
Frontiers in Interdisciplinary Applied Science Volume 2 Issue 2, 2025 

ISSN: 3008-1394  

 

 191 

Explainable AI for CPU Resource Scheduling in Cloud Operating 
Systems 

Pak Ho Leung1 

1City University of Hong Kong, Hong Kong 

Abstract 

Cloud computing environments require intelligent and efficient resource scheduling to 
manage dynamic workloads and meet service-level objectives. Traditional rule-based 
scheduling algorithms often fall short in handling the complexity and scale of modern 
cloud systems. This paper introduces a novel framework that leverages Explainable 
Artificial Intelligence (XAI) techniques to optimize CPU resource scheduling in cloud 
operating systems. By integrating interpretable models such as decision trees and SHAP 
(SHapley Additive exPlanations) values with deep learning-based schedulers, the 
framework not only enhances scheduling accuracy but also offers transparency in 
decision-making processes. Experimental results on synthetic and real-world workloads 
demonstrate the effectiveness of the proposed framework in improving system 
performance while providing human-understandable insights into scheduling logic. 
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1. Introduction 

In recent years, the proliferation of cloud computing has transformed the way organizations 
deploy and manage IT infrastructure[1]. Cloud operating systems (COS), which orchestrate 
virtual machines, containers, and compute resources, lie at the heart of this transformation[2]. 
A key function of COS is CPU resource scheduling—the dynamic assignment of computing tasks 
to available processors to ensure efficient workload execution[3]. As data centers scale up to 
handle millions of concurrent tasks, traditional rule-based schedulers struggle to cope with the 
increasing heterogeneity, temporal fluctuations, and performance constraints inherent in 
modern cloud environments[4]. 

Machine learning (ML) techniques have emerged as powerful tools for addressing these 
challenges[5]. By learning from historical workload data and resource usage patterns, ML-
based schedulers can anticipate future demands and optimize CPU allocations accordingly[6]. 
However, the adoption of these data-driven systems in real-world production settings has been 
impeded by a critical limitation: the lack of interpretability[7]. Most high-performance models, 
particularly deep learning-based schedulers, function as black boxes, making it difficult for 
system administrators to understand, trust, or validate their decisions[8]. In cloud operations 
where fairness, reliability, and regulatory compliance are non-negotiable, this lack of 
transparency becomes a major barrier. 

This is where Explainable Artificial Intelligence (XAI) becomes indispensable. XAI refers to a 
suite of methods and frameworks designed to interpret, visualize, and explain the internal logic 
of machine learning models[9]. By integrating XAI into CPU scheduling algorithms, cloud 
systems can become more transparent and accountable[10]. For instance, SHAP (SHapley 
Additive exPlanations) values can reveal the contribution of specific features (e.g., task priority, 
queue length, predicted execution time) to a scheduling decision, allowing human operators to 
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understand why certain tasks were prioritized over others. Similarly, decision trees or 
interpretable neural networks can provide traceable pathways through which scheduling 
policies evolve[11]. 

In addition to transparency, XAI-enhanced schedulers can facilitate error diagnosis, model 
debugging, and bias detection in scheduling policies. This becomes especially important in 
multi-tenant cloud systems where workload isolation and fair resource sharing are 
essential[12]. Furthermore, explainable models can serve as educational tools, helping 
engineers and researchers design better heuristics or hybrid approaches based on observed 
patterns in model behavior[13]. 

This paper proposes a unified framework for explainable CPU resource scheduling in cloud 
operating systems, combining the predictive power of machine learning with the transparency 
of XAI. The framework supports both online and offline scheduling scenarios, incorporates 
multiple levels of model interpretability (global and local), and is designed for modular 
integration into existing cloud orchestration stacks. To evaluate its effectiveness, we test the 
framework on a diverse set of workloads, including bursty, periodic, and adversarial task 
streams, and analyze its performance in terms of task completion time, CPU utilization, and 
interpretability metrics. 

By bridging the gap between performance and transparency, this study contributes a novel 
direction in the design of intelligent, trustworthy cloud resource managers—one that aligns 
with the growing demand for responsible AI practices in critical infrastructure. 

2. Literature Review 

The dynamic nature of modern cloud environments has intensified the need for efficient and 
intelligent CPU resource scheduling[14]. Traditional scheduling algorithms such as First-Come-
First-Serve (FCFS), Round Robin (RR), and Shortest Job First (SJF) have long been deployed in 
various operating systems due to their simplicity and ease of implementation[15]. However, 
these algorithms typically lack adaptability and foresight, making them suboptimal in handling 
highly dynamic and heterogeneous workloads characteristic of cloud-native applications[16]. 

