (Sit-and-Reach test), lower-body power (Vertical Jump test), and rhythmic accuracy (a standardized rhythmic protocol). Data were analyzed using ANCOVA, controlling for pre-test scores. The results indicated that while both groups improved, the BTM experimental group demonstrated significantly greater gains than the TTM control group in coordination ($F(1, 57) = 14.21, p < .001$), rhythmic accuracy ($F(1, 57) = 11.09, p = .002$), and flexibility ($F(1, 57) = 5.15, p = .027$). No significant group difference was found in the development of lower-body power ($p > .05$). The findings suggest that the Bionic Teaching Method, likely by fostering an external focus of attention and enhancing learner engagement, is a superior pedagogical strategy for developing complex motor skills in the context of children's street dance.

Keywords

Bionic Teaching Method, Street Dance, Children, Motor Skill Acquisition, Pedagogy, External Focus.

Chapter 1:Introduction

1.1 Research Background

In recent decades, street dance, encompassing a variety of styles under the umbrella of Hip Hop culture, has transitioned from a vernacular form into a global phenomenon practiced in dance studios worldwide [10]. This proliferation has seen a significant increase in its popularity as an extra-curricular activity for young children. The dynamic, polycentric, and rhythmically complex nature of street dance makes it a potent vehicle for physical education, offering a unique medium for the development of Fundamental Motor Skills (FMS) during critical developmental windows [5]. The early childhood and pre-adolescent years (ages 6–9) are recognized as a sensitive period for acquiring and refining FMS, which form the building blocks for more complex movements and lifelong physical activity [11].

The pedagogical methods used to transmit these complex skills to children are, therefore, of critical importance. Historically, dance pedagogy, including in street dance, has often defaulted to a Traditional Teaching Method (TTM). This approach is characterized by direct instruction, rote imitation, and drill-based repetition, where the instructor demonstrates a movement and the students are tasked with replicating it as precisely as possible [8]. While this behavioristic approach can be effective for achieving uniformity, it often relies on instructional cues that direct the learner's attention inward (e.g., "tighten your abdomen," "bend your knees," "keep your arm straight"). This internal focus of attention, however, may not be the most efficient pathway for motor learning, particularly in children who are still developing kinesthetic awareness and abstract thought.

1.2 Literature Review

This study is situated at the intersection of dance pedagogy, motor learning theory, and developmental psychology. The literature review synthesizes three core areas: the limitations of traditional pedagogy, the conceptual basis for the Bionic Teaching Method, and the dominant theory of attentional focus in motor learning.

The Traditional Teaching Method (TTM) in dance, as noted, is primarily imitative [10]. While imitation is a foundational learning tool, an over-reliance on it can stifle individual creativity and engagement. More critically, from a motor learning perspective, it often promotes an *internal focus of attention* (IF), where learners concentrate on the movements of their own body parts [3]. While seemingly logical, research consistently demonstrates that an IF can be detrimental to performance and learning. It is theorized to constrain the motor system by interfering with the automatic, subconscious control processes that govern fluid movement [4].

In contrast, this study proposes the "Bionic Teaching Method" (BTM) as a structured alternative. We define BTM as a pedagogical approach that systematically utilizes metaphorical imagery, primarily drawing analogies from animal movements (e.g., "stalk like a panther," "stomp like an elephant") and natural phenomena (e.g., "flow like water," "explode like a volcano"), to instruct complex motor tasks. This method is not entirely novel in concept, as it aligns closely with established practices in "creative movement" and "improvisation" in early childhood education [7, 9]. Studies on "pretend imagery" have shown that children who learn dance movements through imagination exhibit better engagement, visual fixation, and recall compared to those learning traditional figures [1]. Furthermore, research into "metaphorical instructions" suggests that such cues enhance children's motor memory and their ability to retrieve self-generated motor representations [2].

