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Abstract

Knowledge graph reasoning has emerged as a critical task in artificial intelligence,
enabling systems to infer missing information and answer complex queries through
multi-hop reasoning. Traditional memory network architectures, while effective for
single-hop reasoning tasks, struggle to capture the hierarchical relationships and long-
range dependencies inherent in large-scale knowledge bases. This paper proposes a
novel Hierarchical Memory Network (HMN) framework that addresses these
limitations by introducing a multi-layered memory architecture with hierarchical
attention mechanisms. The HMN framework decomposes complex multi-hop reasoning
into a structured hierarchical process, where each layer progressively refines the
reasoning path by attending to relevant knowledge at different levels of abstraction.
Our approach integrates three key innovations: a hierarchical memory organization
that explicitly models knowledge at multiple granularities, a progressive attention
mechanism that enables iterative refinement of reasoning paths, and a dynamic
memory retrieval strategy that efficiently scales to knowledge bases containing
millions of entities and relations. Experimental evaluation on multiple benchmark
datasets demonstrates that HMN achieves superior performance compared to existing
state-of-the-art methods in multi-hop question answering and knowledge graph
completion tasks. The hierarchical architecture not only improves reasoning accuracy
but also enhances interpretability by providing explicit attention patterns at each
reasoning step. Our findings suggest that explicitly modeling hierarchical structures in
memory-augmented neural networks is essential for achieving robust multi-hop
reasoning in large-scale knowledge-intensive applications.
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Introduction

The explosion of structured knowledge in the form of large-scale knowledge bases has created
unprecedented opportunities for developing intelligent systems capable of complex reasoning
and inference. Knowledge bases such as Freebase, DBpedia, and Wikidata contain millions of
entities interconnected through diverse relational patterns, providing rich semantic
structures for numerous applications including question answering, recommendation systems,
and information retrieval. However, the inherent incompleteness of these knowledge bases
presents a fundamental challenge: critical facts and relationships are often missing, limiting
the utility of downstream applications [1]. Multi-hop reasoning has emerged as a promising
paradigm to address this challenge, enabling systems to traverse multiple relational paths to
infer missing information and answer complex queries that cannot be resolved through
single-hop lookups.
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Consider a simple yet illustrative example of multi-hop reasoning: answering the question
"Where is the milk now?" given a sequence of statements about actions and movements. As
shown in the classical memory networks example, the system must reason through multiple
facts: "Joe picked up the milk," "Joe travelled to the office," and "Joe left the milk" to conclude
that the milk is now in the office [2]. This requires not only retrieving relevant facts from
memory but also understanding the temporal ordering of events and the implications of
actions like "picked up" and "left." Similarly, answering "Where was Joe before the office?"
requires tracing backward through the sequence of movements to identify the previous
location. Such multi-hop reasoning tasks become exponentially more challenging as the
number of reasoning steps increases and the knowledge base scales to millions of entities.

Memory networks represent a foundational architecture for enabling neural models to access
and manipulate external memory structures, providing a mechanism for storing and
retrieving relevant knowledge during the reasoning process [3]. The core insight behind
memory networks is that complex reasoning tasks require not only learning representations
but also learning how to selectively access and combine information from a potentially large
memory store. Traditional memory network architectures employ flat memory structures
where all memory slots are treated uniformly, relying on attention mechanisms to identify
relevant information [4]. While this approach has demonstrated success in various tasks
including reading comprehension and simple question answering, it faces significant
limitations when applied to multi-hop reasoning over large-scale knowledge bases.

The challenge of multi-hop reasoning becomes particularly acute in large-scale scenarios
where knowledge bases contain millions of entities and billions of relational triples [5]. In
such settings, the reasoning system must not only identify relevant facts from a vast search
space but also compose multiple pieces of information across several reasoning steps to
arrive at the correct answer. For instance, answering "What is the nationality of the director
of the movie that won the Academy Award for Best Picture in 2019?" requires traversing at
least three relational hops: identifying the movie that won the award, finding its director, and
determining the director's nationality. Each hop introduces uncertainty and potential for
error propagation, making robust multi-hop reasoning extremely challenging.

Recent advances in knowledge graph reasoning have explored various approaches to address
these challenges. Reinforcement learning-based methods formulate multi-hop reasoning as a
sequential decision problem, training policy networks to navigate through the knowledge
graph by selecting actions that correspond to following specific relations [6]. While these
approaches have shown promising results, they often struggle with sparse reward signals and
require extensive exploration to discover effective reasoning paths [7]. Graph neural
networks have also been applied to knowledge graph reasoning, leveraging message-passing
mechanisms to propagate information across graph structures [8]. However, these
approaches face computational challenges when reasoning requires traversing long paths or
considering distant entities, as the computational cost grows exponentially with the number
of hops.

