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Abstract

The detection of anomalous patterns in dynamic graph structures is a pivotal challenge
in modern data mining, with critical applications ranging from financial fraud detection
to cybersecurity and social network analysis. While static graph neural networks have
achieved remarkable success in identifying structural irregularities, they often fail to
capture the temporal evolution of anomalies that manifest only over extended periods.
Existing dynamic approaches attempt to bridge this gap but frequently suffer from a
trade-off between local structural sensitivity and long-term temporal dependency
modeling. This paper introduces a novel framework, Graph Neural Anomaly Detection
via Multi-Scale Temporal Subgraph Contrastive Learning (MSTS-CL). Our approach
leverages a multi-scale subgraph sampling strategy to capture structural features at
varying granularities, integrated with a temporal attention mechanism that highlights
significant historical snapshots. Furthermore, we propose a self-supervised contrastive
learning objective designed to maximize the mutual information between local
temporal embeddings and global context representations, thereby mitigating the
scarcity of labeled anomaly data. Extensive experiments on three benchmark datasets
demonstrate that MSTS-CL outperforms state-of-the-art baselines by a significant
margin, offering robust detection capabilities even in the presence of noise and
structural sparsity.
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Introduction

1.1 Background

In the era of big data, graph-structured data has become the ubiquitous language for
representing complex relationships in real-world systems. From the intricate web of
transactions in financial systems to the interactions between users on social media platforms
and the communication logs of computer networks, graphs provide a robust mathematical
foundation for modeling connectivity [1]. However, as these systems grow in scale and
complexity, they become increasingly susceptible to malicious activities and abnormal
behaviors. Anomaly detection, the process of identifying patterns that deviate significantly
from the norm, has thus emerged as a critical line of defense in maintaining the integrity and
security of these systems [2].

Unlike traditional tabular data, where instances are often assumed to be independent and
identically distributed, graph data is characterized by explicit dependency structures. An
anomaly in a graph is not merely a data point with extreme feature values but can also be a
structural irregularity, such as a formation of a dense clique in a sparse network or a bridge
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connecting two previously unrelated communities [3]. The challenge is further compounded
when the graph is dynamic, meaning nodes and edges evolve over time. In dynamic settings,
an edge that is normal at one timestamp might be highly suspicious if it occurs in a rapid burst
or at an unusual time of day [4]. Consequently, effective anomaly detection methods must
simultaneously model the topological structure and the temporal evolution of the graph.

1.2 Problem Statement

Despite the advancements in Graph Neural Networks (GNNs), detecting anomalies in dynamic
graphs remains a formidable task due to several inherent challenges. First, anomalies are
often rare and diverse, leading to a severe class imbalance problem that renders supervised
learning methods ineffective or prone to overfitting [5]. Second, anomalies in dynamic graphs
can manifest at different scales; a localized structural change might indicate a small-scale
fraud ring, while a subtle shift in the global interaction pattern could signal a coordinated
distributed denial-of-service (DDoS) attack [6].

Most existing approaches focus on either static snapshots, ignoring temporal dependencies, or
treat the graph as a sequence of global states, losing the fine-grained local structural details.
For instance, methods that aggregate temporal information using simple recurrent neural
networks (RNNs) often struggle to retain information over long sequences due to the
vanishing gradient problem. Furthermore, many current techniques rely on reconstruction-
based objectives, which assume that anomalies cannot be well-reconstructed from the latent
representation. However, with the high expressive power of deep GNNs, models can
sometimes overfit to anomalies, reconstructing them just as well as normal data, thereby
reducing detection performance [7]. There is a distinct need for a framework that can learn
robust representations by contrasting normal temporal evolution against randomized or
anomalous perturbations at multiple scales.

1.3 Contributions

To address these limitations, we propose MSTS-CL, a unified framework for Graph Neural
Anomaly Detection via Multi-Scale Temporal Subgraph Contrastive Learning. Our
contributions are summarized as follows:

1. We introduce a Multi-Scale Temporal Subgraph Sampler that extracts ego-networks at
varying hop distances across historical snapshots. This allows the model to capture both
immediate neighborhood irregularities and broader community drifts simultaneously [8].

