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Abstract 

The rapid digitization of healthcare infrastructure has resulted in the proliferation of 
Electronic Health Records (EHRs), providing a fertile ground for data-driven clinical 
decision support systems. Among the most critical applications is the prediction of 
mortality in Intensive Care Units (ICUs), where early identification of deteriorating 
patients can significantly influence survival outcomes. While Deep Learning (DL) 
models, particularly Recurrent Neural Networks (RNNs) and Transformers, have 
demonstrated superior predictive performance compared to traditional scoring 
systems, their deployment is frequently hindered by a lack of interpretability. This 
paper introduces a novel architecture that integrates Temporal Attention mechanisms 
with Clinically Constrained Feature Attributions to predict ICU mortality. Unlike 
standard interpretability methods that provide post-hoc explanations, our approach 
incorporates domain knowledge directly into the training process via a regularization 
term that penalizes physiologically implausible feature associations. We evaluate our 
model on the MIMIC-III dataset, demonstrating that it achieves state-of-the-art 
predictive performance while generating explanations that align with clinical 
consensus. The results indicate that enforcing clinical constraints does not degrade 
accuracy; rather, it improves the model's robustness and trustworthiness, facilitating 
safer integration into clinical workflows. 
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Introduction 

1.1 Background 

The modern Intensive Care Unit (ICU) is a data-rich environment where continuous 
monitoring generates high-frequency time-series data, including vital signs, laboratory 
results, and pharmacological interventions. Historically, the assessment of patient acuity has 
relied on severity scoring systems such as the Acute Physiology and Chronic Health 
Evaluation (APACHE) and the Simplified Acute Physiology Score (SAPS). These linear models, 
while interpretable and widely validated, often fail to capture the complex, non-linear 
temporal dependencies inherent in physiological trajectories. The advent of Electronic Health 
Records (EHRs) has enabled the development of sophisticated machine learning models 
capable of processing vast quantities of longitudinal patient data [1]. 

In recent years, the paradigm has shifted towards Deep Learning (DL) methodologies. Models 
leveraging Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) 
have shown remarkable success in modeling the sequential nature of ICU data. These 
architectures can learn latent representations of patient states over time, effectively 
aggregating historical context to predict future adverse events such as septic shock, acute 
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kidney injury, and in-hospital mortality. However, the superior performance of these "black-
box" models comes at a cost: the opacity of their decision-making processes [2]. In high-stakes 
medical environments, a prediction without a rationale is often actionable only with extreme 
caution. Clinicians require not only a probability of mortality but also an understanding of 
why the model has assigned a high risk, allowing them to verify the finding against their 
clinical judgment and intervene appropriately. 

1.2 Problem Statement 

The core problem addressing the intersection of AI and critical care is the "accuracy-
interpretability trade-off." While deep neural networks outperform linear models, their 
internal weights and activations are unintelligible to human practitioners. Post-hoc 
explainability methods, such as SHAP (SHapley Additive exPlanations) or LIME (Local 
Interpretable Model-agnostic Explanations), have been proposed to bridge this gap. However, 
these methods often suffer from instability and may generate explanations that are 
mathematically sound yet clinically nonsensical. For instance, a model might correctly predict 
high mortality risk but attribute it to a benign feature due to spurious correlations in the 
training data, such as the timestamp of a lab test rather than the result itself. 

Furthermore, standard attention mechanisms, while identifying when important events 
occurred, often fail to explicitly identify what specific physiological features drove the 
prediction at that time step in a clinically consistent manner. Existing approaches rarely 
incorporate prior medical knowledge into the learning process. A purely data-driven model 
might learn that a sudden drop in heart rate is protective in a specific noisy subset of data, 
contradicting established physiology where bradycardia often precedes cardiac arrest. Such 
violations of domain constraints severely erode trust in automated systems. 

1.3 Contributions 

To address these challenges, this work proposes a cohesive framework for Explainable ICU 
Mortality Prediction. Our primary contributions are as follows: 

1.  Temporal Attention Architecture: We implement a dual-stage attention mechanism 
that weighs both the importance of specific time steps within the patient's stay and the 
relative contribution of individual clinical features, allowing for granular temporal 
interpretability. 

