Frontiers in Healthcare Technology Volume 2 Issuel, 2025
ISSN: 3079-6601

Evaluation of Depth-Sensing Accuracy for AR
Surgical Guidance in Dynamic Operating Room
Environments

Adrian K. Wong?, Victor T. Ho?, Samuel C. Leel, Mei L. Chan?, Carmen
Y. Lauz *

1Department of Mechanical Engineering, The University of Hong Kong, Pok Fu
Lam Road, Hong Kong SAR, China

2Department of Biomedical Engineering, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China

*Corresponding Author: s.c.lee@hku.hk
Abstract

Operating rooms pose challenges for depth sensing due to variable
illumination and instrument occlusion. We benchmarked Kinect v2,
RealSense D455, and HoloLens 2 across 100 trials simulating surgical
conditions. Metrics included mean depth error, temporal stability, and
robustness to glare. Results showed Kinect v2 error at 2.7 mm, HoloLens
2 at 1.9 mm, and RealSense at 1. 1 mm. Stability under surgeon motion
was highest with RealSense (94% valid frames). Recommendations include
hybrid calibration workflows and adaptive denoising for clinical adoption.
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Introduction

In recent years, depth-sensing technologies have been increasingly applied
in augmented reality (AR) surgical guidance for minimally invasive, orthopedic,
and neurosurgical procedures [1]. Devices such as RealSense, Azure Kinect
and HoloLens 2 have been tested for distance accuracy, robustness under
illumination and occlusion and temporal stability [2]. The EasyREG study
emphasized how device-level depth accuracy directly impacts surgical safety,
leading to comprehensive benchmarking of commercial depth sensors under
operating room conditions [3]. Studies report that depth sensors can
reconstruct surfaces effectively, but reflective tools and thin anatomical
structures still reduce accuracy [4]. Reviews ofAR navigation highlight limits
such as registration error, drift, and display constraints that slow clinical
adoption [5,6]. Other research has explored hybrid tracking and point cloud
registration to reduce alignment error [7]. However, many works use small
datasets or phantom models with fewer than 20 trials, often without real
operating room lighting, surgeon motion, or dynamic occlusion [8]. In addition,
evaluation metrics are inconsistent, and few studies compare multiple devices
under identical clinical conditions [9]. This study addresses these gaps by
conducting 100 trials in realistic surgical simulations, comparing Kinect
v2, RealSense D455, and HoloLens 2 for accuracy, temporal stability, and
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robustness to glare and occlusion. The contributions are a large-scale
experimental protocol, a direct benchmark across three devices, and practical
recommendations such as hybrid calibration and adaptive denoising. The
findings provide evidence and guidance for clinical adoption of depth-
sensing AR, bridging the gap between laboratory tests and operating room
practice.

2. Materials and Methods

2.1 Sample and Study Area Description

This study included 100 independent trials simulating surgical
environments. Each trial involved surface reconstruction of phantoms
designed to replicate soft-tissue anatomy under clinical lighting and
occlusion. The phantoms were placed in operating room mockups equipped
with overhead lamps and reflective surgical instruments to mimic real
conditions. Three depth-sensing devices—Kinect v2, RealSense D455, and
HoloLens 2 —were tested. All devices were mounted at a distance of 0.6-1.0 m
from the phantom surface to match typical intraoperative working ranges.
The experimental samples were selected to represent a range of surface
geometries and material textures relevant to surgical practice.

2.2 Experimental Design and Control Setup

The experimental group included measurements under variable
illumination, instrument occlusion, and surgeon-simulated motion. The
control group was tested under stable illumination, no occlusion, and static
phantoms, representing optimal laboratory conditions. This design allowed
direct comparison of device performance between controlled and clinically
realistic environments. The scientific rationale was to isolate the influence
of dynamic operating room factors on depth accuracy and temporal stability.
Each device was tested in both groups to ensure consistency and minimize
device-specific bias.

