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Abstract 

The detection of anomalous patterns in dynamic graph structures is a pivotal challenge 
in modern data mining, with critical applications ranging from financial fraud detection 
to cybersecurity and social network analysis. While static graph neural networks have 
achieved remarkable success in identifying structural irregularities, they often fail to 
capture the temporal evolution of anomalies that manifest only over extended periods. 
Existing dynamic approaches attempt to bridge this gap but frequently suffer from a 
trade-off between local structural sensitivity and long-term temporal dependency 
modeling. This paper introduces a novel framework, Graph Neural Anomaly Detection 
via Multi-Scale Temporal Subgraph Contrastive Learning (MSTS-CL). Our approach 
leverages a multi-scale subgraph sampling strategy to capture structural features at 
varying granularities, integrated with a temporal attention mechanism that highlights 
significant historical snapshots. Furthermore, we propose a self-supervised contrastive 
learning objective designed to maximize the mutual information between local 
temporal embeddings and global context representations, thereby mitigating the 
scarcity of labeled anomaly data. Extensive experiments on three benchmark datasets 
demonstrate that MSTS-CL outperforms state-of-the-art baselines by a significant 
margin, offering robust detection capabilities even in the presence of noise and 
structural sparsity. 
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Introduction 

1.1 Background 

In the era of big data, graph-structured data has become the ubiquitous language for 
representing complex relationships in real-world systems. From the intricate web of 
transactions in financial systems to the interactions between users on social media platforms 
and the communication logs of computer networks, graphs provide a robust mathematical 
foundation for modeling connectivity [1]. However, as these systems grow in scale and 
complexity, they become increasingly susceptible to malicious activities and abnormal 
behaviors. Anomaly detection, the process of identifying patterns that deviate significantly 
from the norm, has thus emerged as a critical line of defense in maintaining the integrity and 
security of these systems [2]. 

Unlike traditional tabular data, where instances are often assumed to be independent and 
identically distributed, graph data is characterized by explicit dependency structures. An 
anomaly in a graph is not merely a data point with extreme feature values but can also be a 
structural irregularity, such as a formation of a dense clique in a sparse network or a bridge 
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connecting two previously unrelated communities [3]. The challenge is further compounded 
when the graph is dynamic, meaning nodes and edges evolve over time. In dynamic settings, 
an edge that is normal at one timestamp might be highly suspicious if it occurs in a rapid burst 
or at an unusual time of day [4]. Consequently, effective anomaly detection methods must 
simultaneously model the topological structure and the temporal evolution of the graph. 

1.2 Problem Statement 

Despite the advancements in Graph Neural Networks (GNNs), detecting anomalies in dynamic 
graphs remains a formidable task due to several inherent challenges. First, anomalies are 
often rare and diverse, leading to a severe class imbalance problem that renders supervised 
learning methods ineffective or prone to overfitting [5]. Second, anomalies in dynamic graphs 
can manifest at different scales; a localized structural change might indicate a small-scale 
fraud ring, while a subtle shift in the global interaction pattern could signal a coordinated 
distributed denial-of-service (DDoS) attack [6]. 

Most existing approaches focus on either static snapshots, ignoring temporal dependencies, or 
treat the graph as a sequence of global states, losing the fine-grained local structural details. 
For instance, methods that aggregate temporal information using simple recurrent neural 
networks (RNNs) often struggle to retain information over long sequences due to the 
vanishing gradient problem. Furthermore, many current techniques rely on reconstruction-
based objectives, which assume that anomalies cannot be well-reconstructed from the latent 
representation. However, with the high expressive power of deep GNNs, models can 
sometimes overfit to anomalies, reconstructing them just as well as normal data, thereby 
reducing detection performance [7]. There is a distinct need for a framework that can learn 
robust representations by contrasting normal temporal evolution against randomized or 
anomalous perturbations at multiple scales. 

1.3 Contributions 

To address these limitations, we propose MSTS-CL, a unified framework for Graph Neural 
Anomaly Detection via Multi-Scale Temporal Subgraph Contrastive Learning. Our 
contributions are summarized as follows: 

1.  We introduce a Multi-Scale Temporal Subgraph Sampler that extracts ego-networks at 
varying hop distances across historical snapshots. This allows the model to capture both 
immediate neighborhood irregularities and broader community drifts simultaneously [8]. 