To overcome these limitations, ML approaches have gained traction in the realm of resource 
scheduling[17]. Supervised learning techniques have been employed to predict task runtimes 
and resource demands based on historical data, while reinforcement learning (RL) models have 
been designed to dynamically adjust scheduling policies through continuous interaction with 
the system environment. For instance, RL-based schedulers can learn to maximize CPU 
utilization or minimize average task delay by receiving rewards from real-time system 
feedback[18]. These models, however, are often complex and opaque, limiting their adoption 
in mission-critical systems where interpretability is paramount[19]. 

The growing awareness of this "black-box" problem has led to the integration of XAI into ML-
based scheduling systems[20]. XAI techniques are generally categorized into intrinsic and post-
hoc methods. Intrinsic models, such as decision trees, linear models, and generalized additive 
models (GAMs), are inherently interpretable and can provide transparent reasoning for their 
decisions[21]. Post-hoc explainability methods, including LIME (Local Interpretable Model-
Agnostic Explanations) and SHAP, offer model-agnostic explanations by approximating local 
decision boundaries or computing feature contribution scores[22]. 

In the context of cloud computing, research has explored XAI methods to explain auto-scaling 
decisions, job placement, and energy consumption predictions[23]. However, studies focusing 
specifically on XAI in CPU scheduling remain limited[24]. One major challenge is the temporal 
and stateful nature of scheduling decisions, which require contextual explanations that account 
for the evolving system state and task dependencies[25]. Furthermore, there is often a trade-
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off between model interpretability and scheduling efficiency—simpler models offer clearer 
explanations but may underperform compared to complex deep learning models[26]. 

Several recent studies have proposed hybrid models that balance interpretability with 
accuracy[27]. For example, some frameworks combine decision trees with reinforcement 
learning, enabling interpretable policy updates[28]. Others embed explainability directly into 
graph-based resource models, where task dependencies are visualized and interpreted using 
attention mechanisms[29]. Despite these advances, few systems provide real-time 
interpretability at the granularity required for live cloud orchestration environments[30]. 

Moreover, evaluation metrics for explainability in scheduling contexts are not yet 
standardized[31]. While metrics like fidelity, completeness, and stability have been proposed, 
their applicability to cloud scheduling remains under-explored. This gap highlights the need for 
new evaluation frameworks that measure both the quality of explanations and their impact on 
human understanding and trust in automated systems[32]. 

In summary, while ML has revolutionized CPU scheduling in cloud operating systems, and XAI 
offers promising tools for enhancing transparency, there remains a significant gap in fully 
integrated, interpretable, and high-performance scheduling frameworks. This study aims to 
address that gap by developing a comprehensive XAI-based CPU scheduling framework, 
capable of delivering real-time performance optimization alongside actionable and human-
comprehensible explanations. 

3. Methodology 

This research proposes an XAI-based framework for CPU resource scheduling in cloud 
operating systems, aiming to enhance system efficiency while ensuring transparency in 
scheduling decisions. The methodology integrates system-level data collection, machine 
learning-based prediction, and explainability modules to support real-time, interpretable 
scheduling. 

The first step involves comprehensive data acquisition and preprocessing. We collect time-
series CPU metrics from a cloud operating environment, including task arrival time, current 
CPU load, memory usage, I/O intensity, and execution latency. To prepare this data for model 
training, all numeric features are normalized to a 0–1 range using min-max scaling. Missing 
values and outliers are handled through linear interpolation and z-score-based filtering, 
respectively, ensuring the integrity of the dataset. 

Once the data is preprocessed, we develop a hybrid model architecture that combines deep 
neural networks with an XAI layer. The core model is a multi-layer perceptron with three 
hidden layers and ReLU activation functions, trained to predict task execution latency given 
real-time system inputs. To make the predictions interpretable, we integrate SHAP (SHapley 
Additive exPlanations) values into the inference pipeline. SHAP computes the marginal 
contribution of each input feature, enabling users to understand which factors influence each 
prediction. 

The effectiveness of this scheduling strategy is demonstrated by comparing CPU utilization 
across three different scheduling approaches: traditional round-robin, deep reinforcement 
learning (DRL)-based, and our XAI-based model. The results, shown in the figure below, 
indicate that the XAI-based method yields consistently higher CPU utilization by enabling 
context-aware preemption and scheduling. 
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To further assess the quality of interpretability, we compare our SHAP-based explanation 
mechanism with LIME and Integrated Gradients. The figure below illustrates the average 
explanation scores based on alignment with human expert decisions and computational 
efficiency. 

 

 
 

As shown, SHAP not only delivers more accurate feature attribution but also requires 
significantly less computation time than LIME, making it better suited for integration in low-
latency cloud environments. 

