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Abstract 

The digitization of histopathology has ushered in a new era of computational 
diagnostics, wherein Whole-Slide Images (WSIs) serve as the primary data modality for 
automated disease classification and grading. However, the gigapixel resolution of 
WSIs presents a significant computational bottleneck, necessitating the division of 
slides into tens of thousands of patches. This granularity introduces a "bag-of-
instances" problem typically addressed via Multiple Instance Learning (MIL). While 
conventional MIL approaches aggregate patch-level features, they often fail to capture 
long-range spatial dependencies and tissue macro-architecture due to the prohibitive 
sequence lengths when applied to standard Transformer models. This paper 
introduces a novel framework: Hierarchical Tokenization with Multi-Instance Learning 
(HT-MIL). Our approach employs a dynamic, multi-scale tokenization strategy that 
groups spatially coherent and semantically similar patches into super-tokens before 
processing them through a hierarchical attention mechanism. This reduces the 
effective sequence length while preserving local cellular details and global tissue 
context. We evaluate HT-MIL on two large-scale public benchmark datasets. The results 
demonstrate that our method achieves state-of-the-art classification performance 
while significantly reducing computational overhead compared to non-hierarchical 
vision transformers. 
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Introduction 

1.1 Background 

The field of anatomical pathology is currently undergoing a paradigm shift from analog 
microscopy to digital workflows. The advent of high-throughput slide scanners has enabled 
the generation of Whole-Slide Images (WSIs), which are high-resolution digital replicas of 
glass slides containing tissue specimens. These images typically contain billions of pixels, 
often reaching resolutions of 100,000 by 100,000 pixels. The richness of information 
embedded within these gigapixel images offers unprecedented opportunities for the 
application of artificial intelligence, specifically deep learning, to assist pathologists in tasks 
such as cancer diagnosis, tumor subtyping, and survival prediction [1]. 

Unlike natural images used in standard computer vision tasks (e.g., ImageNet), WSIs are too 
large to be processed directly by Convolutional Neural Networks (CNNs) or Vision 
Transformers (ViTs) due to memory constraints on current graphical processing units (GPUs). 
Consequently, the standard processing pipeline involves tessellating the WSI into thousands 
of smaller, fixed-size patches (e.g., 256x256 pixels). This fragmentation, while necessary, 
disconnects the local morphological features from the global architectural context of the 
tissue [2]. 
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1.2 Problem Statement 

The classification of WSIs based on patch-level features is inherently a Multiple Instance 
Learning (MIL) problem. In this formulation, a WSI is considered a "bag" containing instances 
(patches). The slide-level label (e.g., positive for cancer) is known, but the patch-level labels 
are often unavailable. A bag is labeled positive if it contains at least one positive instance, and 
negative otherwise. 

Existing MIL approaches, particularly those utilizing attention mechanisms, have 
demonstrated success in identifying discriminative patches. However, a critical limitation 
remains: the sheer volume of patches per slide (often exceeding 10,000) challenges the 
scalability of attention-based models. Standard self-attention mechanisms in Transformers 
exhibit quadratic computational complexity with respect to the sequence length. When 
applied to the full sequence of WSI patches, this results in excessive memory consumption 
and computational latency. Furthermore, naive MIL pooling operators often treat patches as 
independent and identically distributed (i.i.d.) samples, ignoring the spatial correlations and 
biological structures (e.g., glands, tumor nests) that span multiple adjacent patches [3]. 

1.3 Contributions 

To address these challenges, this paper proposes a Hierarchical Tokenization Multi-Instance 
Learning (HT-MIL) framework. Our contributions are threefold: 

1.  We introduce a hierarchical tokenization strategy that aggregates spatially adjacent and 
semantically consistent patches into "super-tokens." This effectively reduces the sequence 
length input to the Transformer, enabling the modeling of long-range dependencies without 
the quadratic cost associated with full-slide attention. 

2.  We propose a dual-stage attention mechanism that first attends to fine-grained features 
within super-tokens and subsequently aggregates these representations at the slide level. 
This preserves critical cellular details often lost in aggressive downsampling. 

3.  We provide a comprehensive empirical evaluation on public histopathology datasets, 
demonstrating that HT-MIL outperforms current state-of-the-art methods in both 
classification accuracy and inference efficiency. 

Chapter 2: Related Work 

2.1 Classical Approaches and Basic MIL 

Early computational pathology methods relied heavily on hand-crafted features. Researchers 
extracted morphological descriptors such as nuclear size, texture analysis (e.g., Haralick 
features), and color histograms to train classifiers like Support Vector Machines (SVMs) or 
Random Forests [4]. While interpretable, these methods struggled to generalize across the 
stain variations and biological heterogeneity inherent in multi-center datasets. 