2.  We design a Temporal Attention Encoder that adaptively weights the importance of past 
snapshots. Unlike standard RNNs, this attention mechanism allows the model to focus on 
relevant historical context regardless of the temporal distance, effectively handling long-
term dependencies [9]. 

3.  We propose a novel Temporal Contrastive Learning Objective. By treating temporally 
coherent subgraph sequences as positive pairs and shuffled or structurally perturbed 
sequences as negative pairs, we force the encoder to learn distinctive representations of 
normal evolutionary patterns without relying on ground-truth anomaly labels [10]. 

4.  We conduct extensive experiments on real-world datasets, demonstrating that MSTS-CL 
achieves superior performance compared to both static and dynamic graph anomaly 
detection baselines. 
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Chapter 2: Related Work 

2.1 Classical Approaches 

The field of graph anomaly detection has a rich history rooted in statistical signal processing 
and linear algebra. Early methods primarily focused on static graphs. Approaches such as 
SCAN (Structural Clustering Algorithm for Networks) utilized structural similarity measures 
to identify vertices that did not belong to any cluster, classifying them as hubs or outliers [11]. 
In the context of dynamic graphs, classical techniques often relied on snapshot-based analysis. 
For example, some methods employed matrix factorization or tensor decomposition to model 
the adjacency matrices of graph snapshots over time. By approximating the low-rank 
structure of the normal graph evolution, large residuals in the approximation were flagged as 
anomalies [12]. 

Another prominent line of classical research involves scan statistics and random walk-based 
methods. NetWalk, for instance, updates network embeddings dynamically using random 
walks to monitor the graph stream, detecting anomalies based on distance changes in the 
embedding space [13]. While these methods provided the foundational metrics for graph 
analysis, they often rely on hand-crafted features or linear assumptions that fail to capture the 
complex, non-linear interactions present in modern, high-dimensional datasets. Furthermore, 
matrix factorization techniques are computationally expensive and scale poorly to large, 
sparse graphs. 

2.2 Deep Learning Methods 

The advent of Deep Learning has revolutionized graph mining. Graph Convolutional Networks 
(GCNs) and Graph Attention Networks (GATs) have become the de facto standards for 
learning node embeddings. For anomaly detection, the DOMINANT framework was one of the 
first to employ a Graph Autoencoder (GAE) architecture, using a GCN encoder and two 
decoders (structure and attribute) to measure reconstruction errors [14]. However, 
DOMINANT is designed for static graphs and ignores temporal dynamics. 

To handle dynamic graphs, researchers have integrated GNNs with sequence modeling 
architectures like LSTMs or GRUs. The EvolveGCN approach, for instance, uses an RNN to 
update the parameters of the GCN at each timestamp, allowing the model to adapt to 
structural changes [15]. More recently, continuous-time dynamic graph networks have been 
proposed, such as Temporal Graph Networks (TGN), which utilize memory modules to store 
node states [16]. Despite their success in link prediction, applying these directly to anomaly 
detection is non-trivial. The scarcity of labels necessitates self-supervised approaches. 
Contrastive learning has shown promise here, with methods like DGI (Deep Graph Infomax) 
maximizing mutual information between local and global representations [17]. Our work 
extends this by explicitly incorporating multi-scale temporal views into the contrastive 
objective, addressing the specific requirements of anomaly detection in evolving networks 
[18]. 

Chapter 3: Methodology 

3.1 Overview of the MSTS-CL Framework 

The proposed MSTS-CL framework is designed to detect anomalies in a sequence of graph 
snapshots 𝐺 = 𝐺1, 𝐺2, . . . , 𝐺𝑇 . Each graph 𝐺𝑡 = (𝑉, 𝐸𝑡, 𝑋𝑡) consists of a set of vertices 𝑉, a 
temporal edge set 𝐸𝑡, and a node feature matrix 𝑋𝑡. The core intuition is that normal nodes 
exhibit consistent or predictably evolving patterns in their local subgraphs over time, whereas 
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anomalous nodes display abrupt structural disruptions or feature shifts that violate these 
temporal consistencies. 

The architecture comprises three main components: (1) Multi-Scale Temporal Subgraph 
Sampling, (2) Temporal Attention-based Encoding, and (3) a Dual-Objective Loss function 
combining contrastive learning with reconstruction error. 

 
Figure 1: Architectural Overview of MSTS 

3.2 Multi-Scale Temporal Subgraph Sampling 

To capture the diverse manifestations of anomalies, we avoid processing the entire graph 
snapshot at once, which can be computationally prohibitive and prone to noise. Instead, for a 
target node 𝑣𝑖  at time 𝑡, we extract a sequence of 𝐾-hop subgraphs. 