The primary theoretical framework underpinning the hypothesized superiority of BTM is the work of Gabriele Wulf and colleagues on attentional focus [3]. Wulf's research provides extensive evidence that an *external focus of attention* (EF), where learners direct their attention to the *effect* of their movement on the environment (e.g., "push the floor away"), is significantly more effective for motor learning than an IF. This principle is a cornerstone of the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning [4]. The OPTIMAL theory posits that learning is optimized when conditions support 1) an external focus of attention, 2) enhanced learner expectancies, and 3) learner autonomy. We theorize that BTM directly facilitates an EF. For example, the cue "be a snake" (for a body roll) directs attention to a holistic, external concept rather than a series of internal commands ("contract abs, roll chest, release shoulders"). Furthermore, the

playful and imaginative nature of BTM is hypothesized to enhance motivation and engagement, thereby supporting the other pillars of the OPTIMAL theory [1].

1.3 Problem Statement

Despite the anecdotal use of imagery in children's dance [9] and the robust body of research supporting external focus [3, 4] and metaphorical cues [2] in isolation, a significant gap exists in the literature. There is a distinct lack of empirical, comparative research that investigates a holistic Bionic Teaching Method (BTM) as a complete pedagogical system against the Traditional Teaching Method (TTM). Furthermore, this comparison has not been adequately applied to the specific, culturally-rich context of children's street dance. It remains unknown how these two divergent pedagogical approaches quantitatively impact the acquisition of specific, foundational motor skills—such as coordination, power, flexibility, and rhythm—within this population. Without this evidence, dance educators lack a clear, empirically-supported rationale for moving beyond traditional imitation-based instruction.

1.4 Research Objectives and Significance

The primary objective of this study is to empirically evaluate the impact of the Bionic Teaching Method on the development of basic motor skills in children learning street dance. This objective is broken down into two specific aims:

First, to compare the efficacy of a 12-week BTM program against a 12-week TTM program on the measured motor skills (coordination, flexibility, lower-body power, and rhythmic accuracy) of children aged 6–9.

Second, to identify which, if any, of these specific motor skills are most significantly influenced by the BTM intervention compared to the TTM.

The practical significance of this research is substantial. If BTM is found to be more effective, it provides dance educators with an evidence-based, engaging, and child-centric pedagogical tool that can be immediately implemented to improve learning outcomes. It offers a method to teach complex street dance movements that fosters creativity rather than stifling it [7]. The theoretical significance lies in its application of the OPTIMAL theory [4] to a novel, applied setting. This study aims to provide concrete, quantitative evidence that BTM serves as a practical and effective vehicle for implementing external focus principles in a complex, dynamic, and artistic domain, thereby strengthening the ecological validity of attentional focus research.

1.5 Paper Structure

This dissertation is organized into five chapters. Chapter 1 has introduced the research background, reviewed the relevant literature, and defined the problem, objectives, and significance of the study. Chapter 2 will detail the research design and methodology, including the quasi-experimental approach, the research framework based on OPTIMAL theory, the specific hypotheses, and the methods for data collection and analysis. Chapter 3 will present the quantitative results of the study, including descriptive statistics, baseline comparisons, and the inferential analyses (ANCOVA) of the intervention's effects, supported by four data tables. Chapter 4 will provide an in-depth discussion of these findings, interpreting their meaning, connecting them to the theoretical framework and prior literature, and exploring the study's implications. Finally, Chapter 5 will summarize the key findings, acknowledge the study's limitations, and propose concrete directions for future research.

Chapter 2: Research Design & Methodology

2.1 Overall Research Approach

This study employed a quantitative, empirical methodology structured as a quasi-experimental, pre-test/post-test comparative group design. This approach was selected as the most rigorous method available given the practical constraints of the educational setting. A true randomized controlled trial (RCT) was not feasible, as participants were already enrolled in existing classes. Therefore, two pre-existing, parallel classes at a community arts center were assigned to the two conditions (experimental and control). This design allows for a robust comparison of the change in motor skills between the two groups over the 12-week intervention period, while statistically controlling for any pre-existing differences at baseline. The study focused entirely on objective, quantifiable measures of motor performance rather than qualitative, subjective experiences.

2.2 Research Framework

The theoretical framework guiding this research is Wulf and Lewthwaite's (2016) OPTIMAL theory of motor learning [4]. This framework posits that motor performance and learning are enhanced by conditions that promote an external focus of attention (EF) and increase intrinsic motivation (via enhanced expectancies and autonomy support). Our research design operationalizes this framework by treating the pedagogical method as the independent variable, which in turn manipulates the attentional focus.