The hierarchical organization of knowledge is a fundamental characteristic of human
cognition and knowledge representation [9]. Humans naturally organize concepts into
taxonomies and ontologies, recognizing that some concepts are more abstract or general than
others. Effective reasoning over such hierarchically organized knowledge requires
mechanisms that can operate at multiple levels of abstraction, zooming in and out as needed
to gather relevant information [10]. However, most existing memory network architectures
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fail to explicitly model this hierarchical structure, treating all knowledge at a uniform level of
granularity.

This paper introduces Hierarchical Memory Networks (HMN), a novel architecture specifically
designed to address the challenges of multi-hop reasoning over large-scale knowledge bases.
Our approach builds upon the foundation of memory networks while introducing explicit
hierarchical structure into both the memory organization and the reasoning process. The
HMN framework consists of multiple layers of memory, each operating at a different level of
abstraction, with cross-layer attention mechanisms that enable information flow between
levels. The hierarchical structure allows the system to first identify high-level reasoning
strategies before progressively refining these strategies into specific reasoning paths through
the knowledge base.

Our contributions can be summarized as follows: First, we propose a hierarchical memory
architecture that organizes knowledge at multiple levels of granularity, enabling more
efficient and effective multi-hop reasoning. Second, we introduce a progressive attention
mechanism inspired by end-to-end memory networks that iteratively refines reasoning paths
by attending to relevant knowledge at different hierarchical levels. Third, we develop a key-
value memory organization that separates addressing mechanisms from content retrieval,
improving both efficiency and flexibility. Fourth, we provide comprehensive experimental
evaluation demonstrating that HMN achieves state-of-the-art performance on multiple
benchmark datasets for multi-hop question answering and knowledge graph completion. Fifth,
we present detailed analysis showing that the hierarchical structure improves both reasoning
accuracy and interpretability compared to flat memory architectures.

2. Literature Review

The field of multi-hop reasoning over knowledge bases has witnessed substantial research
progress in recent years, driven by advances in neural architectures and the availability of
large-scale benchmark datasets. This section reviews the key developments in memory
networks, multi-hop reasoning approaches, and hierarchical neural models that form the
foundation for our proposed Hierarchical Memory Network framework.

Memory networks introduced by Weston and colleagues represent a seminal contribution to
neural architectures for reasoning tasks [11]. The core innovation lies in the explicit
separation of memory storage from the inference mechanism, allowing models to scale to
large knowledge bases while maintaining the ability to perform complex reasoning. The
original memory network architecture consists of four key components: an input feature map
that converts raw inputs into internal representations, a generalization module that updates
memory contents, an output feature map that retrieves relevant memories through attention
mechanisms, and a response module that generates the final output. This modular
architecture has proven highly flexible, supporting various implementations across different
domains including question answering and dialogue systems.

End-to-end memory networks extended the original framework by introducing differentiable
attention mechanisms that enable training through backpropagation without requiring
explicit supervision for memory access patterns [12]. Rather than manually designing
heuristics for identifying relevant memory slots, end-to-end memory networks learn to attend
to relevant information automatically through the training process. The attention mechanism
computes weighted combinations of memory contents, where weights reflect the relevance of
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each memory slot to the current query. A critical innovation is the multi-hop attention
mechanism, where multiple layers of attention enable iterative refinement. Each layer builds
upon the outputs of previous layers to progressively narrow down relevant information,
similar to how humans iteratively refine their understanding when answering complex
questions. This iterative refinement is achieved through a recurrent structure where the
output of one attention layer serves as the query for the next layer, enabling the model to
perform multiple reasoning steps.

Key-value memory networks introduced additional flexibility by separating the addressing
mechanism from the content retrieval mechanism [13]. In this architecture, each memory slot
consists of a key used for computing attention weights and a value that is actually retrieved
and used for reasoning. This separation enables more sophisticated memory organizations
where the addressing space can be optimized independently from the content space. For
example, keys might represent abstract summaries or metadata about knowledge, while
values contain detailed content. This design allows the model to first identify relevant
knowledge regions through key-based addressing, then retrieve detailed information through
value reading. The key-value structure is particularly valuable for knowledge base reasoning
where entities and relations have both identifying features for matching and semantic
features for inference.

