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Abstract 

Operating  rooms  pose  challenges  for  depth  sensing  due  to  variable  
illumination  and instrument occlusion. We benchmarked Kinect v2, 
RealSense D455, and HoloLens 2 across 100 trials simulating surgical 
conditions. Metrics included mean depth error, temporal stability, and 
robustness to  glare.  Results  showed Kinect v2  error  at  2.7 mm,  HoloLens 
2  at  1.9  mm,  and RealSense at  1. 1 mm.  Stability under surgeon motion 
was highest with RealSense  (94% valid frames).  Recommendations  include  
hybrid  calibration  workflows  and  adaptive  denoising  for clinical adoption. 
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Introduction 

In recent years,  depth-sensing technologies have been  increasingly  applied  
in  augmented reality (AR) surgical guidance for minimally invasive, orthopedic, 
and neurosurgical procedures [1]. Devices  such  as RealSense, Azure  Kinect  
and HoloLens 2 have been tested  for  distance accuracy, robustness under 
illumination and occlusion and temporal stability [2]. The EasyREG study 
emphasized how device-level  depth accuracy directly impacts surgical safety, 
leading to comprehensive benchmarking of commercial depth sensors under 
operating room conditions [3]. Studies report that depth sensors can 
reconstruct surfaces effectively, but reflective tools and thin anatomical 
structures still reduce accuracy [4]. Reviews ofAR navigation highlight limits 
such as registration error, drift, and display constraints that slow clinical 
adoption [5,6]. Other research has explored hybrid tracking and point cloud 
registration to reduce alignment  error  [7]. However, many works use small 
datasets or phantom models with fewer than 20 trials, often without real 
operating room lighting, surgeon motion, or dynamic occlusion [8]. In addition, 
evaluation metrics are inconsistent, and few studies compare multiple devices 
under identical clinical conditions [9]. This  study  addresses  these  gaps  by   
conducting   100  trials   in  realistic   surgical  simulations, comparing  Kinect 
v2,  RealSense  D455,  and HoloLens  2  for  accuracy, temporal  stability,  and 
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robustness to glare and occlusion. The contributions are a large-scale 
experimental protocol, a direct benchmark across three devices, and practical 
recommendations such as hybrid calibration and  adaptive  denoising.  The  
findings  provide  evidence  and  guidance  for  clinical  adoption  of depth-
sensing AR, bridging the gap between laboratory tests and operating room 
practice. 

2.  Materials and Methods 

2.1 Sample and Study Area Description 

This  study  included   100  independent  trials  simulating  surgical  
environments.  Each  trial involved  surface  reconstruction  of phantoms  
designed  to  replicate  soft-tissue  anatomy  under clinical lighting and 
occlusion. The phantoms were placed in operating room mockups equipped 
with  overhead  lamps  and  reflective  surgical  instruments  to  mimic  real  
conditions.  Three depth- sensing devices—Kinect v2 ,  RealSense D4 5 5 ,  and 
HoloLens 2—were tested.  All devices were mounted at a distance of 0.6–1.0 m 
from the phantom surface to match typical intraoperative working  ranges.   
The  experimental  samples  were  selected  to  represent  a  range  of  surface 
geometries and material textures relevant to surgical practice. 

2.2 Experimental Design and Control Setup 

The  experimental  group  included  measurements  under  variable  
illumination,  instrument occlusion, and surgeon-simulated motion. The 
control group was tested under stable illumination, no  occlusion,  and   static  
phantoms,  representing   optimal  laboratory  conditions.  This   design allowed  
direct  comparison  of  device  performance  between  controlled  and  clinically  
realistic environments. The  scientific rationale was to isolate the influence 
of dynamic operating room factors on depth accuracy and temporal stability. 
Each device was tested in both groups to ensure consistency and minimize 
device-specific bias. 

2.3 Measurement Methods and Quality Control 

Depth  data  were  recorded  at  30  frames  per  second,  with  raw  point  clouds  
exported  for analysis. Calibration was performed before each trial using a 
standard checkerboard pattern to align device intrinsic parameters. Mean 
depth error was calculated against reference ground-truth distances  measured  
with   a  laser   displacement   sensor.  Temporal   stability  was   evaluated  by 
frame-to-frame variance over continuous sequences of 10 s. To ensure quality 
control, trials with incomplete calibration or signal loss were excluded. In 
addition, glare resistance was assessed by introducing surgical lights at 30° and 
60° incidence angles, and each condition was repeated three times to reduce 
random error. 