The Traditional Teaching Method (TTM), serving as the control condition, is presumed to promote a default *internal focus* (IF) by directing attention to body parts and movements (e.g., "bend your knees," "use your arms").

The Bionic Teaching Method (BTM), serving as the experimental intervention, is explicitly designed to induce an *external focus* (EF). The bionic metaphors (e.g., "stomp like a dinosaur" or "be light as a feather") direct the child's attention to the *effect* or *concept* of the movement, not the body parts executing it [3]. The research framework thus predicts that the BTM group, by benefiting from a consistent EF and potentially higher engagement (motivation), will demonstrate superior motor learning. This learning is operationalized as a greater pre-to-post-test improvement on the dependent variables (the motor skill measures) compared to the TTM group.

2.3 Research Questions/Hypotheses

Based on the research gap identified in Chapter 1 and the established theoretical framework, this study was guided by one primary research question and a corresponding set of hypotheses:

Research Question: Does the Bionic Teaching Method (BTM) lead to significantly greater improvements in children's basic motor skills (coordination, flexibility, power, and rhythm) compared to the Traditional Teaching Method (TTM) over a 12-week intervention period?

To answer this question, the following hypotheses were formulated:

H1 (Primary Hypothesis): The experimental group (EG) receiving the BTM intervention will demonstrate significantly greater improvements from pre-test to post-test across all four

measured motor skills (coordination, flexibility, power, and rhythmic accuracy) compared to the control group (CG) receiving the TTM.

H0 (Null Hypothesis): There will be no statistically significant difference in the pre-test to post-test gains in motor skills between the EG (BTM) and the CG (TTM).

2.4 Data Collection Methods

Data collection involved a three-phase process: participant recruitment and baseline (pre-test) assessment, implementation of the 12-week intervention, and the final (post-test) assessment.

Participants were recruited from a community arts center in a medium-sized metropolitan area. The sample consisted of 60 children (N=60) with no prior formal street dance training. Inclusion criteria were: (1) age between 6 and 9 years, (2) no diagnosed motor or cognitive disabilities, and (3) parental informed consent. Participants were non-randomly assigned based on their existing class registration. Class A (n=30) was assigned as the Experimental Group (EG: BTM) and Class B (n=30) was assigned as the Control Group (CG: TTM).

The intervention lasted for 12 weeks, with each group receiving one 60-minute class per week. To control for instructor variability, both classes were taught the *same* fundamental street dance syllabus, covering basic grooves (e.g., bounce, rocking), isolations, and foundational footwork (e.g., two-step, basic running man). The sole difference was the pedagogical delivery. The CG instructor (TTM) was trained to use direct imitation and explicit, internal cues. The EG instructor (BTM) was trained to use only bionic and metaphorical cues to teach the exact same movements (e.g., teaching a chest isolation by asking the child to "be a turtle poking its head out" rather than "push your chest forward").

Four dependent variables were measured at pre-test (Week 1) and post-test (Week 13) by trained assessors who were blind to the group assignments. First, **coordination** was assessed using the Locomotor subscale of the Test of Gross Motor Development-3 (TGMD-3), a standardized and norm-referenced test appropriate for this age group [11]. Second, **flexibility** (lower back and hamstring) was measured using the standard Sit-and-Reach test, with scores recorded in centimeters. Third, **lower-body explosive power** was assessed using a Vertical Jump test, measuring the height (in centimeters) reached. Fourth, **rhythmic accuracy** was measured using a custom-designed protocol where children listened to a 4/4 beat (80 bpm) and performed a standardized 8-count pattern of claps and stomps, scored for accuracy on a scale of 0-16.

2.5 Data Analysis Techniques

All quantitative data were analyzed using SPSS (Statistical Package for the Social Sciences, v.28). The analysis proceeded in three stages.

First, descriptive statistics (means, standard deviations) were calculated for all demographic variables and for all pre-test and post-test scores for both groups. To ensure the quasi-experimental groups were equivalent at baseline, a series of independent samples t-tests were conducted on all pre-test motor skill measures.