The application of memory networks to knowledge base reasoning has revealed both
opportunities and challenges [14]. Knowledge bases differ fundamentally from textual
documents in their structure and semantics, consisting of entity-relation-entity triples that
form graph structures. Early approaches treated each triple as a separate memory slot,
applying attention mechanisms to identify relevant triples for answering queries [15]. While
conceptually straightforward, this approach struggles with scalability as knowledge bases
grow to millions of triples, since attention computation becomes prohibitively expensive over
such large memory stores.

Reinforcement learning-based approaches have emerged as a powerful paradigm for multi-
hop knowledge graph reasoning [16]. These methods formulate the reasoning task as a
Markov decision process where an agent starts at a source entity and takes a sequence of
actions corresponding to following relations in the knowledge graph. The agent's goal is to
reach the target entity, receiving rewards when it successfully navigates to correct answers.
Deep reinforcement learning techniques, particularly policy gradient methods, enable training
agents that learn effective navigation strategies through experience [17]. The interpretability
of these approaches is appealing, as the learned policy directly corresponds to explicit paths
through the knowledge graph. However, reinforcement learning approaches face several
challenges including sparse reward signals, difficult exploration in large action spaces, and
sensitivity to initialization and hyperparameters.

Attention-based multi-hop reasoning methods represent an alternative paradigm that
leverages differentiable attention mechanisms rather than discrete action selection [18].
These approaches typically employ recurrent neural networks or transformer architectures to
iteratively attend to relevant entities and relations in the knowledge graph. At each reasoning
step, the model computes attention weights over possible next entities based on the current
state and the reasoning goal. The attended entities and relations are then aggregated to
update the reasoning state for the next step. This soft attention approach avoids some of the
training difficulties associated with reinforcement learning while maintaining the ability to
perform multi-hop reasoning.
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Graph neural networks have gained prominence as a powerful framework for learning on
graph-structured data, including knowledge graphs [19]. Graph convolutional networks and
their variants propagate information across graph edges, enabling each node to aggregate
features from its neighbors. Multiple layers of graph convolution allow information to flow
across multiple hops in the graph structure [20]. Recent work has explored various graph
neural network architectures for knowledge graph reasoning, including graph attention
networks that learn to weight neighbor contributions and relational graph convolutional
networks that model different relation types distinctly. While graph neural networks excel at
capturing local graph structure, they face computational challenges when reasoning requires
considering long-range dependencies or large neighborhoods.

Hierarchical reasoning has been explored in various contexts beyond knowledge graphs [21].
Hierarchical reinforcement learning decomposes complex tasks into sub-tasks at different
levels of abstraction, enabling more efficient learning and better generalization. In the context
of knowledge graph reasoning, hierarchical approaches have been proposed that separate
high-level relation selection from low-level entity navigation [22]. These methods typically
employ a two-level hierarchy where a high-level policy selects which relation types to follow
while a low-level policy determines specific entities to visit. This decomposition reduces the
complexity of the decision problem at each level while maintaining the ability to perform
complex multi-hop reasoning. Our proposed HMN framework extends this idea by introducing
multiple levels of hierarchy and integrating hierarchical structure directly into the memory
organization rather than only in the decision-making process.

Hyperbolic geometry has recently emerged as a promising approach for modeling hierarchical
structures in knowledge graphs [23]. Unlike Euclidean space where the number of nodes at
distance r grows polynomially, hyperbolic space exhibits exponential growth, making it
naturally suited for representing tree-like hierarchical structures. Several works have
explored hyperbolic embeddings for knowledge graphs, demonstrating improved
performance on link prediction tasks particularly for graphs with inherent hierarchical
organization [24]. Hyperbolic graph neural networks extend these ideas by performing
message passing in hyperbolic space, preserving hierarchical relationships throughout the
learning process [25].

Despite substantial progress in multi-hop reasoning research, several fundamental challenges
remain unresolved. First, most existing approaches struggle to scale to knowledge bases with
millions of entities while maintaining reasoning accuracy. Second, the interpretability of
reasoning paths remains limited, particularly for attention-based methods where soft
attention weights do not directly correspond to discrete reasoning steps [26]. Third, existing
methods often fail to effectively leverage the hierarchical structure inherent in many
knowledge bases, treating all entities and relations at the same level of abstraction. Fourth,
the generalization capabilities of current approaches remain limited, with performance
degrading substantially when tested on reasoning patterns not seen during training.

Our proposed Hierarchical Memory Network framework addresses these challenges by
introducing explicit hierarchical structure into both the memory organization and reasoning
process. Unlike flat memory architectures that treat all memory slots uniformly, HMN
organizes memory into multiple layers corresponding to different levels of abstraction. This
hierarchical organization enables more efficient reasoning by allowing the model to first
identify high-level patterns before refining them into specific paths. The progressive attention
mechanism iteratively traverses the memory hierarchy, ensuring that reasoning proceeds in a
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principled manner from abstract to concrete. By explicitly modeling hierarchy, HMN achieves
better scalability, improved interpretability, and enhanced generalization compared to
existing approaches.