With the rise of deep learning, the focus shifted to learning representations directly from raw 
pixels. Due to the lack of pixel-wise annotations, weakly supervised learning became the 
standard. Max-pooling and mean-pooling were among the first aggregation functions used to 
combine patch features extracted by CNNs (e.g., ResNet) into a slide-level representation. 
While computationally efficient, max-pooling is susceptible to outliers and noise, while mean-
pooling dilutes the signal of small, focal lesions typical in early-stage cancers [5]. 
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2.2 Deep Learning and Attention Mechanisms 

To overcome the limitations of simple pooling, attention-based MIL was introduced. Ilse et al. 
proposed a learnable attention mechanism that assigns a weight to each patch, interpretable 
as the "importance" of that patch to the final diagnosis. This allowed models to focus on 
discriminative regions while ignoring background or normal tissue. 

Recent advancements have seen the integration of Transformer architectures into the MIL 
framework. TransMIL and CLAM (Clustering-constrained Attention Multiple instance 
learning) represent significant steps forward [6]. TransMIL utilizes a pyramid architecture to 
process patch sequences, attempting to capture correlations between instances. However, 
processing sequences of 10,000+ patches remains computationally expensive. CLAM 
introduces instance-level clustering to constrain the feature space but does not explicitly 
model the spatial arrangement of patches. 

Furthermore, recent works have begun to explore graph neural networks (GNNs) to model 
the topology of tissue. While GNNs explicitly encode spatial relationships, they are often 
sensitive to the graph construction method (e.g., k-nearest neighbors) and can be 
computationally intensive during the graph generation phase [7]. Our work bridges the gap 
between efficient pooling and complex spatial modeling by introducing a hierarchical 
tokenization scheme that aligns with the biological hierarchy of tissue organization. 

Chapter 3: Methodology 

3.1 Overview of the HT-MIL Framework 

The proposed HT-MIL framework operates in four distinct stages: (1) WSI Preprocessing and 
Patching, (2) Feature Extraction, (3) Hierarchical Tokenization, and (4) Multi-Instance 
Aggregation and Classification. The core innovation lies in the third stage, where we 
dynamically group patches to form a compressed yet information-rich sequence for the 
Transformer encoder. 

The system is designed to handle the multi-scale nature of pathology images. Pathologists 
typically diagnose by scanning the slide at low magnification to identify regions of interest 
(ROI) and then zooming in for cellular confirmation. Our hierarchical tokenization mimics this 
workflow by aggregating local context (low magnification equivalent) while retaining access 
to instance-level features (high magnification equivalent). 
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Figure 1: Schematic Overview of the HT 

3.2 Preprocessing and Feature Extraction 

Given a WSI, we first apply an automated tissue segmentation algorithm to separate tissue 
from the glass background. The background contains no diagnostic information and is 
discarded to reduce computational load. The segmented tissue regions are then tessellated 
into non-overlapping patches of size 256 × 256 pixels at 20 × magnification [8]. 

For feature extraction, we utilize a ResNet-50 backbone pre-trained on ImageNet. While 
domain-specific pre-training (e.g., on histology images) can offer marginal gains, ImageNet 
weights provide a robust baseline for texture and edge detection. We truncate the network 
after the third residual block to extract a feature vector 𝑓𝑖 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅1024 for each patch 𝑥𝑖 . 
Consequently, a slide is represented as a bag of features 𝐵 = 𝑓1, 𝑓2, 𝑑𝑜𝑡𝑠, 𝑓𝑁, where 𝑁 varies 
per slide. 

3.3 Hierarchical Tokenization 

Standard Transformers process the bag 𝐵 directly. However, when 𝑁 is large, the self-
attention matrix (𝑁 × 𝑁) becomes unmanageable. We introduce a spatial grouping strategy. 
We map the patches back to their spatial coordinates (𝑢𝑖, 𝑣𝑖) on the slide grid. We define a 
super-token grid of size 𝐾 × 𝐾 (e.g., grouping 4 × 4 patches). 

Let a super-token 𝑆𝑗  consist of a set of adjacent patch features 𝑓𝑗,1, 𝑓𝑗,2, 𝑑𝑜𝑡𝑠, 𝑓𝑗,𝑀, where 𝑀 is 

the maximum number of patches in a group (e.g., 16). Within each super-token, we apply a 
local attention mechanism to derive a representative embedding 𝑇𝑗 . This local attention learns 

to weigh the importance of patches within the local neighborhood. If a super-token contains 
mostly normal tissue but one patch of tumor, the local attention should assign a high weight to 
the tumor patch, ensuring the super-token embedding 𝑇𝑗  reflects the pathology. 