We define the 𝑘-hop subgraph of node 𝑣𝑖  at time 𝑡, denoted as 𝑆𝑖,𝑡
𝑘, as the induced subgraph 

formed by 𝑣𝑖  and its neighbors up to distance 𝑘. By varying 𝑘 (e.g., 𝑘 = 1 and 𝑘 = 2), we 
obtain multi-scale views [19]. 

   Small scale (k=1): Captures immediate interaction anomalies, such as a user suddenly 
spamming direct connections. 

   Large scale (k=2): Captures community-level anomalies, such as a node bridging two 
communities that usually do not interact. 

For each target node, we sample these subgraphs across a temporal window of size 𝑤, 

resulting in a sequence input: 𝑆𝑖 = (𝑆𝑖,𝑡−𝑤
1, 𝑆𝑖,𝑡−𝑤

2), . . . , (𝑆𝑖,𝑡
1, 𝑆𝑖,𝑡

2). This sampling strategy 
ensures that the model has access to both the spatial context at different granularities and the 
historical evolution of that context. 

3.3 Temporal Attention Encoder 

The extracted subgraphs are first processed by a shared Graph Isomorphism Network (GIN) 
encoder to generate structural embeddings. We choose GIN over GCN due to its superior 
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discriminative power in distinguishing non-isomorphic graphs. For a subgraph 𝑆𝑖,𝜏
𝑘, the GIN 

outputs a vector ℎ𝑖,𝜏
𝑘. 

The challenge lies in aggregating these embeddings over time. Simple averaging or fixed-
weight decay is insufficient because anomalies might relate to specific historical events (e.g., a 
periodic monthly transaction) rather than the immediate past. We employ a temporal self-
attention mechanism. 

Let 𝐻𝑖
𝑘 = [ℎ𝑖,𝑡−𝑤

𝑘, . . . , ℎ𝑖,𝑡
𝑘] be the sequence of embeddings for scale 𝑘. We compute the 

query, key, and value matrices (𝑄,𝐾, 𝑉) and apply scaled dot-product attention: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

This mechanism allows the model to dynamically assign higher weights to historical 
snapshots that are most relevant to the current state of node 𝑣𝑖 , effectively filtering out 
temporal noise [20]. The output is a context-aware temporal embedding 𝑧𝑖,𝑡

𝑘 for each scale. 

These are concatenated to form the final node representation 𝑍𝑖,𝑡. 

3.4 Contrastive Learning Module 

The core of our unsupervised learning strategy is the contrastive module. We posit that a 
node's representation at time 𝑡 should be predictive of its representation at 𝑡 + 1 (predictive 
coding) and should be distinguishable from the representations of other nodes or perturbed 
histories. 

We construct positive pairs by taking the embedding of node 𝑣𝑖  at time 𝑡 and its embedding at 
a very close future timestamp 𝑡 + 𝛿, or by using data augmentation (e.g., dropping a small 
percentage of edges) to create a view 𝑍′𝑖,𝑡. 

Negative pairs are generated in two ways: 

1.  Spatial Negatives: Embeddings of other nodes 𝑣𝑗  (𝑗 ≠ 𝑖) at time 𝑡. 

2.  Temporal Negatives: Embeddings of node 𝑣𝑖  but with the temporal sequence of input 
subgraphs randomly shuffled, disrupting the causal evolution. 

We utilize the InfoNCE loss to maximize the similarity between positive pairs while 
minimizing it for negative pairs. This forces the encoder to learn features that are unique to 
the node's stable identity and its valid temporal evolution. 

3.5 Joint Objective Function and Anomaly Scoring 

While contrastive learning learns high-quality representations, an explicit anomaly measure is 
needed. We augment the contrastive loss with a structural reconstruction loss. The decoder 
attempts to reconstruct the adjacency matrix of the input subgraph from the latent 
embedding 𝑍𝑖,𝑡. 

The total loss function is defined as a weighted sum of the contrastive loss and the 
reconstruction loss. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆∑𝑖=1
𝑁 − 𝑙𝑜𝑔

𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑖
+)/𝜏)

∑𝑗∈𝑁𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏)
+ (1 − 𝜆)∑𝑡=1

𝑇||𝐴𝑡 − ℎ𝑎𝑡𝐴𝑡||𝐹
2 
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Where 𝑠𝑖𝑚(·) is the cosine similarity, 𝜏 is a temperature parameter, 𝑧𝑖
+ is the positive pair, 

and 𝑁 is the set of negative samples. The second term represents the Frobenius norm of the 
reconstruction error. 

