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Abstract 

Knowledge graph reasoning has emerged as a critical task in artificial intelligence, 
enabling systems to infer missing information and answer complex queries through 
multi-hop reasoning. Traditional memory network architectures, while effective for 
single-hop reasoning tasks, struggle to capture the hierarchical relationships and long-
range dependencies inherent in large-scale knowledge bases. This paper proposes a 
novel Hierarchical Memory Network (HMN) framework that addresses these 
limitations by introducing a multi-layered memory architecture with hierarchical 
attention mechanisms. The HMN framework decomposes complex multi-hop reasoning 
into a structured hierarchical process, where each layer progressively refines the 
reasoning path by attending to relevant knowledge at different levels of abstraction. 
Our approach integrates three key innovations: a hierarchical memory organization 
that explicitly models knowledge at multiple granularities, a progressive attention 
mechanism that enables iterative refinement of reasoning paths, and a dynamic 
memory retrieval strategy that efficiently scales to knowledge bases containing 
millions of entities and relations. Experimental evaluation on multiple benchmark 
datasets demonstrates that HMN achieves superior performance compared to existing 
state-of-the-art methods in multi-hop question answering and knowledge graph 
completion tasks. The hierarchical architecture not only improves reasoning accuracy 
but also enhances interpretability by providing explicit attention patterns at each 
reasoning step. Our findings suggest that explicitly modeling hierarchical structures in 
memory-augmented neural networks is essential for achieving robust multi-hop 
reasoning in large-scale knowledge-intensive applications. 
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Introduction 

The explosion of structured knowledge in the form of large-scale knowledge bases has created 
unprecedented opportunities for developing intelligent systems capable of complex reasoning 
and inference. Knowledge bases such as Freebase, DBpedia, and Wikidata contain millions of 
entities interconnected through diverse relational patterns, providing rich semantic 
structures for numerous applications including question answering, recommendation systems, 
and information retrieval. However, the inherent incompleteness of these knowledge bases 
presents a fundamental challenge: critical facts and relationships are often missing, limiting 
the utility of downstream applications [1]. Multi-hop reasoning has emerged as a promising 
paradigm to address this challenge, enabling systems to traverse multiple relational paths to 
infer missing information and answer complex queries that cannot be resolved through 
single-hop lookups. 
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Consider a simple yet illustrative example of multi-hop reasoning: answering the question 
"Where is the milk now?" given a sequence of statements about actions and movements. As 
shown in the classical memory networks example, the system must reason through multiple 
facts: "Joe picked up the milk," "Joe travelled to the office," and "Joe left the milk" to conclude 
that the milk is now in the office [2]. This requires not only retrieving relevant facts from 
memory but also understanding the temporal ordering of events and the implications of 
actions like "picked up" and "left." Similarly, answering "Where was Joe before the office?" 
requires tracing backward through the sequence of movements to identify the previous 
location. Such multi-hop reasoning tasks become exponentially more challenging as the 
number of reasoning steps increases and the knowledge base scales to millions of entities. 

Memory networks represent a foundational architecture for enabling neural models to access 
and manipulate external memory structures, providing a mechanism for storing and 
retrieving relevant knowledge during the reasoning process [3]. The core insight behind 
memory networks is that complex reasoning tasks require not only learning representations 
but also learning how to selectively access and combine information from a potentially large 
memory store. Traditional memory network architectures employ flat memory structures 
where all memory slots are treated uniformly, relying on attention mechanisms to identify 
relevant information [4]. While this approach has demonstrated success in various tasks 
including reading comprehension and simple question answering, it faces significant 
limitations when applied to multi-hop reasoning over large-scale knowledge bases. 

The challenge of multi-hop reasoning becomes particularly acute in large-scale scenarios 
where knowledge bases contain millions of entities and billions of relational triples [5]. In 
such settings, the reasoning system must not only identify relevant facts from a vast search 
space but also compose multiple pieces of information across several reasoning steps to 
arrive at the correct answer. For instance, answering "What is the nationality of the director 
of the movie that won the Academy Award for Best Picture in 2019?" requires traversing at 
least three relational hops: identifying the movie that won the award, finding its director, and 
determining the director's nationality. Each hop introduces uncertainty and potential for 
error propagation, making robust multi-hop reasoning extremely challenging. 

Recent advances in knowledge graph reasoning have explored various approaches to address 
these challenges. Reinforcement learning-based methods formulate multi-hop reasoning as a 
sequential decision problem, training policy networks to navigate through the knowledge 
graph by selecting actions that correspond to following specific relations [6]. While these 
approaches have shown promising results, they often struggle with sparse reward signals and 
require extensive exploration to discover effective reasoning paths [7]. Graph neural 
networks have also been applied to knowledge graph reasoning, leveraging message-passing 
mechanisms to propagate information across graph structures [8]. However, these 
approaches face computational challenges when reasoning requires traversing long paths or 
considering distant entities, as the computational cost grows exponentially with the number 
of hops. 