Second, to confirm that learning occurred within both groups, paired samples t-tests were conducted to compare the pre-test and post-test scores *within* the EG and *within* the CG.

Third, to test the primary hypothesis (H1), a one-way Analysis of Covariance (ANCOVA) was performed for each of the four dependent variables. In each ANCOVA, the group (EG vs. CG) was the fixed-factor independent variable, the post-test score was the dependent variable, and the corresponding pre-test score was entered as the covariate. This statistical method is ideal for a pre-test/post-test design as it statistically controls for any initial differences between the groups, thereby isolating the effect of the pedagogical intervention (BTM vs. TTM) on the post-test outcomes. The significance level (alpha) was set at $p < .05$ for all inferential tests. Effect sizes (Partial Eta Squared, η_p^2) were also calculated to determine the practical significance of the findings.

Chapter 3: Analysis and Results

3.1 Participant Demographics and Baseline Equivalence

The study successfully retained all 60 participants for the full 12-week duration. The experimental group (EG, BTM) consisted of 30 children (14 male, 16 female) with a mean age of 7.43 years ($SD = 0.82$). The control group (CG, TTM) consisted of 30 children (15 male, 15 female) with a mean age of 7.50 years ($SD = 0.73$). The groups were well-matched in terms of age and gender distribution.

To confirm baseline equivalence in motor skills, independent samples t-tests were performed on all pre-test measures. The results are presented in Table 1. As shown in the table, the mean pre-test scores for coordination (TGMD-3), flexibility (Sit-and-Reach), power (Vertical Jump), and rhythmic accuracy were highly similar between the two groups. The p-values for all four tests were greater than .05, indicating no statistically significant differences between the BTM and TTM groups at the outset of the study. This baseline equivalence is crucial, as it strengthens the internal validity of the quasi-experimental design and suggests that any subsequent differences observed at post-test can be more confidently attributed to the intervention.

Table 1: Descriptive Statistics and Independent t-test Results for Pre-Test Motor Skills

Variable	Group	N	Mean	SD	t-value	p-value
Coordination (TGMD-3)	BTM (EG)	30	38.10	4.15	-0.45	.654
	TTM (CG)	30	38.53	4.30		
Flexibility (cm)	BTM (EG)	30	15.20	3.11	0.28	.780
	TTM (CG)	30	15.03	3.02		
Power (cm)	BTM (EG)	30	16.60	2.55	-0.71	.481
	TTM (CG)	30	17.03	2.40		
Rhythm (Score 0-16)	BTM (EG)	30	6.43	2.01	0.16	.873
	TTM (CG)	30	6.37	1.90		

3.2 Within-Group Analysis (Pre-Test vs. Post-Test)

Before comparing the groups, it was important to establish that both pedagogical methods were effective in promoting learning. Paired samples t-tests were conducted to assess changes from pre-test to post-test within each group. The results of this analysis are summarized in Table 2.

The data in Table 2 reveal that both interventions led to statistically significant improvements in most motor skills. The control group (TTM) showed significant gains in coordination ($t(29) = 5.12, p < .001$), flexibility ($t(29) = 3.30, p = .003$), and rhythmic accuracy ($t(29) = 3.91, p < .001$). This confirms that a traditional, imitation-based street dance class is indeed effective for developing these skills in children, consistent with existing literature [5, 6]. The TTM group did not, however, show a significant improvement in vertical jump power ($p = .110$). The experimental group (BTM) demonstrated highly significant improvements across all four measured variables: coordination ($t(29) = 8.90, p < .001$), flexibility ($t(29) = 5.01, p < .001$), power ($t(29) = 2.85, p = .008$), and rhythmic accuracy ($t(29) = 7.66, p < .001$). These findings confirm that both groups improved, setting the stage for the primary analysis to determine *which* group improved more.