During inference, the anomaly score is derived from a combination of the reconstruction error 
and the negative contrastive score. A high reconstruction error implies the structure does not 
conform to learned patterns, and a low agreement with the positive temporal view indicates a 
violation of evolutionary trends. 

3.6 Implementation Detail 

The following code snippet demonstrates the core logic of the multi-scale temporal encoder 
forward pass (simplified for clarity). 

Code Snippet 1: Temporal Encoder Forward Pass 

import torch 

import torch.nn as nn 

from torch_geometric.nn import GINConv 

class MultiScaleTemporalEncoder(nn.Module): 

    def __init__(self, input_dim, hidden_dim, num_scales=2): 

        super(MultiScaleTemporalEncoder, self).__init__() 

        self.scales = num_scales 

        # Shared GIN Encoder for spatial features 

        self.gin = GINConv(nn.Sequential( 

            nn.Linear(input_dim, hidden_dim), 

            nn.ReLU(), 

            nn.Linear(hidden_dim, hidden_dim) 

        )) 

        # Temporal Attention Layer 

        self.temporal_attn = nn.MultiheadAttention(embed_dim=hidden_dim, num_heads=4)      

    def forward(self, x, edge_index_list, timestamps): 

        # x: Node features 

        # edge_index_list: List of edge indices for different scales and times         

        batch_size, seq_len = x.shape[0], len(timestamps) 

        all_scale_embeddings = []         

        for scale in range(self.scales): 

            temporal_embeddings = [] 

            for t in range(seq_len): 

                # Spatial Encoding for each snapshot 

                h_t = self.gin(x[:, t, :], edge_index_list[scale][t]) 

                temporal_embeddings.append(h_t) 
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            # Stack: (Seq_Len, Batch, Hidden) 

            h_stack = torch.stack(temporal_embeddings, dim=0)             

            # Temporal Attention 

            # Query, Key, Value are derived from the spatial embeddings 

            attn_output, _ = self.temporal_attn(h_stack, h_stack, h_stack)             

            # Pool over time or take last state 

            context_vector = attn_output[-1, :, :]  

            all_scale_embeddings.append(context_vector)            

        # Concatenate multi-scale representations 

        final_embedding = torch.cat(all_scale_embeddings, dim=-1) 

        return final_embedding 

Chapter 4: Experiments and Analysis 

4.1 Datasets and Experimental Setup 

To rigorously evaluate the proposed MSTS-CL framework, we utilize three standard dynamic 
graph datasets widely used in anomaly detection literature [21]: 

1.  Wikipedia: A bipartite graph representing users editing pages. Nodes are users and 
pages; edges represent edits. Dynamic attributes include the edit text features. Anomalies are 
users who are blocked from the site. 

2.  Reddit: A user-subreddit interaction graph. Nodes are users and subreddits. Anomalies 
represent users with malicious posting behaviors, flagged by moderators. 

3.  Mooc: A dataset of student actions on a Massive Open Online Course platform. Anomalies 
are dropouts or students attempting to manipulate assignment submissions. 

For all datasets, we construct graph snapshots by discretizing time into equal intervals. We 
use the first 70% of snapshots for training (assuming only normal data is available or treating 
anomalies as unlabeled noise) and the remaining 30% for testing. 

4.2 Baselines 

We compare MSTS-CL against a comprehensive set of baselines: 

   GCN-AE [14]: A static graph autoencoder applied to individual snapshots. 

   NetWalk [13]: A random-walk based dynamic embedding method. 

   DOMINANT [14]: The state-of-the-art static anomaly detector using attribute-structure 
contrast. 

   AddGraph [15]: A dynamic method using an attention-based GRU to model temporal edge 
additions. 

4.3 Performance Comparison 

We employ the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) and 
Average Precision (AP) as evaluation metrics. Table 1 presents the AUC-ROC scores. 
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Table 1: AUC-ROC Performance Comparison on Benchmark Datasets 

Method Wikipedia Reddit Mooc 

GCN-AE 0.762 0.784 0.691 

NetWalk 0.795 0.812 0.725 

DOMINANT 0.821 0.835 0.744 

AddGraph 0.854 0.868 0.789 

MSTS-CL 0.892 0.904 0.831 

As observed, MSTS-CL consistently outperforms all baselines. Static methods like DOMINANT 
perform reasonably well on Wikipedia but suffer on Mooc, likely because the anomalies in 
Mooc are highly dependent on the sequence of actions (temporal depth) rather than just the 
final structural state. AddGraph improves upon static methods but still lags behind MSTS-CL, 
validating the effectiveness of our multi-scale subgraph sampling which captures richer local 
contexts than edge-stream updates alone. 