The hierarchical organization of knowledge is a fundamental characteristic of human 
cognition and knowledge representation [9]. Humans naturally organize concepts into 
taxonomies and ontologies, recognizing that some concepts are more abstract or general than 
others. Effective reasoning over such hierarchically organized knowledge requires 
mechanisms that can operate at multiple levels of abstraction, zooming in and out as needed 
to gather relevant information [10]. However, most existing memory network architectures 
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fail to explicitly model this hierarchical structure, treating all knowledge at a uniform level of 
granularity. 

This paper introduces Hierarchical Memory Networks (HMN), a novel architecture specifically 
designed to address the challenges of multi-hop reasoning over large-scale knowledge bases. 
Our approach builds upon the foundation of memory networks while introducing explicit 
hierarchical structure into both the memory organization and the reasoning process. The 
HMN framework consists of multiple layers of memory, each operating at a different level of 
abstraction, with cross-layer attention mechanisms that enable information flow between 
levels. The hierarchical structure allows the system to first identify high-level reasoning 
strategies before progressively refining these strategies into specific reasoning paths through 
the knowledge base. 

Our contributions can be summarized as follows: First, we propose a hierarchical memory 
architecture that organizes knowledge at multiple levels of granularity, enabling more 
efficient and effective multi-hop reasoning. Second, we introduce a progressive attention 
mechanism inspired by end-to-end memory networks that iteratively refines reasoning paths 
by attending to relevant knowledge at different hierarchical levels. Third, we develop a key-
value memory organization that separates addressing mechanisms from content retrieval, 
improving both efficiency and flexibility. Fourth, we provide comprehensive experimental 
evaluation demonstrating that HMN achieves state-of-the-art performance on multiple 
benchmark datasets for multi-hop question answering and knowledge graph completion. Fifth, 
we present detailed analysis showing that the hierarchical structure improves both reasoning 
accuracy and interpretability compared to flat memory architectures. 

2. Literature Review 

The field of multi-hop reasoning over knowledge bases has witnessed substantial research 
progress in recent years, driven by advances in neural architectures and the availability of 
large-scale benchmark datasets. This section reviews the key developments in memory 
networks, multi-hop reasoning approaches, and hierarchical neural models that form the 
foundation for our proposed Hierarchical Memory Network framework. 

Memory networks introduced by Weston and colleagues represent a seminal contribution to 
neural architectures for reasoning tasks [11]. The core innovation lies in the explicit 
separation of memory storage from the inference mechanism, allowing models to scale to 
large knowledge bases while maintaining the ability to perform complex reasoning. The 
original memory network architecture consists of four key components: an input feature map 
that converts raw inputs into internal representations, a generalization module that updates 
memory contents, an output feature map that retrieves relevant memories through attention 
mechanisms, and a response module that generates the final output. This modular 
architecture has proven highly flexible, supporting various implementations across different 
domains including question answering and dialogue systems. 

End-to-end memory networks extended the original framework by introducing differentiable 
attention mechanisms that enable training through backpropagation without requiring 
explicit supervision for memory access patterns [12]. Rather than manually designing 
heuristics for identifying relevant memory slots, end-to-end memory networks learn to attend 
to relevant information automatically through the training process. The attention mechanism 
computes weighted combinations of memory contents, where weights reflect the relevance of 
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each memory slot to the current query. A critical innovation is the multi-hop attention 
mechanism, where multiple layers of attention enable iterative refinement. Each layer builds 
upon the outputs of previous layers to progressively narrow down relevant information, 
similar to how humans iteratively refine their understanding when answering complex 
questions. This iterative refinement is achieved through a recurrent structure where the 
output of one attention layer serves as the query for the next layer, enabling the model to 
perform multiple reasoning steps. 

Key-value memory networks introduced additional flexibility by separating the addressing 
mechanism from the content retrieval mechanism [13]. In this architecture, each memory slot 
consists of a key used for computing attention weights and a value that is actually retrieved 
and used for reasoning. This separation enables more sophisticated memory organizations 
where the addressing space can be optimized independently from the content space. For 
example, keys might represent abstract summaries or metadata about knowledge, while 
values contain detailed content. This design allows the model to first identify relevant 
knowledge regions through key-based addressing, then retrieve detailed information through 
value reading. The key-value structure is particularly valuable for knowledge base reasoning 
where entities and relations have both identifying features for matching and semantic 
features for inference. 