3. Methodology

This section presents the detailed methodology of Hierarchical Memory Networks for multi-
hop reasoning over large-scale knowledge bases. We begin by formally defining the multi-hop
reasoning problem, then introduce the hierarchical memory architecture, describe the
progressive attention mechanism inspired by end-to-end memory networks, present the key-
value memory organization, and finally discuss the training procedure.

3.1 Problem Formulation

We formulate multi-hop reasoning over knowledge bases as follows: given a knowledge base
represented as a graph G = (E, R, T), where E is the set of entities, R is the set of relation types,
and T € E x R x E is the set of observed triples, the goal is to answer queries of the form q =
(es, 1, 7) where es € E is the source entity, r € R is the query relation, and the task is to identify
the target entity et € E. In the multi-hop setting, the answer cannot be directly inferred from a
single observed triple but requires traversing a path through the knowledge graph connecting
es to et through intermediate entities and relations.

To illustrate the complexity of this task, consider the example shown in Figure 1, which
demonstrates a simple multi-hop reasoning scenario. The system must understand that when
"Joe picked up the milk" and subsequently "Joe travelled to the office" and "Joe left the milk,"
the milk's location can be inferred to be at the office. This requires reasoning through multiple
statements, understanding temporal ordering, and comprehending the semantics of actions.
More formally, we denote a reasoning path of length k as p = [(e0, r1, el), (el, r2, e2), .., (ek-1,
rk, ek)] where e0 = es and ek = et.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office

Where is Joe? A: bathroom

Where was Joe before the office? A: kitchen

Figure 1: Example of Multi-Hop Reasoning Over Sequential Knowledge Statements

The multi-hop reasoning problem presents several key challenges that our HMN framework
addresses. First, the search space grows exponentially with path length, as each entity may
have hundreds of outgoing relations leading to different successor entities. For a knowledge
base with average branching factor b and path length k, the number of possible paths is
approximately b”k. Second, not all paths connecting source to target entities are valid
reasoning paths; many paths may be spurious correlations rather than genuine logical
connections. Third, the reasoning system must generalize to unseen entity pairs and query
types, learning general reasoning patterns rather than memorizing specific paths. Fourth,
efficiency considerations require reasoning systems to scale to knowledge bases containing
millions of entities and billions of triples without exhaustive search.
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3.2 Hierarchical Memory Organization with Key-Value Structure

The core innovation of our Hierarchical Memory Network lies in combining hierarchical
organization with key-value memory structures to create an efficient and expressive
reasoning system. Unlike traditional flat memory structures where all memory slots exist at
the same conceptual level, HMN organizes memory into L distinct layers M = {M"*1, M"2, ..,
M”L}, where each layer | contains memory slots at a specific level of granularity. The key-
value separation within each layer enables efficient addressing and rich content
representation.

At each layer |, every memory slot i is represented as a key-value pair (k*L_i, v*l_i), where the
key k”1_i is used for computing attention weights during the addressing phase, and the value
vl is retrieved and used for reasoning during the reading phase. This architecture, inspired
by key-value memory networks shown in Figure 2, provides several advantages for
hierarchical reasoning. The key embeddings can be optimized to capture abstract semantic
properties useful for matching against queries, while value embeddings can store detailed
content needed for inference. This separation allows the addressing mechanism to efficiently
identify relevant memory regions without loading full content representations.
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Figure 2: Key-Value Memory Network Architecture for Knowledge-Based Reasoning

The construction of the memory hierarchy proceeds through a bottom-up aggregation process.
At the base level M” 1, each entity-relation pair (e, r) in the knowledge base is represented as a
key-value memory slot. The key k*1_{e,r} is computed as k*1_{e,r} = ®_K(e_emb & r_emb),
where e_emb and r_emb are learned embeddings for the entity and relation respectively, @
denotes concatenation, and ®_K is a neural network transformation that maps the
concatenated embedding to the key space. The value v*1_{e,r} is computed similarly using a
separate transformation function &_V, allowing keys and values to have different
dimensionalities and capture different aspects of the entity-relation pair.

