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Abstract

The digitization of histopathology has ushered in a new era of computational
diagnostics, wherein Whole-Slide Images (WSIs) serve as the primary data modality for
automated disease classification and grading. However, the gigapixel resolution of
WSIs presents a significant computational bottleneck, necessitating the division of
slides into tens of thousands of patches. This granularity introduces a "bag-of-
instances" problem typically addressed via Multiple Instance Learning (MIL). While
conventional MIL approaches aggregate patch-level features, they often fail to capture
long-range spatial dependencies and tissue macro-architecture due to the prohibitive
sequence lengths when applied to standard Transformer models. This paper
introduces a novel framework: Hierarchical Tokenization with Multi-Instance Learning
(HT-MIL). Our approach employs a dynamic, multi-scale tokenization strategy that
groups spatially coherent and semantically similar patches into super-tokens before
processing them through a hierarchical attention mechanism. This reduces the
effective sequence length while preserving local cellular details and global tissue
context. We evaluate HT-MIL on two large-scale public benchmark datasets. The results
demonstrate that our method achieves state-of-the-art classification performance
while significantly reducing computational overhead compared to non-hierarchical
vision transformers.
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Introduction

1.1 Background

The field of anatomical pathology is currently undergoing a paradigm shift from analog
microscopy to digital workflows. The advent of high-throughput slide scanners has enabled
the generation of Whole-Slide Images (WSIs), which are high-resolution digital replicas of
glass slides containing tissue specimens. These images typically contain billions of pixels,
often reaching resolutions of 100,000 by 100,000 pixels. The richness of information
embedded within these gigapixel images offers unprecedented opportunities for the
application of artificial intelligence, specifically deep learning, to assist pathologists in tasks
such as cancer diagnosis, tumor subtyping, and survival prediction [1].

Unlike natural images used in standard computer vision tasks (e.g., ImageNet), WSIs are too
large to be processed directly by Convolutional Neural Networks (CNNs) or Vision
Transformers (ViTs) due to memory constraints on current graphical processing units (GPUs).
Consequently, the standard processing pipeline involves tessellating the WSI into thousands
of smaller, fixed-size patches (e.g., 256x256 pixels). This fragmentation, while necessary,
disconnects the local morphological features from the global architectural context of the
tissue [2].
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1.2 Problem Statement

The classification of WSIs based on patch-level features is inherently a Multiple Instance
Learning (MIL) problem. In this formulation, a WSI is considered a "bag" containing instances
(patches). The slide-level label (e.g., positive for cancer) is known, but the patch-level labels
are often unavailable. A bag is labeled positive if it contains at least one positive instance, and
negative otherwise.

Existing MIL approaches, particularly those utilizing attention mechanisms, have
demonstrated success in identifying discriminative patches. However, a critical limitation
remains: the sheer volume of patches per slide (often exceeding 10,000) challenges the
scalability of attention-based models. Standard self-attention mechanisms in Transformers
exhibit quadratic computational complexity with respect to the sequence length. When
applied to the full sequence of WSI patches, this results in excessive memory consumption
and computational latency. Furthermore, naive MIL pooling operators often treat patches as
independent and identically distributed (i.i.d.) samples, ignoring the spatial correlations and
biological structures (e.g., glands, tumor nests) that span multiple adjacent patches [3].

1.3 Contributions

To address these challenges, this paper proposes a Hierarchical Tokenization Multi-Instance
Learning (HT-MIL) framework. Our contributions are threefold:

1. We introduce a hierarchical tokenization strategy that aggregates spatially adjacent and
semantically consistent patches into "super-tokens." This effectively reduces the sequence
length input to the Transformer, enabling the modeling of long-range dependencies without
the quadratic cost associated with full-slide attention.

2. We propose a dual-stage attention mechanism that first attends to fine-grained features
within super-tokens and subsequently aggregates these representations at the slide level.
This preserves critical cellular details often lost in aggressive downsampling.

3. We provide a comprehensive empirical evaluation on public histopathology datasets,
demonstrating that HT-MIL outperforms current state-of-the-art methods in both
classification accuracy and inference efficiency.