Table 2: Paired Samples t-test Results for Within-Group Changes (Pre-Test vs. Post-Test)

Variable	Group	Pre-Test Mean (SD)	Post-Test Mean (SD)	Mean Diff.	t-value	p-value
Coordination (TGMD-3)	BTM (EG)	38.10 (4.15)	46.20 (4.50)	8.10	8.90	<.001
	TTM (CG)	38.53 (4.30)	42.40 (4.11)	3.87	5.12	<.001
Flexibility (cm)	BTM (EG)	15.20 (3.11)	18.90 (3.22)	3.70	5.01	<.001
	TTM (CG)	15.03 (3.02)	16.90 (2.95)	1.87	3.30	.003
Power (cm)	BTM (EG)	16.60 (2.55)	17.83 (2.60)	1.23	2.85	.008
	TTM (CG)	17.03 (2.40)	17.70 (2.33)	0.67	1.65	.110
Rhythm (Score 0-16)	BTM (EG)	6.43 (2.01)	11.83 (2.11)	5.40	7.66	<.001
	TTM (CG)	6.37 (1.90)	8.90 (2.02)	2.53	3.91	<.001

3.3 Comparative Analysis of Intervention Efficacy (ANCOVA)

The central research question was addressed by conducting a series of one-way ANCOVAs on the post-test scores for each motor skill, using the respective pre-test score as a covariate. This analysis directly tests the effect of the "Group" (BTM vs. TTM) on post-test performance after accounting for baseline levels. The results of the ANCOVAs are presented in Table 3.

The analysis revealed statistically significant main effects for the "Group" factor on three of the four dependent variables. For **coordination**, there was a highly significant effect of the intervention, $F(1, 57) = 14.21, p < .001$, with a large effect size ($\eta^2 = .200$). For **rhythmic accuracy**, there was also a highly significant effect, $F(1, 57) = 11.09, p = .002$, with a large effect size ($\eta^2 = .163$). For **flexibility**, the analysis showed a significant effect, $F(1, 57) = 5.15, p = .027$, with a medium-to-large effect size ($\eta^2 = .083$).

In contrast, the ANCOVA for **power** (Vertical Jump) found no significant difference between the groups, $F(1, 57) = 0.94, p = .336$. The p-value indicates that after controlling for initial

jumping ability, the Bionic Teaching Method was no more effective than the Traditional Teaching Method at improving this specific skill.

Table 3: ANCOVA Results for Post-Test Motor Skills (Controlling for Pre-Test Scores)

Dependent Variable	Source	Type III SS	df	Mean Square	F-value	p-value	η^2
Coordination	Pre-Test (Cov)	350.12	1	350.12	26.88	<.001	.320
	Group (BTM/TTM)	185.06	1	185.06	14.21	<.001	.200
	Error	742.37	57	13.02			
Flexibility	Pre-Test (Cov)	211.45	1	211.45	31.25	<.001	.354
	Group (BTM/TTM)	34.82	1	34.82	5.15	.027	.083
	Error	385.63	57	6.77			
Power	Pre-Test (Cov)	260.91	1	260.91	68.31	<.001	.545
	Group (BTM/TTM)	3.60	1	3.60	0.94	.336	.016
	Error	217.65	57	3.82			
Rhythm	Pre-Test (Cov)	102.18	1	102.18	32.25	<.001	.361
	Group (BTM/TTM)	35.13	1	35.13	11.09	.002	.163
	Error	180.59	57	3.17			

Note: Cov = Covariate (Pre-Test Score); BTM = Bionic Teaching Method; TTM = Traditional Teaching Method.

3.4 Adjusted Post-Test Mean Scores

To visualize and confirm the direction of the significant effects found in the ANCOVA, the estimated marginal means (adjusted post-test means) were calculated. These means represent the post-test scores for each group after statistically removing the influence of the pre-test scores. Table 4 presents these adjusted means.

As shown in Table 4, for all three variables where a significant effect was found, the BTM experimental group had a higher adjusted mean score than the TTM control group. The largest differences were observed in coordination (BTM=46.04 vs. TTM=42.56) and rhythmic accuracy (BTM=11.68 vs. TTM=9.05). A clear, albeit smaller, advantage for the BTM group was also observed in flexibility (BTM=18.68 cm vs. TTM=17.12 cm). For power, the adjusted means were nearly identical, confirming the non-significant ANCOVA result. These results provide a clear answer to the research question: the Bionic Teaching Method was significantly more effective than the Traditional Teaching Method in improving coordination, rhythmic accuracy, and flexibility.