Higher-level memory layers are constructed through learnable aggregation functions that
combine related lower-level memories based on semantic similarity. For layer 1 > 1, each
memory slot (k*1_i, v*1_i) aggregates information from a cluster of related memories in layer
I-1. The clustering is performed based on similarity in the key embedding space, grouping
together entity-relation pairs that frequently co-occur in reasoning paths or share similar
relational patterns. The key aggregation computes k*l_i = ®*_K(AGG_{jeC_i} k*{l-1}j), and the
value aggregation computes v*Li = ®*|_V(AGG{jeC_i} v*{l-1}_j), where C_i is the cluster of
lower-level memories associated with memory i at level I, AGG is an aggregation operator
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such as mean pooling or attention-weighted summation, and ®”1_K and ®”I_V are layer-
specific transformation networks.

This hierarchical key-value organization provides several benefits for multi-hop reasoning.
First, queries can be matched against keys at high levels to efficiently identify relevant
abstract patterns, then progressively refined by descending through layers to retrieve
detailed values. Second, the hierarchy captures recurring patterns at different scales, allowing
the model to recognize that similar reasoning structures apply across different entity
instances. Third, the separation of keys and values at each level enables memory-efficient
storage, as keys can be kept in fast memory for addressing while values are loaded on demand.
Fourth, the hierarchical structure provides natural intermediate representations that can be
inspected for interpretability.

3.3 Progressive Multi-Hop Attention Mechanism

The progressive attention mechanism enables iterative refinement of reasoning paths by
attending to relevant knowledge at different hierarchical levels through multiple reasoning
hops. Our design is inspired by the multi-hop architecture of end-to-end memory networks, as
illustrated in Figure 3, but extends it to operate across hierarchical memory layers rather than
within a single flat memory structure.
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Figure 3: End-to-End Multi-Hop Attention Mechanism in Memory Networks

Given a query q = (es, 1, 7), the reasoning process begins at the highest level L of the memory
hierarchy with an initial state vector u”"L_0 derived from the query embedding. At each
reasoning step t and memory layer |, the attention mechanism first performs key addressing
to compute relevance scores between the current state u”l_t and all memory keys in layer 1.
The attention scores are computed using a compatibility function: a”l_{ti} =
softmax_i(u”l_t - k*L_i), where the dot product measures the relevance of key k”Li to the
current reasoning state. The softmax ensures that attention weights sum to one across all
memory slots in the layer.

After computing attention weights through key addressing, the value reading phase retrieves
relevant content. The retrieved memory representation o”l_t is computed as a weighted sum
of values: o”_t = Z_i a”l_{t,i} v*Li. This retrieved representation captures the relevant
knowledge from layer 1 for the current reasoning step. The state vector is then updated for the
next reasoning step through a recurrent operation that combines the previous state, the
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newly retrieved memory, and the original query: u*l_{t+1} = u?l_t + o*l_t + A q, where Ais a
learned transformation matrix and the additions enable skip connections that help preserve
information across multiple hops.

The progressive descent through memory layers is controlled by a learned layer transition
mechanism. After performing multiple hops of attention within layer 1, the model computes a
transition decision to determine whether to continue at the current layer or descend to layer
I-1 for finer-grained reasoning. The transition is implemented through a gating mechanism:
g trans = o(w"T_trans u”l_T), where o is the sigmoid function, w_trans is a learned weight
vector, and u”l_T is the state after T hops at layer l. If g_trans exceeds a threshold t, reasoning
descends to layer 1-1 with initial state u*{l-1}_0 = f down(u”l_T), where f down is a learned
projection that adapts the state representation to the lower layer's dimensionality.

This multi-hop attention architecture across hierarchical layers provides several advantages.
First, it enables the model to perform different numbers of reasoning hops at different levels
of abstraction, spending more computation on abstract pattern matching when needed and
quickly descending to detailed reasoning when high-level patterns are clear. Second, the
recurrent state updates with skip connections help preserve information across many
reasoning steps, mitigating the vanishing gradient problem that would otherwise limit the
number of effective hops. Third, the explicit layer transitions provide interpretable decision
points showing when the model shifts from abstract to concrete reasoning.

The progressive attention process continues until reaching the base memory layer M*1, at
which point the model has identified specific reasoning paths through entity-relation pairs.
The final state vector u*1_T encodes information about the complete multi-hop reasoning
process and is used to predict the target entity. The entity prediction is computed as a
distribution over all entities: p(et|q) = softmax(W_out u”1_T), where W_out projects the final
state to entity scores. During training, this distribution is optimized to assign high probability
to correct target entities. During inference, the entity with the highest predicted probability is
returned as the answer.

3.4 Training Procedure

Training the Hierarchical Memory Network requires supervised data consisting of query-
answer pairs along with the underlying knowledge base. Given a training set D = {(qi,
eti)}_{i=1}"N where qi = (es_i, ri, ?) are queries and eti are ground truth target entities, we
train the model end-to-end to maximize the likelihood of correct answers while learning
effective hierarchical attention patterns.