Chapter 2: Related Work
2.1 Classical Approaches and Basic MIL

Early computational pathology methods relied heavily on hand-crafted features. Researchers
extracted morphological descriptors such as nuclear size, texture analysis (e.g., Haralick
features), and color histograms to train classifiers like Support Vector Machines (SVMs) or
Random Forests [4]. While interpretable, these methods struggled to generalize across the
stain variations and biological heterogeneity inherent in multi-center datasets.

With the rise of deep learning, the focus shifted to learning representations directly from raw
pixels. Due to the lack of pixel-wise annotations, weakly supervised learning became the
standard. Max-pooling and mean-pooling were among the first aggregation functions used to
combine patch features extracted by CNNs (e.g., ResNet) into a slide-level representation.
While computationally efficient, max-pooling is susceptible to outliers and noise, while mean-
pooling dilutes the signal of small, focal lesions typical in early-stage cancers [5].
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2.2 Deep Learning and Attention Mechanisms

To overcome the limitations of simple pooling, attention-based MIL was introduced. Ilse et al.
proposed a learnable attention mechanism that assigns a weight to each patch, interpretable
as the "importance" of that patch to the final diagnosis. This allowed models to focus on
discriminative regions while ignoring background or normal tissue.

Recent advancements have seen the integration of Transformer architectures into the MIL
framework. TransMIL and CLAM (Clustering-constrained Attention Multiple instance
learning) represent significant steps forward [6]. TransMIL utilizes a pyramid architecture to
process patch sequences, attempting to capture correlations between instances. However,
processing sequences of 10,000+ patches remains computationally expensive. CLAM
introduces instance-level clustering to constrain the feature space but does not explicitly
model the spatial arrangement of patches.

Furthermore, recent works have begun to explore graph neural networks (GNNs) to model
the topology of tissue. While GNNs explicitly encode spatial relationships, they are often
sensitive to the graph construction method (e.g., k-nearest neighbors) and can be
computationally intensive during the graph generation phase [7]. Our work bridges the gap
between efficient pooling and complex spatial modeling by introducing a hierarchical
tokenization scheme that aligns with the biological hierarchy of tissue organization.

Chapter 3: Methodology

3.1 Overview of the HT-MIL Framework

The proposed HT-MIL framework operates in four distinct stages: (1) WSI Preprocessing and
Patching, (2) Feature Extraction, (3) Hierarchical Tokenization, and (4) Multi-Instance
Aggregation and Classification. The core innovation lies in the third stage, where we
dynamically group patches to form a compressed yet information-rich sequence for the
Transformer encoder.

The system is designed to handle the multi-scale nature of pathology images. Pathologists
typically diagnose by scanning the slide at low magnification to identify regions of interest
(ROI) and then zooming in for cellular confirmation. Our hierarchical tokenization mimics this
workflow by aggregating local context (low magnification equivalent) while retaining access
to instance-level features (high magnification equivalent).
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Figure 1: Schematic Overview of the HT

3.2 Preprocessing and Feature Extraction

Given a WSI, we first apply an automated tissue segmentation algorithm to separate tissue
from the glass background. The background contains no diagnostic information and is
discarded to reduce computational load. The segmented tissue regions are then tessellated
into non-overlapping patches of size 256 X 256 pixels at 20 X magnification [8].

For feature extraction, we utilize a ResNet-50 backbone pre-trained on ImageNet. While
domain-specific pre-training (e.g., on histology images) can offer marginal gains, ImageNet
weights provide a robust baseline for texture and edge detection. We truncate the network
after the third residual block to extract a feature vector f; € mathbbR°?* for each patch x;.
Consequently, a slide is represented as a bag of features B = f;, f5, dots, fy, where N varies
per slide.

3.3 Hierarchical Tokenization

Standard Transformers process the bag B directly. However, when N is large, the self-
attention matrix (N X N) becomes unmanageable. We introduce a spatial grouping strategy.
We map the patches back to their spatial coordinates (u;, v;) on the slide grid. We define a
super-token grid of size K X K (e.g., grouping 4 X 4 patches).

Let a super-token S; consist of a set of adjacent patch features f; 4, f; -, dots, fj y, where M is
the maximum number of patches in a group (e.g.,, 16). Within each super-token, we apply a
local attention mechanism to derive a representative embedding T;. This local attention learns
to weigh the importance of patches within the local neighborhood. If a super-token contains
mostly normal tissue but one patch of tumor, the local attention should assign a high weight to
the tumor patch, ensuring the super-token embedding T; reflects the pathology.