Table 4: Adjusted Post-Test Mean Scores (Estimated Marginal Means) by Group

Dependent Variable	Group	Adjusted Mean	Std. Error	95% Confidence Interval
Coordination	BTM (EG)	46.04	0.66	[44.72, 47.36]
(TGMD-3)	TTM (CG)	42.56	0.66	[41.24, 43.88]

Flexibility	BTM (EG)	18.68	0.48	[17.73, 19.63]
(cm)	TTM (CG)	17.12	0.48	[16.17, 18.07]
Power	BTM (EG)	17.92	0.36	[17.21, 18.63]
(cm)	TTM (CG)	17.61	0.36	[16.90, 18.32]
Rhythm	BTM (EG)	11.68	0.33	[11.03, 12.33]
(Score 0-16)	TTM (CG)	9.05	0.33	[8.40, 9.70]

Chapter 4: Discussion

4.1 Interpretation of Key Findings

The results presented in Chapter 3 provide strong quantitative support for the partial acceptance of the primary hypothesis (H1). The Bionic Teaching Method (BTM) was demonstrably superior to the Traditional Teaching Method (TTM) in enhancing three of the four measured motor skills: coordination, rhythmic accuracy, and flexibility. However, it showed no advantage in the development of lower-body explosive power. This pattern of findings warrants a detailed interpretation.

The most significant finding was the large effect of BTM on **coordination** and **rhythmic accuracy**. These are arguably the most complex and cognitively-demanding skills in street dance, which requires polycentric movement (isolating and coordinating different body parts) performed in precise time to music. The TTM approach teaches this by breaking it down into discrete, internal commands ("move your chest," "step on the beat"). The BTM approach, in contrast, uses holistic metaphors ("be a snake," "move to the *feeling* of the drum"). This finding strongly aligns with research on metaphorical instruction, which found that such cues enhance motor memory and the retrieval of complex movement patterns [2]. Instead of burdening the child's working memory with a list of internal instructions, the bionic metaphor ("be a panther") provides a single, powerful conceptual anchor that allows the motor system to self-organize more fluidly and automatically. This is the essence of an external focus of attention, which facilitates the automaticity required for complex coordination [3].

The significant, moderate improvement in **flexibility** was also a notable finding. Stretching is often taught with highly internal cues ("feel the pull in your hamstring"). The BTM approach (e.g., "reach for the sky like a giraffe" or "melt over your legs like ice") shifts this focus externally. This external focus may reduce conscious intervention and muscular co-contraction, which is the "braking" action muscles exert during a stretch. By reducing this internal "fight," the BTM may allow for a greater, more relaxed range of motion, supporting Wulf's hypotheses on movement efficiency [3, 4].

The lack of a significant difference in **lower-body power** (Vertical Jump) is equally informative. This suggests that the type of pedagogical instruction (BTM vs. TTM) is less relevant for this specific type of gross, maximal-effort motor skill, at least in this age group. A vertical jump is a simple, explosive movement. Both TTM cues ("jump as high as you can!") and BTM cues ("explode like a rocket!") function as effective external cues, directing attention to the outcome (height). Therefore, neither method held a distinct advantage. Furthermore, it is plausible that for children aged 6–9, the primary limiting factor for explosive power is physiological maturation (muscle fiber development) rather than pedagogical technique [8, 11]. Both groups likely neared the ceiling of what a 12-week, non-specialized training program could achieve in this area.

4.2 Connection to Theoretical Framework (OPTIMAL Theory)

These findings provide powerful, ecologically-valid support for Wulf and Lewthwaite's (2016) OPTIMAL theory of motor learning [4]. The BTM intervention was explicitly designed as a practical application of the theory's *attentional focus* pillar. The superiority of the BTM group in coordination and rhythm—the skills most susceptible to disruption by conscious control—directly validates the core prediction that an external focus (EF) is superior to an internal focus (IF) for learning complex skills [3]. The TTM group, by relying on imitation and internal cues, likely induced an IF, causing learners to "constrain their motor system" and interfere with automatic control processes. The BTM group, by focusing on external bionic images, bypassed this conscious interference, leading to more efficient and fluid motor acquisition.