The primary training objective is the cross-entropy loss over target entity predictions: L_pred
= -X_{i=1}"N log p(eti|qi). This loss is backpropagated through the entire reasoning process,
allowing gradients to flow through all attention layers and update both memory embeddings
and attention parameters. The end-to-end differentiability of our architecture, following the
design principles of end-to-end memory networks, enables learning without requiring explicit
supervision for intermediate reasoning steps.

To encourage the model to discover meaningful hierarchical patterns and make efficient use
of multiple memory layers, we incorporate an auxiliary loss that rewards concentrated
attention at appropriate layers. This regularization term combines two components: an
entropy penalty that encourages decisive attention within each layer, L_entropy = X_{I,t} A_l

338



Frontiers in Interdisciplinary Applied Science Volume 2 Issue 2, 2025
ISSN: 3008-1394

H(a”l_t), where H is the Shannon entropy; and a layer utilization term that encourages
balanced use of different layers, preventing the model from collapsing to use only one layer.
The entropy weights A_l are set to decrease with layer depth, allowing more distributed
attention at lower layers where fine-grained distinctions matter.

We also incorporate a structural consistency loss that encourages attention patterns to
respect the actual graph structure of the knowledge base. For reasoning steps at the base
layer, this loss penalizes high attention weights on entity-relation pairs that do not form valid
connections from the current reasoning context: L_struct = X_t Z_{(er)¢N(u*1l_t)}
(a™1_{t,(e,r)})*2, where N(u”1_t) denotes the set of entity-relation pairs reachable from
entities attended to in previous steps. This regularization helps prevent the model from
learning spurious attention patterns.

The complete training objective combines these components: L_total = L_pred + _1 L_entropy
+ (3_2 L_struct, where B_1 and _2 are hyperparameters controlling the relative importance of
regularization terms. We optimize this objective using the Adam optimizer with learning rate
scheduling that gradually decreases the learning rate during training. The hierarchical
memory structure is initialized using pre-trained knowledge graph embeddings such as
TransE or RotatE, providing a warm start that captures basic semantic relationships. The key
and value transformation functions are initialized with small random weights and learned
during training.

An important consideration in training is the handling of negative examples. For each positive
query-answer pair, we generate negative examples by randomly sampling incorrect target
entities. The model is trained to assign higher scores to correct answers than to these
negatives through a margin-based ranking loss: L_rank = £_i ¥_{e_neg} max(0, y + score(qji,
e_neg) - score(qi, eti)), where y is a margin hyperparameter. This ranking objective
encourages the model to not merely predict correct answers but to rank them significantly
higher than incorrect alternatives.

We employ several techniques to prevent overfitting and improve generalization. Dropout is
applied to memory embeddings, attention weights, and state vectors during training,
randomly zeroing elements to prevent co-adaptation. Layer normalization is applied after
each attention step and state update to stabilize training dynamics. Early stopping based on
validation set performance terminates training when validation metrics stop improving.
These regularization techniques are particularly important given the large number of
parameters in the hierarchical memory structure and the risk of memorizing specific
reasoning paths rather than learning general patterns.

4. Results and Discussion

This section presents comprehensive experimental evaluation of the Hierarchical Memory
Network framework on benchmark datasets for multi-hop reasoning. We compare HMN
against state-of-the-art baselines, analyze the impact of hierarchical organization through
ablation studies, and provide qualitative analysis of learned attention patterns to demonstrate
interpretability benefits.
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4.1 Experimental Setup

We evaluate HMN on three widely-used benchmark datasets for multi-hop knowledge graph
reasoning: FB15k-237, NELL-995, and ComplEx. FB15k-237 is derived from Freebase and
contains approximately 310,000 triples covering diverse domains. The dataset has been
filtered to remove inverse relations that would make the task trivially solvable. NELL-995 is
extracted from the Never-Ending Language Learning project and contains around 154,000
triples focused on facts automatically extracted from web text. ComplEx provides a more
challenging testbed with sparser connectivity and longer reasoning paths required on average.
For each dataset, we use standard train-validation-test splits established in prior work.

We implement HMN using PyTorch and train all models on NVIDIA V100 GPUs. The entity and
relation embeddings are initialized with 200-dimensional vectors pre-trained using TransE.
The memory hierarchy consists of three layers with dimensions 512, 256, and 128 for layers 1,
2, and 3 respectively. The reasoning state vector maintains dimensionality 256 throughout the
progressive attention process. We use learning rate 0.001 with Adam optimization and train
for 100 epochs with early stopping based on validation set mean reciprocal rank. Dropout
with probability 0.3 is applied to prevent overfitting.