In the final step of the scheduling pipeline, we transform model outputs into actionable 
scheduling priorities. Based on the predicted latency and resource requirements, tasks are 
ranked into five priority classes, with higher classes receiving preferential CPU time slices. This 
mapping facilitates preemptive scheduling of critical workloads without sacrificing fairness. 
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The figure below demonstrates how our model assigns priority levels in a representative batch 
of cloud tasks. 

 

 
 

These results confirm the ability of the proposed method to intelligently manage CPU resource 
allocation while maintaining transparency and operational reliability. 

4. Results and Discussion 

4.1. Model Performance Evaluation 

The proposed explainable CPU scheduling framework was evaluated using a real-world cloud 
workload trace collected over a 30-day period from a simulated OpenStack-based environment. 
To assess scheduling effectiveness, we compared our method with baseline algorithms, 
including round-robin and DRL-based schedulers. Key performance metrics included average 
CPU utilization, task wait time, and system throughput. 

Our XAI-based model demonstrated a clear advantage in resource efficiency. On average, CPU 
utilization under our framework reached 87.3%, outperforming DRL (82.5%) and round-robin 
(76.1%). The reduction in average task wait time—from 112 ms (round-robin) and 96 ms 
(DRL) to 78 ms—suggests improved responsiveness. Moreover, the system throughput 
improved by 12.8% over DRL and 23.4% over round-robin. These results highlight the ability 
of the XAI scheduler to make adaptive, context-aware decisions that enhance operational 
efficiency without adding computational overhead. 

4.2. Explainability and Decision Transparency 

Beyond raw performance, explainability is a critical requirement for production-grade cloud 
scheduling. To evaluate this aspect, we conducted a study involving five experienced cloud 
engineers who reviewed SHAP-based model outputs. They were asked to rate the explanations 
based on clarity, relevance to known system dynamics, and usefulness in root cause diagnosis. 

Participants reported that the SHAP visualizations provided meaningful insight into the 
contribution of various system features—such as I/O rate or current CPU load—to scheduling 
outcomes. In 89% of cases, the model's predicted scheduling decisions and the engineers’ 
manual judgments aligned, demonstrating the transparency and trustworthiness of the 
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approach. Additionally, the use of SHAP allowed engineers to identify previously overlooked 
bottlenecks, such as subtle memory contention patterns, thereby facilitating improved 
infrastructure tuning. 

4.3. Robustness and Generalizability 

To test the robustness of the proposed model, we introduced variations in workload 
characteristics, including traffic bursts, skewed task sizes, and system noise. Our framework 
maintained stability, with prediction errors rising by less than 4% under burst conditions and 
dropping back once the workload normalized. Moreover, retraining the model on traces from a 
Kubernetes-based cluster yielded similar accuracy, with only minor adjustments required. 

This suggests that the proposed XAI framework generalizes well across heterogeneous cloud 
operating systems, paving the way for deployment in hybrid or multi-cloud environments. The 
modular architecture of the method—separating data ingestion, model inference, and 
explainability—makes it flexible enough to accommodate evolving workload patterns and 
infrastructure configurations. 

5. Conclusion 

This study presented a novel XAI framework for CPU resource scheduling in cloud operating 
systems, addressing both performance optimization and interpretability—two critical 
challenges in intelligent infrastructure management. By integrating gradient boosting decision 
trees with SHAP-based explanation modules, our approach not only achieved superior 
scheduling efficiency but also provided transparency into its decision-making processes. 

The experimental evaluation, conducted on realistic workload traces, demonstrated that the 
proposed method consistently outperforms traditional heuristics and black-box deep learning 
models in terms of CPU utilization, task latency, and throughput. Importantly, the inclusion of 
explainability allowed system engineers to gain actionable insights into scheduling behavior, 
uncover hidden system constraints, and improve operational confidence in automated 
decisions. 

Furthermore, the model proved to be robust across a range of workload scenarios and was 
shown to generalize effectively to alternative cloud environments with minimal tuning. This 
adaptability makes it particularly well-suited for modern hybrid and multi-cloud architectures, 
where transparency and traceability are increasingly mandated. 

Future work will focus on extending the framework to multi-resource scheduling—including 
memory, I/O bandwidth, and GPU—and integrating real-time feedback loops for dynamic self-
correction. Additionally, we aim to incorporate user-centric explanation interfaces tailored to 
different stakeholders, such as DevOps teams, application owners, and compliance auditors. 
Through these extensions, we envision a more intelligent, accountable, and autonomous cloud 
operating ecosystem enabled by explainable machine learning. 
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