2.  Clinically Constrained Optimization: We introduce a novel loss function that includes 
a regularization term based on "monotonicity constraints." This forces the model's feature 
attributions to align with known medical directionality (e.g., higher lactate levels should 
generally contribute positively to mortality risk). 

3.  Validation on MIMIC-III: We conduct extensive experiments using the MIMIC-III 
database, benchmarking our approach against both traditional scoring systems and state-of-
the-art deep learning baselines. 

4.  Robust Explainability: We demonstrate through quantitative and qualitative analysis 
that our constrained model produces explanations that are significantly more aligned with 
clinical expectations than unconstrained baselines, without sacrificing predictive accuracy. 
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Chapter 2: Related Work 

2.1 Classical Approaches 

Before the deep learning era, mortality prediction relied heavily on logistic regression and 
rule-based systems. The APACHE score and its iterations (APACHE II, III, IV) utilize a weighted 
combination of physiological variables, age, and chronic health status to estimate mortality 
risk. Similarly, the SOFA (Sequential Organ Failure Assessment) score tracks organ 
dysfunction over time. These models are inherently interpretable because they rely on fixed 
coefficients derived from large population studies [3]. However, they typically utilize only a 
snapshot of data (e.g., the worst values in the first 24 hours), discarding the rich temporal 
information contained in the fluctuations of vital signs. Random Forests and Gradient 
Boosting Machines (GBMs) later offered improvements by capturing non-linear interactions, 
yet they still struggled with the irregularly sampled time-series nature of raw ICU data 
without extensive feature engineering. 

2.2 Deep Learning Methods 

The application of Recurrent Neural Networks (RNNs) to EHR data marked a significant leap 
in performance. Lipton et al. demonstrated the efficacy of LSTMs in classifying diagnoses 
given multivariate time series, handling variable-length sequences effectively. Subsequent 
works introduced architectures like RETAIN (REverse Time AttentIoN), which provided a 
level of interpretability by using two reverse RNNs to generate attention weights for visits and 
codes. More recently, Transformer-based architectures, originally designed for natural 
language processing, have been adapted for EHRs. These models utilize self-attention 
mechanisms to capture long-range dependencies in patient history better than RNNs [4]. 
Despite these advances, the explanations provided by attention weights alone have been 
criticized. Research has shown that "attention is not explanation" in all contexts, as different 
weight distributions can yield the same output, leading to ambiguity in identifying true causal 
factors. 

2.3 Explainability in Healthcare 

Explainable AI (XAI) in healthcare generally falls into two categories: ante-hoc (interpretable 
by design) and post-hoc (explaining a trained black box). Integrated Gradients (IG) and 
DeepLIFT are popular gradient-based methods used to attribute output predictions to input 
features. However, in medical time series, these methods can be noisy [5]. Feature attribution 
robustness is a major concern; slight perturbations in input should not lead to drastic changes 
in explanations. 

Recent efforts have attempted to integrate domain knowledge into neural networks. This 
includes "physics-guided" neural networks in imaging and graph neural networks 
incorporating medical ontologies. However, the explicit integration of physiological 
monotonicity constraints into the attention mechanisms of temporal mortality prediction 
models remains an under-explored area. Our work builds upon the concept of guiding the 
learning process with domain priors to ensure that the learned representations are not only 
accurate but also medically plausible [6]. 

Chapter 3: Methodology 

3.1 Data Preprocessing 

The heterogeneity of ICU data requires rigorous preprocessing. We utilize the Medical 
Information Mart for Intensive Care (MIMIC-III) database. We extract a cohort of adult 
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patients (age > 18) admitted to the ICU, focusing on 17 standard physiological variables (e.g., 
Heart Rate, Mean Arterial Pressure, Respiratory Rate, SpO2, Serum Creatinine, etc.). 

Data in the ICU is recorded at irregular intervals. To standardize this, we discretize the time 
series into hourly windows. If multiple measurements exist within an hour, we take the mean; 
if no measurement exists, we employ a "sample-and-hold" imputation strategy (forward 
filling) followed by mean imputation for remaining missing values. This mirrors the clinical 
reality where a physician assumes stable vitals until a new measurement is taken [7]. All 
continuous features are z-score normalized to ensure training stability. Static features such as 
age and gender are concatenated with the time-series representation at each step or fused at a 
later layer. 