2. We design a Temporal Attention Encoder that adaptively weights the importance of past
snapshots. Unlike standard RNNs, this attention mechanism allows the model to focus on
relevant historical context regardless of the temporal distance, effectively handling long-
term dependencies [9].

3. We propose a novel Temporal Contrastive Learning Objective. By treating temporally
coherent subgraph sequences as positive pairs and shuffled or structurally perturbed
sequences as negative pairs, we force the encoder to learn distinctive representations of
normal evolutionary patterns without relying on ground-truth anomaly labels [10].

4. We conduct extensive experiments on real-world datasets, demonstrating that MSTS-CL
achieves superior performance compared to both static and dynamic graph anomaly
detection baselines.
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Chapter 2: Related Work
2.1 Classical Approaches

The field of graph anomaly detection has a rich history rooted in statistical signal processing
and linear algebra. Early methods primarily focused on static graphs. Approaches such as
SCAN (Structural Clustering Algorithm for Networks) utilized structural similarity measures
to identify vertices that did not belong to any cluster, classifying them as hubs or outliers [11].
In the context of dynamic graphs, classical techniques often relied on snapshot-based analysis.
For example, some methods employed matrix factorization or tensor decomposition to model
the adjacency matrices of graph snapshots over time. By approximating the low-rank
structure of the normal graph evolution, large residuals in the approximation were flagged as
anomalies [12].

Another prominent line of classical research involves scan statistics and random walk-based
methods. NetWalk, for instance, updates network embeddings dynamically using random
walks to monitor the graph stream, detecting anomalies based on distance changes in the
embedding space [13]. While these methods provided the foundational metrics for graph
analysis, they often rely on hand-crafted features or linear assumptions that fail to capture the
complex, non-linear interactions present in modern, high-dimensional datasets. Furthermore,
matrix factorization techniques are computationally expensive and scale poorly to large,
sparse graphs.

2.2 Deep Learning Methods

The advent of Deep Learning has revolutionized graph mining. Graph Convolutional Networks
(GCNs) and Graph Attention Networks (GATs) have become the de facto standards for
learning node embeddings. For anomaly detection, the DOMINANT framework was one of the
first to employ a Graph Autoencoder (GAE) architecture, using a GCN encoder and two
decoders (structure and attribute) to measure reconstruction errors [14]. However,
DOMINANT is designed for static graphs and ignores temporal dynamics.

To handle dynamic graphs, researchers have integrated GNNs with sequence modeling
architectures like LSTMs or GRUs. The EvolveGCN approach, for instance, uses an RNN to
update the parameters of the GCN at each timestamp, allowing the model to adapt to
structural changes [15]. More recently, continuous-time dynamic graph networks have been
proposed, such as Temporal Graph Networks (TGN), which utilize memory modules to store
node states [16]. Despite their success in link prediction, applying these directly to anomaly
detection is non-trivial. The scarcity of labels necessitates self-supervised approaches.
Contrastive learning has shown promise here, with methods like DGI (Deep Graph Infomax)
maximizing mutual information between local and global representations [17]. Our work
extends this by explicitly incorporating multi-scale temporal views into the contrastive
objective, addressing the specific requirements of anomaly detection in evolving networks
[18].

Chapter 3: Methodology
3.1 Overview of the MSTS-CL Framework

The proposed MSTS-CL framework is designed to detect anomalies in a sequence of graph
snapshots G = G4, G5, ...,Gy. Each graph G, = (V,E;, X;) consists of a set of verticesV, a
temporal edge set E;, and a node feature matrix X;. The core intuition is that normal nodes
exhibit consistent or predictably evolving patterns in their local subgraphs over time, whereas
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anomalous nodes display abrupt structural disruptions or feature shifts that violate these
temporal consistencies.