 
Figure 2: ROC Curve Analysis 

We further analyze the precision of the top-ranked anomalies. Table 2 shows the 
Precision@K, where K is set to 50 and 100. This metric is crucial for real-world applications 
where human analysts can only investigate a limited budget of flagged cases. 

Table 2: Precision@K Analysis (K=50) 

Method Wikipedia (P@50) Reddit (P@50) 

DOMINANT 0.54 0.58 

AddGraph 0.62 0.65 

MSTS-CL 0.71 0.76 

The results in Table 2 confirm that MSTS-CL is not only good at global ranking (AUC) but also 
highly effective at pushing true anomalies to the very top of the list. 
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4.4 Ablation Studies 

To understand the contribution of each component, we conduct an ablation study by creating 
variants of MSTS-CL: 

   w/o Multi-Scale: Uses only 1-hop subgraphs. 

   w/o Attention: Replaces the temporal attention with a simple LSTM. 

   w/o Contrast: Removes the contrastive loss and relies solely on reconstruction error. 

Table 3: Ablation Study Results (AUC-ROC on Wikipedia) 

Variant AUC-ROC Drop 

Full Model 0.892 - 

w/o Multi-Scale 0.865 -2.7% 

w/o Attention 0.871 -2.1% 

w/o Contrast 0.840 -5.2% 

The ablation results indicate that the Contrastive Learning objective is the most critical 
component. Removing it causes a significant performance drop, reinforcing the hypothesis 
that reconstruction-based losses alone are insufficient for complex dynamic graphs. The 
Multi-Scale component also contributes notably, proving that capturing broader structural 
context helps in identifying sophisticated anomalies [22,23]. 

 
Figure 3: :t-SNE Visualization of Embedings 

4.5 Sensitivity Analysis 

We examined the sensitivity of the model to the temporal window size 𝑤. We found that 
performance increases as 𝑤 increases from 1 to 5, allowing the model to see more history. 
However, beyond 𝑤 = 5, performance plateaus or slightly degrades, likely due to the 
introduction of stale, irrelevant historical information that confuses the attention mechanism. 
Similarly, the number of GNN layers was optimized at 2; deeper networks resulted in over-
smoothing, making anomaly detection difficult. 
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Chapter 5: Conclusion 

In this paper, we presented MSTS-CL, a comprehensive framework for anomaly detection in 
dynamic graphs. By synthesizing multi-scale subgraph sampling, temporal attention 
mechanisms, and contrastive learning, our approach addresses the critical limitations of 
existing methods that fail to simultaneously model complex structural dependencies and 
temporal evolution. The experimental results across three diverse datasets confirm that 
MSTS-CL sets a new state-of-the-art, offering significant improvements in AUC-ROC and 
Precision@K metrics. 

The implications of this work are substantial for security-critical applications. The ability to 
detect anomalies without relying on large labeled datasets—via self-supervised contrastive 
learning—lowers the barrier to entry for deploying these systems in real-world scenarios 
where labels are scarce or expensive to obtain. Furthermore, the multi-scale aspect ensures 
that the model is versatile, capable of detecting both localized fraudulent accounts and larger, 
community-driven coordinated attacks. 

Despite its robust performance, MSTS-CL has limitations. The subgraph sampling and 
pairwise contrastive computation are computationally intensive, potentially hindering real-
time deployment on extremely large-scale graphs with millions of nodes and high-frequency 
edge updates. The current approach assumes discrete snapshots, which may result in 
information loss compared to continuous-time models. 

Future research directions will focus on two main areas. First, we aim to optimize the 
computational efficiency of the contrastive module, perhaps by employing localized 
approximations or efficient negative sampling strategies to enable streaming processing. 
Second, we plan to investigate the integration of Large Language Models (LLMs) to interpret 
the semantic features of nodes (e.g., text in Reddit posts) more effectively, creating a 
multimodal anomaly detection framework that combines structural, temporal, and semantic 
signals for unprecedented detection accuracy. 
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