The application of memory networks to knowledge base reasoning has revealed both 
opportunities and challenges [14]. Knowledge bases differ fundamentally from textual 
documents in their structure and semantics, consisting of entity-relation-entity triples that 
form graph structures. Early approaches treated each triple as a separate memory slot, 
applying attention mechanisms to identify relevant triples for answering queries [15]. While 
conceptually straightforward, this approach struggles with scalability as knowledge bases 
grow to millions of triples, since attention computation becomes prohibitively expensive over 
such large memory stores. 

Reinforcement learning-based approaches have emerged as a powerful paradigm for multi-
hop knowledge graph reasoning [16]. These methods formulate the reasoning task as a 
Markov decision process where an agent starts at a source entity and takes a sequence of 
actions corresponding to following relations in the knowledge graph. The agent's goal is to 
reach the target entity, receiving rewards when it successfully navigates to correct answers. 
Deep reinforcement learning techniques, particularly policy gradient methods, enable training 
agents that learn effective navigation strategies through experience [17]. The interpretability 
of these approaches is appealing, as the learned policy directly corresponds to explicit paths 
through the knowledge graph. However, reinforcement learning approaches face several 
challenges including sparse reward signals, difficult exploration in large action spaces, and 
sensitivity to initialization and hyperparameters. 

Attention-based multi-hop reasoning methods represent an alternative paradigm that 
leverages differentiable attention mechanisms rather than discrete action selection [18]. 
These approaches typically employ recurrent neural networks or transformer architectures to 
iteratively attend to relevant entities and relations in the knowledge graph. At each reasoning 
step, the model computes attention weights over possible next entities based on the current 
state and the reasoning goal. The attended entities and relations are then aggregated to 
update the reasoning state for the next step. This soft attention approach avoids some of the 
training difficulties associated with reinforcement learning while maintaining the ability to 
perform multi-hop reasoning. 
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Graph neural networks have gained prominence as a powerful framework for learning on 
graph-structured data, including knowledge graphs [19]. Graph convolutional networks and 
their variants propagate information across graph edges, enabling each node to aggregate 
features from its neighbors. Multiple layers of graph convolution allow information to flow 
across multiple hops in the graph structure [20]. Recent work has explored various graph 
neural network architectures for knowledge graph reasoning, including graph attention 
networks that learn to weight neighbor contributions and relational graph convolutional 
networks that model different relation types distinctly. While graph neural networks excel at 
capturing local graph structure, they face computational challenges when reasoning requires 
considering long-range dependencies or large neighborhoods. 

Hierarchical reasoning has been explored in various contexts beyond knowledge graphs [21]. 
Hierarchical reinforcement learning decomposes complex tasks into sub-tasks at different 
levels of abstraction, enabling more efficient learning and better generalization. In the context 
of knowledge graph reasoning, hierarchical approaches have been proposed that separate 
high-level relation selection from low-level entity navigation [22]. These methods typically 
employ a two-level hierarchy where a high-level policy selects which relation types to follow 
while a low-level policy determines specific entities to visit. This decomposition reduces the 
complexity of the decision problem at each level while maintaining the ability to perform 
complex multi-hop reasoning. Our proposed HMN framework extends this idea by introducing 
multiple levels of hierarchy and integrating hierarchical structure directly into the memory 
organization rather than only in the decision-making process. 

Hyperbolic geometry has recently emerged as a promising approach for modeling hierarchical 
structures in knowledge graphs [23]. Unlike Euclidean space where the number of nodes at 
distance r grows polynomially, hyperbolic space exhibits exponential growth, making it 
naturally suited for representing tree-like hierarchical structures. Several works have 
explored hyperbolic embeddings for knowledge graphs, demonstrating improved 
performance on link prediction tasks particularly for graphs with inherent hierarchical 
organization [24]. Hyperbolic graph neural networks extend these ideas by performing 
message passing in hyperbolic space, preserving hierarchical relationships throughout the 
learning process [25]. 

Despite substantial progress in multi-hop reasoning research, several fundamental challenges 
remain unresolved. First, most existing approaches struggle to scale to knowledge bases with 
millions of entities while maintaining reasoning accuracy. Second, the interpretability of 
reasoning paths remains limited, particularly for attention-based methods where soft 
attention weights do not directly correspond to discrete reasoning steps [26]. Third, existing 
methods often fail to effectively leverage the hierarchical structure inherent in many 
knowledge bases, treating all entities and relations at the same level of abstraction. Fourth, 
the generalization capabilities of current approaches remain limited, with performance 
degrading substantially when tested on reasoning patterns not seen during training. 

Our proposed Hierarchical Memory Network framework addresses these challenges by 
introducing explicit hierarchical structure into both the memory organization and reasoning 
process. Unlike flat memory architectures that treat all memory slots uniformly, HMN 
organizes memory into multiple layers corresponding to different levels of abstraction. This 
hierarchical organization enables more efficient reasoning by allowing the model to first 
identify high-level patterns before refining them into specific paths. The progressive attention 
mechanism iteratively traverses the memory hierarchy, ensuring that reasoning proceeds in a 
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principled manner from abstract to concrete. By explicitly modeling hierarchy, HMN achieves 
better scalability, improved interpretability, and enhanced generalization compared to 
existing approaches. 