This process reduces the sequence length from N to approximately N/M. This reduction
enables the subsequent global Transformer to model dependencies across the entire slide
efficiently [9].
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3.4 Multi-Instance Aggregation

The sequence of super-tokens T = Ty, T;, dots, Ty is fed into a standard Vision Transformer
encoder. This encoder consists of alternating layers of Multi-Head Self-Attention (MSA) and
Multi-Layer Perceptrons (MLP). The MSA mechanism allows the model to contextualize a
specific tissue region (super-token) with respect to distant regions, mimicking the
pathologist's understanding of architectural distortion.

To obtain the final slide-level prediction, we employ a gated attention pooling layer. This layer
aggregates the output states of the Transformer into a single slide embedding. The attention
scores a;, for each super-token are computed, and the final classification is performed.

Formally, the attention mechanism and the aggregation leading to the slide probability
prediction Y can be defined. We utilize a Gated Attention mechanism which introduces a non-
linearity to learn more complex relationships between the token features. The aggregation
equation is defined as follows:

exp(w” (tanh(Vh,"odotsigm(Uh,")))
-1 exp(wT (tanh(Vh,odotsigm(Uh;T)))

_ L
Zslide = Dk=1

where h; represents the feature vector of the k-th super-token output by the Transformer, L
is the number of super-tokens, w, V, and U are learnable parameters, odot denotes element-
wise multiplication, and sigm is the sigmoid activation function. The resulting vector z;,4, is
then passed through a final classification layer (a simple linear layer followed by softmax) to
produce the probability of the disease class.

3.5 Loss Function and Regularization

We train the model using the standard Cross-Entropy loss calculated between the predicted
slide label and the ground truth. To prevent overfitting—a common issue in MIL where the
number of slides is orders of magnitude smaller than the number of patches—we apply
aggressive data augmentation (color jittering, rotation, flipping) during the training phase.
Additionally, we employ a smoothness regularization term that penalizes high variance in
attention weights among spatially adjacent super-tokens, enforcing the prior that pathological
changes often manifest as contiguous regions rather than isolated noise pixels.

Chapter 4: Experiments and Analysis

4.1 Datasets and Evaluation Metrics

To validate the efficacy of HT-MIL, we utilized two prominent public datasets in digital
pathology:

1. CAMELYON16: This dataset consists of 400 WSIs of sentinel lymph nodes derived from
breast cancer patients. The task is binary classification: discriminating between normal slides
and slides containing metastasis. The dataset is challenging due to the small size of some
metastatic regions (micro-metastases).

2. TCGA-NSCLC: Acquired from The Cancer Genome Atlas (TCGA), this dataset includes
slides from Non-Small Cell Lung Cancer patients. The objective is to subtype the cancer into
Lung Adenocarcinoma (LUAD) or Lung Squamous Cell Carcinoma (LUSC). This is a multiclass
problem requiring the recognition of distinct morphological subtypes [10].
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We evaluated performance using the Area Under the Receiver Operating Characteristic Curve
(AUC) and Accuracy (Acc). For the TCGA dataset, we also report the F1-score. All experiments
were conducted using 5-fold cross-validation to ensure statistical robustness.

4.2 Implementation Details

The framework was implemented using PyTorch on a workstation equipped with NVIDIA
A100 GPUs. The ResNet-50 feature extractor was frozen after pre-training on ImageNet. The
hierarchical tokenization grouped 4 X 4 patch grids. The Transformer encoder comprised 2
layers with 8 attention heads and a hidden dimension of 512. We utilized the Adam optimizer
with a learning rate of 1e — 4 and a weight decay of 1e — 5. A cosine annealing learning rate
scheduler was employed over 100 epochs.

4.3 Results and Comparative Analysis

We compared HT-MIL against several established baselines:

Mean-Pooling: Simple averaging of ResNet features.

Max-Pooling: Taking the maximum value across feature dimensions.
AB-MIL: Attention-based MIL without hierarchical grouping.
CLAM-SB: Clustering-constrained Attention MIL (Single Branch).
TransMIL: A Transformer-based MIL approach [11].