The architecture comprises three main components: (1) Multi-Scale Temporal Subgraph
Sampling, (2) Temporal Attention-based Encoding, and (3) a Dual-Objective Loss function
combining contrastive learning with reconstruction error.
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Figure 1: Architectural Overview of MSTS

3.2 Multi-Scale Temporal Subgraph Sampling

To capture the diverse manifestations of anomalies, we avoid processing the entire graph
snapshot at once, which can be computationally prohibitive and prone to noise. Instead, for a
target node v; at time ¢, we extract a sequence of K-hop subgraphs.

We define the k-hop subgraph of node v; at time t, denoted as Si,t"", as the induced subgraph
formed by v; and its neighbors up to distance k. By varying k (e.g., k = 1 and k = 2), we
obtain multi-scale views [19].

Small scale (k=1): Captures immediate interaction anomalies, such as a user suddenly
spamming direct connections.

Large scale (k=2): Captures community-level anomalies, such as a node bridging two
communities that usually do not interact.

For each target node, we sample these subgraphs across a temporal window of size w,
resulting in a sequence input: S; = (Si,t_wl,Si,t_Wz),...,(Si,tl,Si,tz). This sampling strategy
ensures that the model has access to both the spatial context at different granularities and the
historical evolution of that context.

3.3 Temporal Attention Encoder

The extracted subgraphs are first processed by a shared Graph Isomorphism Network (GIN)
encoder to generate structural embeddings. We choose GIN over GCN due to its superior

348



Frontiers in Interdisciplinary Applied Science Volume 2 Issue2, 2025
ISSN: 3008-1394

discriminative power in distinguishing non-isomorphic graphs. For a subgraph Si,Tk, the GIN
outputs a vector hl-,Tk .

The challenge lies in aggregating these embeddings over time. Simple averaging or fixed-
weight decay is insufficient because anomalies might relate to specific historical events (e.g., a
periodic monthly transaction) rather than the immediate past. We employ a temporal self-
attention mechanism.

Let H;* = [hi,t_wk,...,hi,tk] be the sequence of embeddings for scale k. We compute the
query, key, and value matrices (Q, K, V) and apply scaled dot-product attention:

QK"
Vd,

This mechanism allows the model to dynamically assign higher weights to historical
snapshots that are most relevant to the current state of node v;, effectively filtering out
temporal noise [20]. The output is a context-aware temporal embedding z; .* for each scale.
These are concatenated to form the final node representation Z; ;.

Attention(Q,K,V) = softmax( 4

3.4 Contrastive Learning Module

The core of our unsupervised learning strategy is the contrastive module. We posit that a
node's representation at time t should be predictive of its representation at t + 1 (predictive
coding) and should be distinguishable from the representations of other nodes or perturbed
histories.

We construct positive pairs by taking the embedding of node v; at time t and its embedding at
a very close future timestamp t + §, or by using data augmentation (e.g., dropping a small
percentage of edges) to create a view Z'; ;.

Negative pairs are generated in two ways:

1. Spatial Negatives: Embeddings of other nodes v; (j # i) at time t.

2. Temporal Negatives: Embeddings of node v; but with the temporal sequence of input
subgraphs randomly shuffled, disrupting the causal evolution.

We utilize the InfoNCE loss to maximize the similarity between positive pairs while
minimizing it for negative pairs. This forces the encoder to learn features that are unique to
the node's stable identity and its valid temporal evolution.

3.5 Joint Objective Function and Anomaly Scoring

While contrastive learning learns high-quality representations, an explicit anomaly measure is
needed. We augment the contrastive loss with a structural reconstruction loss. The decoder
attempts to reconstruct the adjacency matrix of the input subgraph from the latent
embedding Z; ;.

The total loss function is defined as a weighted sum of the contrastive loss and the
reconstruction loss.

exp(sim(z;,z")/7)
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Where sim(+) is the cosine similarity, 7 is a temperature parameter, z;* is the positive pair,
and N is the set of negative samples. The second term represents the Frobenius norm of the
reconstruction error.