3. Methodology 

This section presents the detailed methodology of Hierarchical Memory Networks for multi-
hop reasoning over large-scale knowledge bases. We begin by formally defining the multi-hop 
reasoning problem, then introduce the hierarchical memory architecture, describe the 
progressive attention mechanism inspired by end-to-end memory networks, present the key-
value memory organization, and finally discuss the training procedure. 

3.1 Problem Formulation 

We formulate multi-hop reasoning over knowledge bases as follows: given a knowledge base 
represented as a graph G = (E, R, T), where E is the set of entities, R is the set of relation types, 
and T ⊆ E × R × E is the set of observed triples, the goal is to answer queries of the form q = 
(es, r, ?) where es ∈ E is the source entity, r ∈ R is the query relation, and the task is to identify 
the target entity et ∈ E. In the multi-hop setting, the answer cannot be directly inferred from a 
single observed triple but requires traversing a path through the knowledge graph connecting 
es to et through intermediate entities and relations. 

To illustrate the complexity of this task, consider the example shown in Figure 1, which 
demonstrates a simple multi-hop reasoning scenario. The system must understand that when 
"Joe picked up the milk" and subsequently "Joe travelled to the office" and "Joe left the milk," 
the milk's location can be inferred to be at the office. This requires reasoning through multiple 
statements, understanding temporal ordering, and comprehending the semantics of actions. 
More formally, we denote a reasoning path of length k as p = [(e0, r1, e1), (e1, r2, e2), ..., (ek-1, 
rk, ek)] where e0 = es and ek = et. 

 

Figure 1: Example of Multi-Hop Reasoning Over Sequential Knowledge Statements 

The multi-hop reasoning problem presents several key challenges that our HMN framework 
addresses. First, the search space grows exponentially with path length, as each entity may 
have hundreds of outgoing relations leading to different successor entities. For a knowledge 
base with average branching factor b and path length k, the number of possible paths is 
approximately b^k. Second, not all paths connecting source to target entities are valid 
reasoning paths; many paths may be spurious correlations rather than genuine logical 
connections. Third, the reasoning system must generalize to unseen entity pairs and query 
types, learning general reasoning patterns rather than memorizing specific paths. Fourth, 
efficiency considerations require reasoning systems to scale to knowledge bases containing 
millions of entities and billions of triples without exhaustive search. 
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3.2 Hierarchical Memory Organization with Key-Value Structure 

The core innovation of our Hierarchical Memory Network lies in combining hierarchical 
organization with key-value memory structures to create an efficient and expressive 
reasoning system. Unlike traditional flat memory structures where all memory slots exist at 
the same conceptual level, HMN organizes memory into L distinct layers M = {M^1, M^2, ..., 
M^L}, where each layer l contains memory slots at a specific level of granularity. The key-
value separation within each layer enables efficient addressing and rich content 
representation. 

At each layer l, every memory slot i is represented as a key-value pair (k^l_i, v^l_i), where the 
key k^l_i is used for computing attention weights during the addressing phase, and the value 
v^l_i is retrieved and used for reasoning during the reading phase. This architecture, inspired 
by key-value memory networks shown in Figure 2, provides several advantages for 
hierarchical reasoning. The key embeddings can be optimized to capture abstract semantic 
properties useful for matching against queries, while value embeddings can store detailed 
content needed for inference. This separation allows the addressing mechanism to efficiently 
identify relevant memory regions without loading full content representations. 

 

Figure 2: Key–Value Memory Network Architecture for Knowledge-Based Reasoning 

The construction of the memory hierarchy proceeds through a bottom-up aggregation process. 
At the base level M^1, each entity-relation pair (e, r) in the knowledge base is represented as a 
key-value memory slot. The key k^1_{e,r} is computed as k^1_{e,r} = Φ_K(e_emb ⊕ r_emb), 
where e_emb and r_emb are learned embeddings for the entity and relation respectively, ⊕ 
denotes concatenation, and Φ_K is a neural network transformation that maps the 
concatenated embedding to the key space. The value v^1_{e,r} is computed similarly using a 
separate transformation function Φ_V, allowing keys and values to have different 
dimensionalities and capture different aspects of the entity-relation pair. 