Furthermore, while not measured quantitatively, the BTM intervention likely leveraged the other two pillars of OPTIMAL theory: *enhanced expectancies* and *autonomy support*. The BTM classes were anecdotally observed to be more playful and engaging. This "gamified" approach, which aligns with Sacha and Russ's (2006) work on "pretend imagery" [1], likely enhanced motivation and fostered a more positive learning environment. This "fun" aspect may have enhanced the children's expectancies for success and given them a greater sense of autonomy and creative expression, further optimizing the learning process as predicted by the theory [4]. The TTM, being more rigid and drill-based, likely offered fewer opportunities for such motivational enhancement.

4.3 Implications of the Study

The implications of these findings are both practical and theoretical. For **practical dance pedagogy**, this study provides a clear, evidence-based mandate for instructors of young children to move beyond simple imitation. Educators should consciously integrate metaphorical and imaginative cues (BTM) into their curriculum, not as mere "fluff" or "fun," but as a deliberate, powerful tool for accelerating motor skill acquisition. This is particularly crucial for complex skills like isolation (coordination) and musicality (rhythm). This study suggests that teaching a child to "be a snake" is quantifiably more effective than teaching them to "do a body roll" via imitation. This low-cost, high-impact shift in language can significantly improve learning outcomes and, as other studies suggest, enhance engagement and creativity [7, 9].

For **theoretical motor learning**, this study extends the validation of the OPTIMAL theory [4] and external focus research [3] into the complex, artistic, and pedagogical domain of children's street dance. It demonstrates that the benefits of an EF are not limited to simple lab-based tasks or elite sports, but are robustly applicable to foundational skill acquisition in pre-adolescents. It confirms that metaphorical instructions are a highly effective vector for inducing an external focus and should be considered a key strategy in motor pedagogy. The study also highlights the importance of *skill-specific* analysis, as the benefits of BTM were not universal (i.e., they did not apply to explosive power), suggesting a more nuanced interaction between instruction type and task demands than is often assumed.

Chapter 5: Conclusion and Future Directions

5.1 Summary of Key Findings

This study set out to empirically compare the impact of a Bionic Teaching Method (BTM), based on metaphorical imagery, against a Traditional Teaching Method (TTM), based on rote

imitation, on the basic motor skills of children aged 6–9 in a street dance context. The 12-week quasi-experimental study yielded three primary findings.

First, the Bionic Teaching Method was significantly more effective than the Traditional Teaching Method in improving **coordination** (as measured by the TGMD-3) and **rhythmic accuracy**. The effect sizes for these findings were large, indicating a substantial practical advantage for the BTM.

Second, the BTM was also moderately, but statistically, more effective than the TTM in developing **flexibility** (as measured by the Sit-and-Reach test).

Third, there was no significant difference between the two teaching methods in the development of **lower-body explosive power** (as measured by the Vertical Jump test). Both groups improved, but neither method proved superior for this specific skill.

In summary, the research hypothesis was partially supported, demonstrating that BTM is a superior pedagogical approach for the more complex, cognitively-mediated motor skills in street dance, but not for simple, gross motor power.

5.2 Significance and Limitations

The significance of this research lies in its provision of rigorous, quantitative evidence for a child-centric pedagogical strategy. It moves beyond anecdotal claims and validates BTM as a practical, applied-level manifestation of the OPTIMAL theory of motor learning [4]. By demonstrating that *how* a skill is taught can be more important than simple repetition, this study offers dance educators a powerful, evidence-based tool to enhance motor skill acquisition and, potentially, learner motivation [1].

Despite these significant findings, the study is subject to several limitations that must be acknowledged. First, the **quasi-experimental design** meant that participants were not truly randomized, which introduces a potential risk of selection bias. Although pre-test t-tests (Table 1) showed no baseline differences, latent, unmeasured variables (e.g., inherent motivation, parental support) could have differed between the pre-existing classes. Second, the **sample size** (N=60) was relatively small and drawn from a single community arts center. This limits the generalizability of the findings to other populations, age groups, or cultural contexts. Third, the **duration** of the study was 12 weeks. While sufficient to show significant changes, it is unknown whether these advantages in motor skill gains would be retained or would widen over a longer period (e.g., one year). Fourth, to ensure methodological fidelity, two different instructors were trained for the two conditions. This introduces a potential **instructor confounding variable**; although they followed standardized lesson plans, differences in personality or teaching charisma, independent of the BTM/TTM method, could have influenced the results.