3.2 Temporal Attention Mechanism 

We employ a bi-directional LSTM (Bi-LSTM) as the backbone of our sequence modeling. The 
Bi-LSTM processes the input sequence 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇 in both forward and backward 
directions, producing hidden states ℎ𝑡  that capture past and future contexts for each time step 
𝑡. 

To calculate the importance of each time step, we utilize a temporal attention mechanism. A 
context vector is learned to compute an attention score 𝛼𝑡 for each hidden state. The context 
vector aggregates the sequence into a single representation 𝑐, which is a weighted sum of the 
hidden states. This allows the model to focus on critical periods of the ICU stay, such as a 
hypotensive episode or a sudden desaturation event, rather than treating all time steps 
equally. 

 
Figure 1: System Architecture 

3.3 Clinically Constrained Feature Attribution 

Standard attention tells us when the data was important, but not necessarily which feature 
drove the risk or how. To resolve this, we implement feature-level attention mechanisms and, 
crucially, a domain-knowledge constraint. 

We define a Clinical Directionality Matrix, 𝐷, where each entry 𝐷𝑗 ∈ +1,−1,0 corresponds to 

the 𝑗-th feature. A value of +1 indicates that high values are generally associated with adverse 
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outcomes (e.g., Lactate), −1 indicates low values are adverse (e.g., SpO2), and 0 indicates 
ambiguous or non-monotonic relationships (e.g., Temperature, where both hypothermia and 
fever are bad). 

We utilize Integrated Gradients (IG) during the training phase to compute the attribution 𝜑𝑖𝑗 

of feature 𝑗 at time 𝑖. To enforce clinical plausibility, we modify the loss function. The standard 
Cross-Entropy loss (𝐿𝐶𝐸) is augmented with a regularization term 𝐿𝑟𝑒𝑔  that penalizes 

attributions violating the directionality matrix 𝐷. 

The mathematical formulation of our combined loss function is defined as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = −
1

𝑁
∑𝑖=1

𝑁(𝑦𝑖𝑙𝑜𝑔(ℎ𝑎𝑡𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − ℎ𝑎𝑡𝑦𝑖)) + 𝜆∑𝑗=1
𝑀𝑅𝑒𝐿𝑈(−𝐷𝑗 · ∑𝑡=1

𝑇𝜑𝑡𝑗) 

Here, 𝑦𝑖  is the ground truth label, ℎ𝑎𝑡𝑦𝑖  is the prediction, 𝑁  is the batch size, 𝜆 is the 
regularization hyperparameter, 𝑀 is the number of features, and 𝜑𝑡𝑗  is the attribution of 

feature 𝑗 at time 𝑡. The 𝑅𝑒𝐿𝑈 function ensures that we only penalize attributions that oppose 
the clinical prior (e.g., if 𝐷𝐿𝑎𝑐𝑡𝑎𝑡𝑒 = +1 but the model assigns a negative attribution, the term 
becomes positive and increases the loss). This effectively pushes the model to find a solution 
space where predictions are accurate and aligned with medical knowledge. 

Chapter 4: Experiments and Analysis 

4.1 Dataset and Setup 

We evaluate our model on the MIMIC-III v1.4 dataset. The task is binary classification: 
predicting in-hospital mortality based on the first 48 hours of ICU data. After filtering for 
patients with sufficient data density and excluding pediatric cases, our final cohort consists of 
21,139 admissions. The dataset is split into training (70%), validation (10%), and testing 
(20%) sets. 

We address the class imbalance (mortality rate is approximately 11%) using a weighted loss 
function and stratified sampling during batch generation. We compare our proposed 
Constrained Attention Network (CAN) against several baselines: 

1.  Logistic Regression (LR): Using aggregated mean/max/min features. 

2.  Random Forest (RF): Using the same aggregated features. 

3.  Standard LSTM: A vanilla LSTM without attention. 

4.  RETAIN: The interpretable RNN baseline [8]. 

5.  Transformer: A standard multi-head self-attention model. 

Table 1 summarizes the demographic and physiological characteristics of the cohort used in 
the experiments. 

Characteristic Survivors (n=18,800) Non-Survivors (n=2,339) 

Age (Mean ± SD) 63.2 ± 14.1 71.5 ± 15.3 

Admission Type (Emergency 
%) 

68.4% 84.1% 
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4.2 Performance Results 

We evaluate performance using the Area Under the Receiver Operating Characteristic Curve 
(AUROC) and the Area Under the Precision-Recall Curve (AUPRC). AUPRC is particularly 
important given the imbalanced nature of mortality prediction. 