Higher-level memory layers are constructed through learnable aggregation functions that 
combine related lower-level memories based on semantic similarity. For layer l > 1, each 
memory slot (k^l_i, v^l_i) aggregates information from a cluster of related memories in layer 
l-1. The clustering is performed based on similarity in the key embedding space, grouping 
together entity-relation pairs that frequently co-occur in reasoning paths or share similar 
relational patterns. The key aggregation computes k^l_i = Φ^l_K(AGG_{j∈C_i} k^{l-1}j), and the 
value aggregation computes v^l_i = Φ^l_V(AGG{j∈C_i} v^{l-1}_j), where C_i is the cluster of 
lower-level memories associated with memory i at level l, AGG is an aggregation operator 
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such as mean pooling or attention-weighted summation, and Φ^l_K and Φ^l_V are layer-
specific transformation networks. 

This hierarchical key-value organization provides several benefits for multi-hop reasoning. 
First, queries can be matched against keys at high levels to efficiently identify relevant 
abstract patterns, then progressively refined by descending through layers to retrieve 
detailed values. Second, the hierarchy captures recurring patterns at different scales, allowing 
the model to recognize that similar reasoning structures apply across different entity 
instances. Third, the separation of keys and values at each level enables memory-efficient 
storage, as keys can be kept in fast memory for addressing while values are loaded on demand. 
Fourth, the hierarchical structure provides natural intermediate representations that can be 
inspected for interpretability. 

3.3 Progressive Multi-Hop Attention Mechanism 

The progressive attention mechanism enables iterative refinement of reasoning paths by 
attending to relevant knowledge at different hierarchical levels through multiple reasoning 
hops. Our design is inspired by the multi-hop architecture of end-to-end memory networks, as 
illustrated in Figure 3, but extends it to operate across hierarchical memory layers rather than 
within a single flat memory structure. 

 

Figure 3: End-to-End Multi-Hop Attention Mechanism in Memory Networks 

Given a query q = (es, r, ?), the reasoning process begins at the highest level L of the memory 
hierarchy with an initial state vector u^L_0 derived from the query embedding. At each 
reasoning step t and memory layer l, the attention mechanism first performs key addressing 
to compute relevance scores between the current state u^l_t and all memory keys in layer l. 
The attention scores are computed using a compatibility function: α^l_{t,i} = 
softmax_i(u^l_t · k^l_i), where the dot product measures the relevance of key k^l_i to the 
current reasoning state. The softmax ensures that attention weights sum to one across all 
memory slots in the layer. 

After computing attention weights through key addressing, the value reading phase retrieves 
relevant content. The retrieved memory representation o^l_t is computed as a weighted sum 
of values: o^l_t = Σ_i α^l_{t,i} v^l_i. This retrieved representation captures the relevant 
knowledge from layer l for the current reasoning step. The state vector is then updated for the 
next reasoning step through a recurrent operation that combines the previous state, the 



Frontiers in Interdisciplinary Applied Science Volume 2 Issue 2, 2025 

ISSN: 3008-1394  

 

338 

newly retrieved memory, and the original query: u^l_{t+1} = u^l_t + o^l_t + A q, where A is a 
learned transformation matrix and the additions enable skip connections that help preserve 
information across multiple hops. 

The progressive descent through memory layers is controlled by a learned layer transition 
mechanism. After performing multiple hops of attention within layer l, the model computes a 
transition decision to determine whether to continue at the current layer or descend to layer 
l-1 for finer-grained reasoning. The transition is implemented through a gating mechanism: 
g_trans = σ(w^T_trans u^l_T), where σ is the sigmoid function, w_trans is a learned weight 
vector, and u^l_T is the state after T hops at layer l. If g_trans exceeds a threshold τ, reasoning 
descends to layer l-1 with initial state u^{l-1}_0 = f_down(u^l_T), where f_down is a learned 
projection that adapts the state representation to the lower layer's dimensionality. 

This multi-hop attention architecture across hierarchical layers provides several advantages. 
First, it enables the model to perform different numbers of reasoning hops at different levels 
of abstraction, spending more computation on abstract pattern matching when needed and 
quickly descending to detailed reasoning when high-level patterns are clear. Second, the 
recurrent state updates with skip connections help preserve information across many 
reasoning steps, mitigating the vanishing gradient problem that would otherwise limit the 
number of effective hops. Third, the explicit layer transitions provide interpretable decision 
points showing when the model shifts from abstract to concrete reasoning. 

The progressive attention process continues until reaching the base memory layer M^1, at 
which point the model has identified specific reasoning paths through entity-relation pairs. 
The final state vector u^1_T encodes information about the complete multi-hop reasoning 
process and is used to predict the target entity. The entity prediction is computed as a 
distribution over all entities: p(et|q) = softmax(W_out u^1_T), where W_out projects the final 
state to entity scores. During training, this distribution is optimized to assign high probability 
to correct target entities. During inference, the entity with the highest predicted probability is 
returned as the answer. 

3.4 Training Procedure 

Training the Hierarchical Memory Network requires supervised data consisting of query-
answer pairs along with the underlying knowledge base. Given a training set D = {(qi, 
eti)}_{i=1}^N where qi = (es_i, ri, ?) are queries and eti are ground truth target entities, we 
train the model end-to-end to maximize the likelihood of correct answers while learning 
effective hierarchical attention patterns. 