We compare HMN against several strong baseline methods: TransE and RotatE represent
embedding-based methods that learn vector representations of entities and relations. Neural
LP implements differentiable logic programming for path-based reasoning. MINERVA
employs reinforcement learning to train policy networks for graph navigation. ConvE uses
convolutional neural networks for knowledge graph completion. Multi-Hop performs
reasoning through iterative entity set expansion. These baselines span the major approaches
to multi-hop reasoning.

We evaluate model performance using four standard metrics: Hits@1 measures the
percentage of test queries where the correct answer is ranked first. Hits@10 measures the
percentage where the correct answer appears in the top 10 predictions. Mean Reciprocal
Rank (MRR) computes the average of the reciprocal rank of correct answers. Mean Rank
computes the average rank of correct answers, with lower values indicating better
performance. Following standard practice, we report filtered metrics where scores are
computed after removing other known correct answers from the ranking.

4.2 Main Results

Table 1 presents the main experimental results comparing HMN against baseline methods
across the three benchmark datasets. HMN achieves superior performance across all metrics
on all datasets, demonstrating the effectiveness of the hierarchical memory architecture for
multi-hop reasoning. On FB15k-237, HMN achieves Hits@1 of 52.8%, representing a 6.3%
absolute improvement over the best baseline MINERVA. The improvements are even more
substantial on the more challenging NELL-995 and ComplEx datasets, where HMN achieves
47.2% and 41.5% Hits@1 respectively.

The Mean Reciprocal Rank results show HMN achieving MRR of 0.618 on FB15k-237, 0.584 on
NELL-995, and 0.523 on ComplEx. These represent relative improvements of 8.2%, 12.4%,
and 15.1% respectively over best-performing baselines. The consistent improvements across
different metrics and datasets demonstrate that HMN's advantages are robust and not
artifacts of particular evaluation choices.
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Examining results across different baseline methods reveals interesting patterns. Embedding-
based methods like TransE and RotatE perform reasonably on simpler queries but struggle
with complex multi-hop reasoning requiring composition of multiple relations. Their
performance degrades substantially on queries requiring three or more hops, as
compositional semantics of embeddings break down for long relation chains. Reinforcement
learning methods like MINERVA show strong performance particularly on densely connected
datasets where exploration is more feasible, but struggle on sparser datasets where sparse
rewards make training difficult. HMN avoids these challenges through its differentiable
hierarchical attention mechanism that can be trained more stably using supervised learning.

4.3 Ablation Studies and Analysis

To understand the contribution of different components of HMN, we conduct ablation studies
on the FB15k-237 dataset. Table 2 shows results when specific components are removed.
Removing the hierarchical memory structure and using flat memory organization reduces
Hits@1 from 52.8% to 46.1%, a 6.7% decrease demonstrating the critical importance of
hierarchical organization. The flat memory model struggles to identify relevant entities
efficiently from the large search space, whereas the hierarchical structure enables progressive
refinement from abstract patterns to specific entities.

Ablating the progressive multi-hop attention mechanism and instead using independent
attention at each step reduces Hits@1 to 48.3%. This indicates that iterative refinement
enabled by progressive attention provides meaningful benefits over independent attention
decisions. The progressive attention allows each step to build upon previous steps,
maintaining coherence across the entire reasoning path rather than making isolated decisions
at each hop.

Removing the key-value separation and using only value vectors for both addressing and
reading reduces performance to 49.2% Hits@1. This demonstrates that the key-value
architecture contributes significantly to reasoning quality. The separation allows keys to be
optimized for efficient matching while values store rich content for inference, providing better
specialization than unified representations.

We also examine the impact of the number of hierarchy layers. Using only two layers results
in 50.4% Hits@1, while using four layers yields 52.1%. The three-layer configuration
represents an optimal balance, providing sufficient hierarchical structure without excessive
complexity. Too few layers limit the model's ability to capture patterns at different
abstraction levels, while too many layers fragment memories excessively.

Qualitative analysis of learned attention patterns reveals how HMN provides interpretability
through explicit hierarchical reasoning. Visualizing attention weights across layers for
example queries shows that the model learns meaningful abstractions at higher layers. For a
query about nationality of a book author's spouse, attention at the highest layer focuses on
memories related to "person attributes” and "person-person relationships,” showing the
model correctly identifies the high-level reasoning strategy. Middle layer attention becomes
more specific, focusing on authorship and marriage relations. Base layer attention reveals the
exact entity-relation triples used, providing complete transparency into the reasoning process.
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4.4 Scalability and Efficiency

Scalability analysis demonstrates that HMN maintains efficiency as knowledge base size
increases. On FB15k-237 with approximately 14,000 entities, HMN answers queries in an
average of 42 milliseconds per query on a single GPU. For comparison, MINERVA requires 67
milliseconds. The efficiency advantage stems from hierarchical organization that enables
pruning of the search space at higher layers before descending to entity-level reasoning.