The results, presented in Table 2, indicate that our proposed CAN architecture achieves 
competitive performance with the unconstrained Transformer and outperforms simpler 
baselines. Notably, the addition of the clinical constraint 𝐿𝑟𝑒𝑔 did not lead to a statistically 

significant drop in AUC, suggesting that interpretability does not necessarily come at the 
expense of accuracy. In fact, by regularizing against spurious correlations, the model showed 
improved generalization on the validation set. 

Model AUROC (95% CI) AUPRC (95% CI) 

Logistic Regression 0.742 (0.73-0.75) 0.385 (0.37-0.40) 

Random Forest 0.789 (0.78-0.80) 0.442 (0.43-0.46) 

Standard LSTM 0.835 (0.82-0.85) 0.510 (0.49-0.53) 

RETAIN 0.841 (0.83-0.85) 0.522 (0.50-0.54) 

Transformer 0.858 (0.85-0.87) 0.545 (0.53-0.56) 

Proposed CAN 0.861 (0.85-0.87) 0.551 (0.53-0.57) 

 
Figure 2: ROC and Precision 

4.3 Interpretability Analysis 

Quantitative evaluation of interpretability is challenging. We employed a "faithfulness" metric, 
measuring the drop in probability when the top-k most important features identified by the 
model are masked. Our model showed a higher faithfulness score compared to RETAIN, 
indicating that the features identified as important truly drive the prediction [9]. 

Qualitatively, we analyzed feature importance heatmaps for specific patient cases. Figure 3 
illustrates the attention weights for a patient with sepsis. The model correctly places high 
temporal attention on the hours leading up to a hypotensive shock event. Furthermore, the 
feature constraints successfully suppressed "noisy" attributions. For example, in the 
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unconstrained LSTM, an increase in Blood Urea Nitrogen (BUN) was occasionally attributed to 
lower risk due to local data noise; in our CAN model, high BUN consistently contributed to 
positive mortality risk, aligning with clinical consensus [10]. 

 
Figure 3: Feature Importance Heatmap 

The inclusion of the regularization term 𝜆 was critical. We performed an ablation study 
varying 𝜆. With 𝜆 = 0, the model reverts to a standard attention LSTM. As 𝜆 increases, the 
number of "physiologically violated" attributions decreases asymptotically. We found that a 
moderate value allows the model to respect clinical priors while still learning data-specific 
nuances where the prior might be incomplete (e.g., non-monotonic variables). 

Chapter 5: Conclusion 

5.1 Summary and Implications 

This paper presented a novel approach to ICU mortality prediction that harmonizes deep 
learning performance with clinical interpretability. By integrating a Temporal Attention 
mechanism with a Clinically Constrained regularization scheme, we developed a model that 
not only predicts mortality with high accuracy (AUROC 0.861) but also adheres to 
physiological principles. The proposed methodology addresses the critical barrier of trust in 
medical AI. When a model's explanation contradicts basic medical training, clinicians are right 
to reject it. By formally embedding these constraints into the loss function, we ensure that the 
AI acts as a "reasoning partner" rather than an obscure oracle. This has profound implications 
for deployment: a model that fails gracefully and transparently is safer than one that is 
slightly more accurate but opaque. 

5.2 Limitations and Future Directions 

Despite promising results, limitations exist. First, our directionality matrix 𝐷  is a 
simplification of complex physiology; some markers may have U-shaped risk curves (e.g., both 
hypoglycemia and hyperglycemia are dangerous) which simple monotonicity constraints do 
not fully capture. Future work should explore non-monotonic constraints or learned 
constraint functions. Second, the model was trained on a single center's data (MIMIC-III). 
External validation on datasets like eICU is necessary to prove generalizability. Finally, we aim 



Frontiers in Healthcare Technology Volume 2 Issue 1, 2025 

ISSN: 3079-6601  

 

140 

to extend this framework to multimodal data, integrating unstructured clinical notes and 
high-resolution waveforms to provide a more holistic patient view. Integrating this system 
into a live clinical dashboard for real-time validation by intensivists remains the ultimate goal 
of this research line. 
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