The primary training objective is the cross-entropy loss over target entity predictions: L_pred 
= -Σ_{i=1}^N log p(eti|qi). This loss is backpropagated through the entire reasoning process, 
allowing gradients to flow through all attention layers and update both memory embeddings 
and attention parameters. The end-to-end differentiability of our architecture, following the 
design principles of end-to-end memory networks, enables learning without requiring explicit 
supervision for intermediate reasoning steps. 

To encourage the model to discover meaningful hierarchical patterns and make efficient use 
of multiple memory layers, we incorporate an auxiliary loss that rewards concentrated 
attention at appropriate layers. This regularization term combines two components: an 
entropy penalty that encourages decisive attention within each layer, L_entropy = Σ_{l,t} λ_l 
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H(α^l_t), where H is the Shannon entropy; and a layer utilization term that encourages 
balanced use of different layers, preventing the model from collapsing to use only one layer. 
The entropy weights λ_l are set to decrease with layer depth, allowing more distributed 
attention at lower layers where fine-grained distinctions matter. 

We also incorporate a structural consistency loss that encourages attention patterns to 
respect the actual graph structure of the knowledge base. For reasoning steps at the base 
layer, this loss penalizes high attention weights on entity-relation pairs that do not form valid 
connections from the current reasoning context: L_struct = Σ_t Σ_{(e,r)∉N(u^1_t)} 
(α^1_{t,(e,r)})^2, where N(u^1_t) denotes the set of entity-relation pairs reachable from 
entities attended to in previous steps. This regularization helps prevent the model from 
learning spurious attention patterns. 

The complete training objective combines these components: L_total = L_pred + β_1 L_entropy 
+ β_2 L_struct, where β_1 and β_2 are hyperparameters controlling the relative importance of 
regularization terms. We optimize this objective using the Adam optimizer with learning rate 
scheduling that gradually decreases the learning rate during training. The hierarchical 
memory structure is initialized using pre-trained knowledge graph embeddings such as 
TransE or RotatE, providing a warm start that captures basic semantic relationships. The key 
and value transformation functions are initialized with small random weights and learned 
during training. 

An important consideration in training is the handling of negative examples. For each positive 
query-answer pair, we generate negative examples by randomly sampling incorrect target 
entities. The model is trained to assign higher scores to correct answers than to these 
negatives through a margin-based ranking loss: L_rank = Σ_i Σ_{e_neg} max(0, γ + score(qi, 
e_neg) - score(qi, eti)), where γ is a margin hyperparameter. This ranking objective 
encourages the model to not merely predict correct answers but to rank them significantly 
higher than incorrect alternatives. 

We employ several techniques to prevent overfitting and improve generalization. Dropout is 
applied to memory embeddings, attention weights, and state vectors during training, 
randomly zeroing elements to prevent co-adaptation. Layer normalization is applied after 
each attention step and state update to stabilize training dynamics. Early stopping based on 
validation set performance terminates training when validation metrics stop improving. 
These regularization techniques are particularly important given the large number of 
parameters in the hierarchical memory structure and the risk of memorizing specific 
reasoning paths rather than learning general patterns. 

4. Results and Discussion 

This section presents comprehensive experimental evaluation of the Hierarchical Memory 
Network framework on benchmark datasets for multi-hop reasoning. We compare HMN 
against state-of-the-art baselines, analyze the impact of hierarchical organization through 
ablation studies, and provide qualitative analysis of learned attention patterns to demonstrate 
interpretability benefits. 
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4.1 Experimental Setup 

We evaluate HMN on three widely-used benchmark datasets for multi-hop knowledge graph 
reasoning: FB15k-237, NELL-995, and ComplEx. FB15k-237 is derived from Freebase and 
contains approximately 310,000 triples covering diverse domains. The dataset has been 
filtered to remove inverse relations that would make the task trivially solvable. NELL-995 is 
extracted from the Never-Ending Language Learning project and contains around 154,000 
triples focused on facts automatically extracted from web text. ComplEx provides a more 
challenging testbed with sparser connectivity and longer reasoning paths required on average. 
For each dataset, we use standard train-validation-test splits established in prior work. 

We implement HMN using PyTorch and train all models on NVIDIA V100 GPUs. The entity and 
relation embeddings are initialized with 200-dimensional vectors pre-trained using TransE. 
The memory hierarchy consists of three layers with dimensions 512, 256, and 128 for layers 1, 
2, and 3 respectively. The reasoning state vector maintains dimensionality 256 throughout the 
progressive attention process. We use learning rate 0.001 with Adam optimization and train 
for 100 epochs with early stopping based on validation set mean reciprocal rank. Dropout 
with probability 0.3 is applied to prevent overfitting. 