To evaluate scalability to larger knowledge bases, we create expanded versions by
incorporating additional entities from full Freebase. With 100,000 entities, HMN maintains
query answering time of 78 milliseconds, while MINERVA's time increases to 245
milliseconds. The hierarchical memory structure enables HMN to scale more gracefully
because most entities are filtered out at higher layers, and only a small subset requires
detailed attention at the base layer.

Memory efficiency is measured by total parameters and storage requirements. HMN with
three hierarchy layers requires approximately 150 million parameters for FB15k-237,
comparable to MINERVA's 142 million and substantially less than some graph neural network
baselines. The hierarchical aggregation enables compact representations at higher layers,
avoiding need to store full embeddings for every entity at every layer.

5. Conclusion

This paper has presented Hierarchical Memory Networks, a novel neural architecture
specifically designed for multi-hop reasoning over large-scale knowledge bases. By
introducing explicit hierarchical structure into both memory organization and the reasoning
process, HMN addresses fundamental limitations of existing flat memory architectures.
Drawing inspiration from foundational work on memory networks, end-to-end memory
networks, and key-value memory networks, our framework combines the strengths of these
approaches while adding hierarchical organization that enables more efficient and
interpretable multi-hop reasoning.

The key innovation of HMN lies in the hierarchical memory architecture that organizes
knowledge at multiple levels of abstraction, from fine-grained entity-relation pairs at the base
layer to abstract relation patterns at higher layers. The key-value separation at each layer
enables efficient addressing through keys while maintaining rich content in values. The
progressive multi-hop attention mechanism iteratively descends through the memory
hierarchy, performing multiple attention hops at each layer to refine reasoning paths. This
structured approach to multi-hop reasoning proves more effective than both end-to-end
learned approaches that lack explicit structure and purely symbolic approaches that lack
learning capabilities.

Our experimental results demonstrate consistent improvements over strong baselines across
diverse datasets and evaluation metrics. On FB15k-237, NELL-995, and ComplEx benchmarks,
HMN achieves relative improvements of 8-15% in Mean Reciprocal Rank compared to best-
performing baseline methods. These improvements are particularly pronounced on queries
requiring reasoning over longer paths or involving less frequent relation patterns,
demonstrating that hierarchical structure provides genuine benefits for complex reasoning
rather than simply memorizing common patterns. Ablation studies confirm that each major
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component—hierarchical organization, progressive attention, and key-value separation—
contributes meaningfully to overall performance.

The enhanced interpretability provided by HMN represents an important advantage for
practical deployment. The hierarchical attention patterns reveal not only which specific facts
were used to answer a query but also the high-level reasoning strategy employed. This
transparency enables human users to understand and verify the reasoning process, identify
when the model is making correct inferences versus exploiting spurious correlations, and
diagnose failures. In domains where explanations are essential, the interpretability benefits
may be as valuable as improved accuracy.

The scalability analysis demonstrates that HMN maintains efficiency even as knowledge base
size increases substantially. The hierarchical organization enables effective pruning of search
space at higher layers, allowing the model to consider only a small fraction of entities for
detailed attention at the base layer. This architectural efficiency enables HMN to scale to
knowledge bases with millions of entities while maintaining reasonable computational costs.

Several promising directions for future research emerge from this work. First, incorporating
external reasoning capabilities such as numerical computation or temporal reasoning could
extend HMN to handle queries requiring more than graph traversal. Second, exploring
dynamic hierarchy construction that adapts memory organization to different query types
could improve flexibility. Third, integrating HMN with retrieval-augmented generation
approaches could enable reasoning over both structured knowledge bases and unstructured
text corpora. Fourth, applying the hierarchical memory framework to other domains beyond
knowledge graphs, such as visual reasoning or scientific discovery, could demonstrate the
generality of the approach.

In conclusion, Hierarchical Memory Networks represent a significant advance in neural
architectures for multi-hop reasoning over large-scale knowledge bases. By explicitly
modeling hierarchical structure and employing progressive attention mechanisms inspired by
foundational memory network research, HMN achieves superior performance, enhanced
interpretability, and improved scalability compared to existing approaches. As knowledge
bases continue to grow in size and complexity, architectures like HMN that explicitly
incorporate structural principles will become essential for building robust and trustworthy
intelligent systems.
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