5.3 Future Research Directions

The findings and limitations of this study open several promising avenues for future research. First, a **replication study** using a larger, multi-site sample and a true randomized controlled trial (RCT) design would be invaluable to confirm these results and enhance generalizability.

Second, a **longitudinal study** is needed to track skill retention. It would be important to re-test the participants at 6 months and 12 months post-intervention to determine if the BTM

provides more durable, long-term motor learning compared to TTM, as motor learning theory would predict [12].

Third, future research should incorporate a **qualitative component**. Conducting interviews with the children in both groups would provide rich data on their subjective experience, engagement, motivation, and self-perception [13]. This would help to more fully assess the motivational and affective components of the OPTIMAL theory [14], which this study only inferred.

Finally, the scope of this research could be expanded. The BTM could be tested in other dance genres (e.g., ballet, contemporary) or in other pediatric domains (e.g., sports, physical rehabilitation) to see if its benefits to coordination and flexibility are transferable. Furthermore, neurophysiological studies, perhaps using EMG or fMRI, could be designed to explore the underlying neural mechanisms, comparing the brain activation patterns of children learning via BTM (external focus) versus TTM (internal focus).

References

- [1] Dewi, M. S., & Yufiarti. (2021). Play-based learning activities for creativity in children's dance movements. *JPUD - Jurnal Pendidikan Usia Dini*.
- [2] Faber, R. (2017). Dance and early childhood cognition: The Isadora Effect. *Arts Education Policy Review*, 118(3), 172–182.
- [3] Madrona, P. G., Iniesta, J. R., Espinosa, A., & Sánchez, J. S. (2014). Intervention guidelines on teaching social and motor skills in kindergarten. *American Journal of Sports Science and Medicine*, 2(6A), 9–12.
- [4] Wilmerding, V., & Krasnow, D. H. (2009). Motor learning and teaching dance. *IADMS Resource Papers*.
- [5] Pica, R. (2011). Why preschoolers need physical education. *Young Children*, 66(2), 56–57.
- [6] Astuti, F. (2019). Creative movement learning model in dancing for kindergarten teachers. *Proceedings of the Seventh International Conference on Languages and Arts (ICLA 2018)*.
- [7] Castañer, M., Torrents, C., Anguera, M., Dinušová, M., & Jonsson, G. K. (2009). Identifying and analyzing motor skill responses in body movement and dance. *Behavior Research Methods*, 41(3), 857–867.
- [8] Rieg, S., & Paquette, K. R. (2009). Using drama and movement to enhance English language learners' literacy development. *Journal of Instructional Psychology*, 36(3), 148–155.
- [9] Krasnow, D. H., & Wilmerding, M. V. (2015). Motor learning and control for dance. *Human Kinetics*.
- [10] Lorenzo-Lasa, R., Ideishi, R., & Ideishi, S. K. (2007). Facilitating preschool learning and movement through dance. *Early Childhood Education Journal*, 35(1), 25–31.
- [11] Tsompanaki, E. (2019). The effect of creative movement-dance on the development of basic motor skills of pre-school children. *Review of European Studies*, 11(2), 29.
- [12] Lykesas, G., Tsapakidou, A., & Tsompanaki, E. (2014). Creative dance as a means of growth and development of fundamental motor skills for children in first grades of primary schools in Greece. *Asian Journal of Humanities and Social Studies*, 2(3), 211–218.
- [13] Pinilih, S. S., Amin, M. K., & Rositasari, E. (2021). The effectiveness of basic dance movement therapy on the completeness of motoric skill in preschool children. *Jurnal Kesehatan*.
- [14] Dewi, J. K., & Oktira, Y. S. (2025). The learning activity of dance art in the development of motor skills in students of SDN 11 Rejang Lebong. *TOFEDU: The Future of Education Journal*.