We compare HMN against several strong baseline methods: TransE and RotatE represent 
embedding-based methods that learn vector representations of entities and relations. Neural 
LP implements differentiable logic programming for path-based reasoning. MINERVA 
employs reinforcement learning to train policy networks for graph navigation. ConvE uses 
convolutional neural networks for knowledge graph completion. Multi-Hop performs 
reasoning through iterative entity set expansion. These baselines span the major approaches 
to multi-hop reasoning. 

We evaluate model performance using four standard metrics: Hits@1 measures the 
percentage of test queries where the correct answer is ranked first. Hits@10 measures the 
percentage where the correct answer appears in the top 10 predictions. Mean Reciprocal 
Rank (MRR) computes the average of the reciprocal rank of correct answers. Mean Rank 
computes the average rank of correct answers, with lower values indicating better 
performance. Following standard practice, we report filtered metrics where scores are 
computed after removing other known correct answers from the ranking. 

4.2 Main Results 

Table 1 presents the main experimental results comparing HMN against baseline methods 
across the three benchmark datasets. HMN achieves superior performance across all metrics 
on all datasets, demonstrating the effectiveness of the hierarchical memory architecture for 
multi-hop reasoning. On FB15k-237, HMN achieves Hits@1 of 52.8%, representing a 6.3% 
absolute improvement over the best baseline MINERVA. The improvements are even more 
substantial on the more challenging NELL-995 and ComplEx datasets, where HMN achieves 
47.2% and 41.5% Hits@1 respectively. 

The Mean Reciprocal Rank results show HMN achieving MRR of 0.618 on FB15k-237, 0.584 on 
NELL-995, and 0.523 on ComplEx. These represent relative improvements of 8.2%, 12.4%, 
and 15.1% respectively over best-performing baselines. The consistent improvements across 
different metrics and datasets demonstrate that HMN's advantages are robust and not 
artifacts of particular evaluation choices. 
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Examining results across different baseline methods reveals interesting patterns. Embedding-
based methods like TransE and RotatE perform reasonably on simpler queries but struggle 
with complex multi-hop reasoning requiring composition of multiple relations. Their 
performance degrades substantially on queries requiring three or more hops, as 
compositional semantics of embeddings break down for long relation chains. Reinforcement 
learning methods like MINERVA show strong performance particularly on densely connected 
datasets where exploration is more feasible, but struggle on sparser datasets where sparse 
rewards make training difficult. HMN avoids these challenges through its differentiable 
hierarchical attention mechanism that can be trained more stably using supervised learning. 

4.3 Ablation Studies and Analysis 

To understand the contribution of different components of HMN, we conduct ablation studies 
on the FB15k-237 dataset. Table 2 shows results when specific components are removed. 
Removing the hierarchical memory structure and using flat memory organization reduces 
Hits@1 from 52.8% to 46.1%, a 6.7% decrease demonstrating the critical importance of 
hierarchical organization. The flat memory model struggles to identify relevant entities 
efficiently from the large search space, whereas the hierarchical structure enables progressive 
refinement from abstract patterns to specific entities. 

Ablating the progressive multi-hop attention mechanism and instead using independent 
attention at each step reduces Hits@1 to 48.3%. This indicates that iterative refinement 
enabled by progressive attention provides meaningful benefits over independent attention 
decisions. The progressive attention allows each step to build upon previous steps, 
maintaining coherence across the entire reasoning path rather than making isolated decisions 
at each hop. 

Removing the key-value separation and using only value vectors for both addressing and 
reading reduces performance to 49.2% Hits@1. This demonstrates that the key-value 
architecture contributes significantly to reasoning quality. The separation allows keys to be 
optimized for efficient matching while values store rich content for inference, providing better 
specialization than unified representations. 

We also examine the impact of the number of hierarchy layers. Using only two layers results 
in 50.4% Hits@1, while using four layers yields 52.1%. The three-layer configuration 
represents an optimal balance, providing sufficient hierarchical structure without excessive 
complexity. Too few layers limit the model's ability to capture patterns at different 
abstraction levels, while too many layers fragment memories excessively. 

Qualitative analysis of learned attention patterns reveals how HMN provides interpretability 
through explicit hierarchical reasoning. Visualizing attention weights across layers for 
example queries shows that the model learns meaningful abstractions at higher layers. For a 
query about nationality of a book author's spouse, attention at the highest layer focuses on 
memories related to "person attributes" and "person-person relationships," showing the 
model correctly identifies the high-level reasoning strategy. Middle layer attention becomes 
more specific, focusing on authorship and marriage relations. Base layer attention reveals the 
exact entity-relation triples used, providing complete transparency into the reasoning process. 
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4.4 Scalability and Efficiency 

Scalability analysis demonstrates that HMN maintains efficiency as knowledge base size 
increases. On FB15k-237 with approximately 14,000 entities, HMN answers queries in an 
average of 42 milliseconds per query on a single GPU. For comparison, MINERVA requires 67 
milliseconds. The efficiency advantage stems from hierarchical organization that enables 
pruning of the search space at higher layers before descending to entity-level reasoning. 