2.4 Data Processing and Model Formulas 

Data processing was  carried  out  in  MATLAB  and  Python, with  all  signals  
filtered  by  a median denoising kernel to suppress outliers. Depth error (Ed) 

was calculated as the mean absolute difference between measured depth (Dm) 

and ground truth (Dt) [11]: 
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Temporal stability ( St ) was defined as the proportion of valid frames within 

a sequence, expressed as [12]: 

 

where  Nv    is the number of valid frames and  Nt     is the total number of 

frames. Statistical comparisons  between  groups  were  performed  using  one-
way  ANOVA  with   a   significance threshold of p<0.05. 

3.  Results and Discussion 

3.1 Static Accuracy under Illumination and Occlusion 

Figure   1  shows  that  all  devices  performed  best  under   stable  light  without   
occlusion. RealSense D455 had the lowest error (~ 1.0 mm), followed by 
HoloLens 2 (~ 1.8 mm) and Kinect v2 (~2.5 mm). Under glare and occlusion, 
errors increased. The most difficult condition (motion + glare + occlusion) 
produced errors of ~5.0 mm for Kinect, ~3.8 mm for HoloLens 2, and ~2.5 mm 
for  RealSense.  These  results  agree  with  previous  reports  that  reflective  
tools  and  strong illumination reduce depth accuracy [13]. The difference 
between RealSense and the other devices became larger in these cases, showing 
that RealSense is more robust. 

 

Fig. 1. Mean depth error of three devices under different illumination and 
occlusion conditions. 

3.2 Temporal Stability under Dynamic Conditions 

Figure 2  presents valid frame rates during dynamic tests.  RealSense D4 5 5  kept 
~ 9 4 %  valid frames under motion  and more than  85% under motion  with  
glare  or  occlusion.  HoloLens  2 dropped to ~70–75% in these conditions, while 
Kinect v2 decreased further to ~58–65%. Missing frames can lead to unstable 
visualization in surgery. Our findings match previous studies showing 
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that RealSense maintains stable output even under head or hand movement 
(Stadnytskyi et al., 2024). This indicates that stability is as important as 
accuracy for AR surgical guidance [15]. 

 

Fig. 2. Valid frame rate of three devices under dynamic operating room 
conditions. 

3.3 Comparison with Previous Studies and Error Sources 

Our results show that RealSense had an average error of about  1. 1 mm in  
simulated OR conditions.  This  is   similar  to  some  robotic  or  marker-based  
systems  and  better  than  other consumer-grade sensors reported in earlier 
work. HoloLens 2 and Kinect v2 showed larger errors, which is consistent with 
studies noting that time-of-flight and structured-light sensors are more sensitive 
to reflections and noise [16]. Main error sources in our tests included 
calibration drift, alignment differences between devices and ground truth, time 
lag in pose estimation, and sensor noise under uneven light. Occlusion from 
tools also caused missing or false depth points. These observations are 
consistent with previous reports [17, 18]. 

3.4 Implications, Limitations, and Recommendations 

The results suggest that RealSense D455 is the most suitable among the three 
devices, as it showed  lower  error  and higher  stability. However,  even  
RealSense had  increased  error under combined   glare   and  occlusion.  For  
procedures  needing   sub-millimeter   accuracy,   such   as neurosurgery, single-
sensor solutions may not be enough [19]. This study has some limits, all trials 
were   conducted   in    simulated   OR   settings   with   phantoms,   not   in   real    
surgeries.   The sensor-to-surface distance was restricted to 0.6–1.0 m,  and 
the lighting setup did not cover all types  of  surgical  lamps.  Future  work   
should  test  more   diverse  surgical  environments.  We recommend hybrid 
calibration with optical trackers, adaptive filtering to reduce glare effects, and 
sensor  fusion  to  reduce  occlusion  errors.  These  steps  can  help  achieve  
clinically  acceptable accuracy and support wider clinical use ofAR depth 
sensing. 

4.  Conclusion 

This study evaluated the performance of three depth-sensing devices—Kinect 
v2, RealSense D455,   and   HoloLens   2—under   simulated   operating   room   
conditions   with   variations   in illumination, occlusion, and surgeon motion. 
Results showed that RealSense D455 achieved the lowest mean error and 
highest frame stability, while Kinect v2 was most sensitive to glare and 
occlusion.  HoloLens  2  performed  moderately,  but  with  greater  error  
increase  under  dynamic conditions.  The  main  innovations  of  this  work  are  
the  use  of  a  large  trial  set,  side-by-side benchmarking under realistic 
scenarios, and multi-metric evaluation including temporal stability 
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and robustness to glare. These findings provide scientific evidence for selecting 
and calibrating depth sensors in clinical AR applications. The results have 
potential to guide the design of hybrid calibration workflows and adaptive 
filtering strategies that improve reliability in surgery. However, limitations 
remain, including the use of phantoms rather than in vivo anatomy and the 
restricted range of lighting and geometry conditions. Future research should 
extend the evaluation to clinical trials and test integration with multimodal 
tracking systems, which will be essential for achieving safe and precise AR 
surgical navigation. 
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