The results for the CAMELYON16 and TCGA-NSCLC datasets are summarized in Table 1.

Method CAMELYON16 CAMELYON16 TCGA-NSCLC TCGA-NSCLC
(AUQ) (Acc) (AUCQ) (Acc)
Mean-Pooling 0.642 0.615 0.781 0.742
Max-Pooling 0.815 0.780 0.843 0.795
AB-MIL 0.865 0.845 0.892 0.851
CLAM-SB 0.923 0.887 0.941 0.895
TransMIL 0.931 0.895 0.952 0.902
HT-MIL (Ours)  0.948 0.912 0.965 0.921

Table 1 demonstrates that HT-MIL achieves superior performance across both datasets. On
CAMELYON16, our method surpasses TransMIL by a margin of 1.7% in AUC. This
improvement is attributed to the hierarchical tokenization, which preserves the context of
micro-metastases better than global attention alone, which might dilute the signal of very
small lesions against a vast background of normal tissue. In the TCGA-NSCLC task, the
structural differences between LUAD and LUSC are often architectural; the ability of HT-MIL
to aggregate local neighborhoods into super-tokens allows the Transformer to learn these
macro-architectural patterns effectively.

4.4 Ablation Study and Computational Efficiency

To assess the impact of the hierarchical components, we conducted an ablation study and
measured computational efficiency. We analyzed the effect of removing the local aggregation
(treating patches as tokens directly) and changing the super-token size.
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Table 2 presents the computational costs in terms of Floating Point Operations (FLOPs) and
inference time for a standard WSI containing approximately 10,000 patches.

Model Variant Local Aggregation Global Attention FLOPs (G) Inference Time (s)
Baseline No Full Sequence 145.2 4.85

Transformer

HT-MIL (SmallYes (2x2) Reduced Seq 68.4 2.15

Group)

HT-MIL (Optimal) Yes (4x4) Reduced Seq 42.1 1.32

HT-MIL (LargeYes (8x8) Reduced Seq 31.5 0.95

Group)

As shown in Table 2, the "Baseline Transformer” (analogous to TransMIL without pyramid
reduction) incurs high computational costs due to the quadratic complexity of attention. Our
optimal HT-MIL configuration (4x4 grouping) reduces FLOPs by over 70% and inference time
by nearly 73% compared to the baseline. While the 8x8 grouping is faster, we observed a
degradation in classification performance (AUC drop of 2.5%, not shown in table), likely
because aggressive grouping merges heterogeneous tissues too broadly, obscuring fine-
grained diagnostic features [12].

4.5 Analysis of Attention Maps

Qualitative analysis was performed by visualizing the attention weights assigned to the super-
tokens and their constituent patches. We overlaid the attention heatmaps onto the original
WSIs. In the CAMELYON16 dataset, the model correctly highlighted regions corresponding to
metastatic tumor deposits, assigning low weights to lymphoid tissue and fat. Interestingly, in
the TCGA-NSCLC dataset, the model attended not only to the tumor cells but also to the
tumor-associated stroma. This suggests that the hierarchical model is leveraging the
interaction between tumor and stroma, a known prognostic factor in lung cancer, to make its
predictions. This capability reinforces the value of preserving spatial context through
tokenization.

Chapter 5: Conclusion

In this paper, we presented HT-MIL, a hierarchical tokenization framework for Whole-Slide
Image classification. By addressing the "bag-of-instances" problem through a multi-scale
approach, we successfully mitigated the computational bottlenecks associated with
processing gigapixel images while simultaneously improving classification accuracy. Our
method organizes patches into spatially coherent super-tokens, allowing the subsequent
Transformer architecture to model long-range tissue dependencies efficiently.

The experimental results on breast and lung cancer datasets validate the effectiveness of this
approach. The system outperforms existing MIL and Transformer-based methods, confirming
that preserving the local spatial topology of tissue patches is crucial for accurate diagnosis.
Furthermore, the significant reduction in computational overhead paves the way for the
deployment of these complex models in clinical settings, where resource constraints and
time-to-diagnosis are critical factors. The ability to visualize attention maps further provides a
degree of explainability, a necessary feature for the adoption of Al tools by medical
professionals.
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