During inference, the anomaly score is derived from a combination of the reconstruction error
and the negative contrastive score. A high reconstruction error implies the structure does not
conform to learned patterns, and a low agreement with the positive temporal view indicates a
violation of evolutionary trends.

3.6 Implementation Detail

The following code snippet demonstrates the core logic of the multi-scale temporal encoder
forward pass (simplified for clarity).

Code Snippet 1: Temporal Encoder Forward Pass

import torch
import torch.nn as nn
from torch_geometric.nn import GINConv
class MultiScaleTemporalEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_scales=2):
super(MultiScaleTemporalEncoder, self)._init_ ()
self.scales = num_scales
# Shared GIN Encoder for spatial features
self.gin = GINConv(nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
# Temporal Attention Layer
self.temporal_attn = nn.MultiheadAttention(embed_dim=hidden_dim, num_heads=4)
def forward(self, x, edge_index_list, timestamps):
# x: Node features
# edge_index list: List of edge indices for different scales and times
batch_size, seq_len = x.shape[0], len(timestamps)
all_scale_embeddings =[]
for scale in range(self.scales):
temporal_embeddings =[]
for tin range(seq_len):
# Spatial Encoding for each snapshot
h_t = self.gin(x[;, t, :], edge_index_list[scale][t])
temporal_embeddings.append(h_t)
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# Stack: (Seq_Len, Batch, Hidden)
h_stack = torch.stack(temporal_embeddings, dim=0)
# Temporal Attention
# Query, Key, Value are derived from the spatial embeddings
attn_output, _ = self.temporal_attn(h_stack, h_stack, h_stack)
# Pool over time or take last state
context_vector = attn_output[-1, :, 1]
all_scale_embeddings.append(context_vector)

# Concatenate multi-scale representations

final_embedding = torch.cat(all_scale_embeddings, dim=-1)

return final_embedding
Chapter 4: Experiments and Analysis

4.1 Datasets and Experimental Setup

To rigorously evaluate the proposed MSTS-CL framework, we utilize three standard dynamic
graph datasets widely used in anomaly detection literature [21]:

1. Wikipedia: A bipartite graph representing users editing pages. Nodes are users and
pages; edges represent edits. Dynamic attributes include the edit text features. Anomalies are
users who are blocked from the site.

2. Reddit: A user-subreddit interaction graph. Nodes are users and subreddits. Anomalies
represent users with malicious posting behaviors, flagged by moderators.

3. Mooc: A dataset of student actions on a Massive Open Online Course platform. Anomalies
are dropouts or students attempting to manipulate assignment submissions.

For all datasets, we construct graph snapshots by discretizing time into equal intervals. We
use the first 70% of snapshots for training (assuming only normal data is available or treating
anomalies as unlabeled noise) and the remaining 30% for testing.

4.2 Baselines

We compare MSTS-CL against a comprehensive set of baselines:
GCN-AE [14]: A static graph autoencoder applied to individual snapshots.
NetWalk [13]: A random-walk based dynamic embedding method.

DOMINANT [14]: The state-of-the-art static anomaly detector using attribute-structure
contrast.

AddGraph [15]: A dynamic method using an attention-based GRU to model temporal edge
additions.

4.3 Performance Comparison

We employ the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) and
Average Precision (AP) as evaluation metrics. Table 1 presents the AUC-ROC scores.
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Table 1: AUC-ROC Performance Comparison on Benchmark Datasets

Method Wikipedia Reddit Mooc
GCN-AE 0.762 0.784 0.691
NetWalk 0.795 0.812 0.725
DOMINANT 0.821 0.835 0.744
AddGraph 0.854 0.868 0.789
MSTS-CL 0.892 0.904 0.831

As observed, MSTS-CL consistently outperforms all baselines. Static methods like DOMINANT
perform reasonably well on Wikipedia but suffer on Mooc, likely because the anomalies in
Mooc are highly dependent on the sequence of actions (temporal depth) rather than just the
final structural state. AddGraph improves upon static methods but still lags behind MSTS-CL,
validating the effectiveness of our multi-scale subgraph sampling which captures richer local
contexts than edge-stream updates alone.