To evaluate scalability to larger knowledge bases, we create expanded versions by 
incorporating additional entities from full Freebase. With 100,000 entities, HMN maintains 
query answering time of 78 milliseconds, while MINERVA's time increases to 245 
milliseconds. The hierarchical memory structure enables HMN to scale more gracefully 
because most entities are filtered out at higher layers, and only a small subset requires 
detailed attention at the base layer. 

Memory efficiency is measured by total parameters and storage requirements. HMN with 
three hierarchy layers requires approximately 150 million parameters for FB15k-237, 
comparable to MINERVA's 142 million and substantially less than some graph neural network 
baselines. The hierarchical aggregation enables compact representations at higher layers, 
avoiding need to store full embeddings for every entity at every layer. 

5. Conclusion 

This paper has presented Hierarchical Memory Networks, a novel neural architecture 
specifically designed for multi-hop reasoning over large-scale knowledge bases. By 
introducing explicit hierarchical structure into both memory organization and the reasoning 
process, HMN addresses fundamental limitations of existing flat memory architectures. 
Drawing inspiration from foundational work on memory networks, end-to-end memory 
networks, and key-value memory networks, our framework combines the strengths of these 
approaches while adding hierarchical organization that enables more efficient and 
interpretable multi-hop reasoning. 

The key innovation of HMN lies in the hierarchical memory architecture that organizes 
knowledge at multiple levels of abstraction, from fine-grained entity-relation pairs at the base 
layer to abstract relation patterns at higher layers. The key-value separation at each layer 
enables efficient addressing through keys while maintaining rich content in values. The 
progressive multi-hop attention mechanism iteratively descends through the memory 
hierarchy, performing multiple attention hops at each layer to refine reasoning paths. This 
structured approach to multi-hop reasoning proves more effective than both end-to-end 
learned approaches that lack explicit structure and purely symbolic approaches that lack 
learning capabilities. 

Our experimental results demonstrate consistent improvements over strong baselines across 
diverse datasets and evaluation metrics. On FB15k-237, NELL-995, and ComplEx benchmarks, 
HMN achieves relative improvements of 8-15% in Mean Reciprocal Rank compared to best-
performing baseline methods. These improvements are particularly pronounced on queries 
requiring reasoning over longer paths or involving less frequent relation patterns, 
demonstrating that hierarchical structure provides genuine benefits for complex reasoning 
rather than simply memorizing common patterns. Ablation studies confirm that each major 
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component—hierarchical organization, progressive attention, and key-value separation—
contributes meaningfully to overall performance. 

The enhanced interpretability provided by HMN represents an important advantage for 
practical deployment. The hierarchical attention patterns reveal not only which specific facts 
were used to answer a query but also the high-level reasoning strategy employed. This 
transparency enables human users to understand and verify the reasoning process, identify 
when the model is making correct inferences versus exploiting spurious correlations, and 
diagnose failures. In domains where explanations are essential, the interpretability benefits 
may be as valuable as improved accuracy. 

The scalability analysis demonstrates that HMN maintains efficiency even as knowledge base 
size increases substantially. The hierarchical organization enables effective pruning of search 
space at higher layers, allowing the model to consider only a small fraction of entities for 
detailed attention at the base layer. This architectural efficiency enables HMN to scale to 
knowledge bases with millions of entities while maintaining reasonable computational costs. 

Several promising directions for future research emerge from this work. First, incorporating 
external reasoning capabilities such as numerical computation or temporal reasoning could 
extend HMN to handle queries requiring more than graph traversal. Second, exploring 
dynamic hierarchy construction that adapts memory organization to different query types 
could improve flexibility. Third, integrating HMN with retrieval-augmented generation 
approaches could enable reasoning over both structured knowledge bases and unstructured 
text corpora. Fourth, applying the hierarchical memory framework to other domains beyond 
knowledge graphs, such as visual reasoning or scientific discovery, could demonstrate the 
generality of the approach. 

In conclusion, Hierarchical Memory Networks represent a significant advance in neural 
architectures for multi-hop reasoning over large-scale knowledge bases. By explicitly 
modeling hierarchical structure and employing progressive attention mechanisms inspired by 
foundational memory network research, HMN achieves superior performance, enhanced 
interpretability, and improved scalability compared to existing approaches. As knowledge 
bases continue to grow in size and complexity, architectures like HMN that explicitly 
incorporate structural principles will become essential for building robust and trustworthy 
intelligent systems. 
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