This process reduces the sequence length from 𝑁 to approximately 𝑁/𝑀. This reduction 
enables the subsequent global Transformer to model dependencies across the entire slide 
efficiently [9]. 
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3.4 Multi-Instance Aggregation 

The sequence of super-tokens 𝑇 = 𝑇1, 𝑇2, 𝑑𝑜𝑡𝑠, 𝑇𝑁/𝑀 is fed into a standard Vision Transformer 

encoder. This encoder consists of alternating layers of Multi-Head Self-Attention (MSA) and 
Multi-Layer Perceptrons (MLP). The MSA mechanism allows the model to contextualize a 
specific tissue region (super-token) with respect to distant regions, mimicking the 
pathologist's understanding of architectural distortion. 

To obtain the final slide-level prediction, we employ a gated attention pooling layer. This layer 
aggregates the output states of the Transformer into a single slide embedding. The attention 
scores 𝛼𝑘 for each super-token are computed, and the final classification is performed. 

Formally, the attention mechanism and the aggregation leading to the slide probability 
prediction 𝑌 can be defined. We utilize a Gated Attention mechanism which introduces a non-
linearity to learn more complex relationships between the token features. The aggregation 
equation is defined as follows: 

𝑧𝑠𝑙𝑖𝑑𝑒 = ∑𝑘=1
𝐿 𝑒𝑥𝑝(𝑤𝑇(𝑡𝑎𝑛ℎ(𝑉ℎ𝑘

𝑇)𝑜𝑑𝑜𝑡𝑠𝑖𝑔𝑚(𝑈ℎ𝑘
𝑇)))

∑𝑗=1
𝐿𝑒𝑥𝑝(𝑤𝑇(𝑡𝑎𝑛ℎ(𝑉ℎ𝑗

𝑇)𝑜𝑑𝑜𝑡𝑠𝑖𝑔𝑚(𝑈ℎ𝑗
𝑇)))

ℎ𝑘  

where ℎ𝑘  represents the feature vector of the 𝑘-th super-token output by the Transformer, 𝐿 
is the number of super-tokens, 𝑤, 𝑉, and 𝑈 are learnable parameters, 𝑜𝑑𝑜𝑡 denotes element-
wise multiplication, and 𝑠𝑖𝑔𝑚 is the sigmoid activation function. The resulting vector 𝑧𝑠𝑙𝑖𝑑𝑒 is 
then passed through a final classification layer (a simple linear layer followed by softmax) to 
produce the probability of the disease class. 

3.5 Loss Function and Regularization 

We train the model using the standard Cross-Entropy loss calculated between the predicted 
slide label and the ground truth. To prevent overfitting—a common issue in MIL where the 
number of slides is orders of magnitude smaller than the number of patches—we apply 
aggressive data augmentation (color jittering, rotation, flipping) during the training phase. 
Additionally, we employ a smoothness regularization term that penalizes high variance in 
attention weights among spatially adjacent super-tokens, enforcing the prior that pathological 
changes often manifest as contiguous regions rather than isolated noise pixels. 

Chapter 4: Experiments and Analysis 

4.1 Datasets and Evaluation Metrics 

To validate the efficacy of HT-MIL, we utilized two prominent public datasets in digital 
pathology: 

1.  CAMELYON16: This dataset consists of 400 WSIs of sentinel lymph nodes derived from 
breast cancer patients. The task is binary classification: discriminating between normal slides 
and slides containing metastasis. The dataset is challenging due to the small size of some 
metastatic regions (micro-metastases). 

2.  TCGA-NSCLC: Acquired from The Cancer Genome Atlas (TCGA), this dataset includes 
slides from Non-Small Cell Lung Cancer patients. The objective is to subtype the cancer into 
Lung Adenocarcinoma (LUAD) or Lung Squamous Cell Carcinoma (LUSC). This is a multiclass 
problem requiring the recognition of distinct morphological subtypes [10]. 
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We evaluated performance using the Area Under the Receiver Operating Characteristic Curve 
(AUC) and Accuracy (Acc). For the TCGA dataset, we also report the F1-score. All experiments 
were conducted using 5-fold cross-validation to ensure statistical robustness. 

4.2 Implementation Details 

The framework was implemented using PyTorch on a workstation equipped with NVIDIA 
A100 GPUs. The ResNet-50 feature extractor was frozen after pre-training on ImageNet. The 
hierarchical tokenization grouped 4 × 4 patch grids. The Transformer encoder comprised 2 
layers with 8 attention heads and a hidden dimension of 512. We utilized the Adam optimizer 
with a learning rate of 1𝑒 − 4 and a weight decay of 1𝑒 − 5. A cosine annealing learning rate 
scheduler was employed over 100 epochs. 

4.3 Results and Comparative Analysis 

We compared HT-MIL against several established baselines: 

   Mean-Pooling: Simple averaging of ResNet features. 