Figure 2: ROC Curve Analysis - Wikipedia dataset
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Figure 2: ROC Curve Analysis

We further analyze the precision of the top-ranked anomalies. Table 2 shows the
Precision@K, where K is set to 50 and 100. This metric is crucial for real-world applications
where human analysts can only investigate a limited budget of flagged cases.

Table 2: Precision@K Analysis (K=50)

Method Wikipedia (P@50) Reddit (P@50)
DOMINANT 0.54 0.58
AddGraph 0.62 0.65
MSTS-CL 0.71 0.76

The results in Table 2 confirm that MSTS-CL is not only good at global ranking (AUC) but also
highly effective at pushing true anomalies to the very top of the list.
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4.4 Ablation Studies

To understand the contribution of each component, we conduct an ablation study by creating
variants of MSTS-CL:

w/o Multi-Scale: Uses only 1-hop subgraphs.
w/o Attention: Replaces the temporal attention with a simple LSTM.

w/o Contrast: Removes the contrastive loss and relies solely on reconstruction error.

Table 3: Ablation Study Results (AUC-ROC on Wikipedia)

Variant AUC-ROC Drop
Full Model 0.892 -

w/o Multi-Scale 0.865 -2.7%
w/o Attention 0.871 -2.1%
w/o Contrast 0.840 -5.2%

The ablation results indicate that the Contrastive Learning objective is the most critical
component. Removing it causes a significant performance drop, reinforcing the hypothesis
that reconstruction-based losses alone are insufficient for complex dynamic graphs. The
Multi-Scale component also contributes notably, proving that capturing broader structural
context helps in identifying sophisticated anomalies [22,23].

(a) MSTS-CL (b) DOMINANT

M Normal
= Anomol lous

Dimesion 2
Dimesion 2

N

Figure 3: :t-SNE Visualization of Embedings

4.5 Sensitivity Analysis

We examined the sensitivity of the model to the temporal window size w. We found that
performance increases as w increases from 1 to 5, allowing the model to see more history.
However, beyond w =5, performance plateaus or slightly degrades, likely due to the
introduction of stale, irrelevant historical information that confuses the attention mechanism.
Similarly, the number of GNN layers was optimized at 2; deeper networks resulted in over-
smoothing, making anomaly detection difficult.
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Chapter 5: Conclusion

In this paper, we presented MSTS-CL, a comprehensive framework for anomaly detection in
dynamic graphs. By synthesizing multi-scale subgraph sampling, temporal attention
mechanisms, and contrastive learning, our approach addresses the critical limitations of
existing methods that fail to simultaneously model complex structural dependencies and
temporal evolution. The experimental results across three diverse datasets confirm that
MSTS-CL sets a new state-of-the-art, offering significant improvements in AUC-ROC and
Precision@K metrics.

The implications of this work are substantial for security-critical applications. The ability to
detect anomalies without relying on large labeled datasets—via self-supervised contrastive
learning—lowers the barrier to entry for deploying these systems in real-world scenarios
where labels are scarce or expensive to obtain. Furthermore, the multi-scale aspect ensures
that the model is versatile, capable of detecting both localized fraudulent accounts and larger,
community-driven coordinated attacks.

Despite its robust performance, MSTS-CL has limitations. The subgraph sampling and
pairwise contrastive computation are computationally intensive, potentially hindering real-
time deployment on extremely large-scale graphs with millions of nodes and high-frequency
edge updates. The current approach assumes discrete snapshots, which may result in
information loss compared to continuous-time models.

Future research directions will focus on two main areas. First, we aim to optimize the
computational efficiency of the contrastive module, perhaps by employing localized
approximations or efficient negative sampling strategies to enable streaming processing.
Second, we plan to investigate the integration of Large Language Models (LLMs) to interpret
the semantic features of nodes (e.g., text in Reddit posts) more effectively, creating a
multimodal anomaly detection framework that combines structural, temporal, and semantic
signals for unprecedented detection accuracy.
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