   Max-Pooling: Taking the maximum value across feature dimensions. 

   AB-MIL: Attention-based MIL without hierarchical grouping. 

   CLAM-SB: Clustering-constrained Attention MIL (Single Branch). 

   TransMIL: A Transformer-based MIL approach [11]. 

The results for the CAMELYON16 and TCGA-NSCLC datasets are summarized in Table 1. 

Method CAMELYON16 
(AUC) 

CAMELYON16 
(Acc) 

TCGA-NSCLC 
(AUC) 

TCGA-NSCLC 
(Acc) 

Mean-Pooling 0.642 0.615 0.781 0.742 

Max-Pooling 0.815 0.780 0.843 0.795 

AB-MIL 0.865 0.845 0.892 0.851 

CLAM-SB 0.923 0.887 0.941 0.895 

TransMIL 0.931 0.895 0.952 0.902 

HT-MIL (Ours) 0.948 0.912 0.965 0.921 

Table 1 demonstrates that HT-MIL achieves superior performance across both datasets. On 
CAMELYON16, our method surpasses TransMIL by a margin of 1.7% in AUC. This 
improvement is attributed to the hierarchical tokenization, which preserves the context of 
micro-metastases better than global attention alone, which might dilute the signal of very 
small lesions against a vast background of normal tissue. In the TCGA-NSCLC task, the 
structural differences between LUAD and LUSC are often architectural; the ability of HT-MIL 
to aggregate local neighborhoods into super-tokens allows the Transformer to learn these 
macro-architectural patterns effectively. 

4.4 Ablation Study and Computational Efficiency 

To assess the impact of the hierarchical components, we conducted an ablation study and 
measured computational efficiency. We analyzed the effect of removing the local aggregation 
(treating patches as tokens directly) and changing the super-token size. 



Frontiers in Healthcare Technology Volume 2 Issue 1, 2025 

ISSN: 3079-6601  

 

147 

Table 2 presents the computational costs in terms of Floating Point Operations (FLOPs) and 
inference time for a standard WSI containing approximately 10,000 patches. 

Model Variant Local Aggregation Global Attention FLOPs (G) Inference Time (s) 

Baseline 
Transformer 

No Full Sequence 145.2 4.85 

HT-MIL (Small 
Group) 

Yes (2x2) Reduced Seq 68.4 2.15 

HT-MIL (Optimal) Yes (4x4) Reduced Seq 42.1 1.32 

HT-MIL (Large 
Group) 

Yes (8x8) Reduced Seq 31.5 0.95 

As shown in Table 2, the "Baseline Transformer" (analogous to TransMIL without pyramid 
reduction) incurs high computational costs due to the quadratic complexity of attention. Our 
optimal HT-MIL configuration (4x4 grouping) reduces FLOPs by over 70% and inference time 
by nearly 73% compared to the baseline. While the 8x8 grouping is faster, we observed a 
degradation in classification performance (AUC drop of 2.5%, not shown in table), likely 
because aggressive grouping merges heterogeneous tissues too broadly, obscuring fine-
grained diagnostic features [12]. 

4.5 Analysis of Attention Maps 

Qualitative analysis was performed by visualizing the attention weights assigned to the super-
tokens and their constituent patches. We overlaid the attention heatmaps onto the original 
WSIs. In the CAMELYON16 dataset, the model correctly highlighted regions corresponding to 
metastatic tumor deposits, assigning low weights to lymphoid tissue and fat. Interestingly, in 
the TCGA-NSCLC dataset, the model attended not only to the tumor cells but also to the 
tumor-associated stroma. This suggests that the hierarchical model is leveraging the 
interaction between tumor and stroma, a known prognostic factor in lung cancer, to make its 
predictions. This capability reinforces the value of preserving spatial context through 
tokenization. 

Chapter 5: Conclusion 

In this paper, we presented HT-MIL, a hierarchical tokenization framework for Whole-Slide 
Image classification. By addressing the "bag-of-instances" problem through a multi-scale 
approach, we successfully mitigated the computational bottlenecks associated with 
processing gigapixel images while simultaneously improving classification accuracy. Our 
method organizes patches into spatially coherent super-tokens, allowing the subsequent 
Transformer architecture to model long-range tissue dependencies efficiently. 

The experimental results on breast and lung cancer datasets validate the effectiveness of this 
approach. The system outperforms existing MIL and Transformer-based methods, confirming 
that preserving the local spatial topology of tissue patches is crucial for accurate diagnosis. 
Furthermore, the significant reduction in computational overhead paves the way for the 
deployment of these complex models in clinical settings, where resource constraints and 
time-to-diagnosis are critical factors. The ability to visualize attention maps further provides a 
degree of explainability, a necessary feature for the adoption of AI tools by medical 
professionals. 
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