2.3 Measurement Methods and Quality Control

Depth data were recorded at 30 frames per second, with raw point clouds
exported for analysis. Calibration was performed before each trial using a
standard checkerboard pattern to align device intrinsic parameters. Mean
depth error was calculated against reference ground-truth distances measured
with a laser displacement sensor. Temporal stability was evaluated by
frame-to-frame variance over continuous sequences of 10 s. To ensure quality
control, trials with incomplete calibration or signal loss were excluded. In
addition, glare resistance was assessed by introducing surgical lights at 30° and
60° incidence angles, and each condition was repeated three times to reduce
random error.

2.4 Data Processing and Model Formulas

Data processing was carried out in MATLAB and Python, with all signals
filtered by a median denoising kernel to suppress outliers. Depth error (E{)

was calculated as the mean absolute difference between measured depth (Dpy)
and ground truth (D¢) [11]:
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Temporal stability ( St) was defined as the proportion of valid frames within
a sequence, expressed as [12]:

N, .
st:Exlo(m
where Ny is the number of valid frames and Nt is the total number of

frames. Statistical comparisons between groups were performed using one-
way ANOVA with a significance threshold ofp<0.05.

3. Results and Discussion

3.1 Static Accuracy under Illumination and Occlusion

Figure 1 shows that all devices performed best under stable light without
occlusion. RealSense D455 had the lowest error (~ 1.0 mm), followed by
HoloLens 2 (~ 1.8 mm) and Kinectv2 (~2.5 mm). Under glare and occlusion,
errors increased. The most difficult condition (motion + glare + occlusion)
produced errors of ~5.0 mm for Kinect, ~3.8 mm for HoloLens 2, and ~2.5 mm
for RealSense. These results agree with previous reports that reflective
tools and strong illumination reduce depth accuracy [13]. The difference
between RealSense and the other devices became larger in these cases, showing
that RealSense is more robust.

(@) MTF test object (b) Flat wall test object

Fig. 1. Mean depth error of three devices under different illumination and
occlusion conditions.

3.2 Temporal Stability under Dynamic Conditions

Figure 2 presents valid frame rates during dynamic tests. RealSense D455 kept
~949% valid frames under motion and more than 85% under motion with
glare or occlusion. HoloLens 2 dropped to ~70-75% in these conditions, while
Kinect v2 decreased further to ~58-65%. Missing frames can lead to unstable
visualization in surgery. Our findings match previous studies showing
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that RealSense maintains stable output even under head or hand movement
(Stadnytskyi et al, 2024). This indicates that stability is as important as
accuracy for AR surgical guidance [15].
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Fig. 2. Valid frame rate of three devices under dynamic operating room
conditions.

3.3 Comparison with Previous Studies and Error Sources

Our results show that RealSense had an average error of about 1.1 mm in
simulated OR conditions. This is similar to some robotic or marker-based
systems and better than other consumer-grade sensors reported in earlier
work. HoloLens 2 and Kinect v2 showed larger errors, which is consistent with
studies noting that time-of-flight and structured-light sensors are more sensitive
to reflections and noise [16]. Main error sources in our tests included
calibration drift, alignment differences between devices and ground truth, time
lag in pose estimation, and sensor noise under uneven light. Occlusion from
tools also caused missing or false depth points. These observations are
consistent with previous reports [17,18].

3.4 Implications, Limitations, and Recommendations

The results suggest that RealSense D455 is the most suitable among the three
devices, as it showed lower error and higher stability. However, even
RealSense had increased error under combined glare and occlusion. For
procedures needing sub-millimeter accuracy, such asneurosurgery, single-
sensor solutions may not be enough [19]. This study has some limits, all trials
were conducted in simulated OR settings with phantoms, not in real
surgeries. The sensor-to-surface distance was restricted to 0.6-1.0 m, and
the lighting setup did not cover all types of surgical lamps. Future work
should test more diverse surgical environments. We recommend hybrid
calibration with optical trackers, adaptive filtering to reduce glare effects, and
sensor fusion to reduce occlusion errors. These steps can help achieve
clinically acceptable accuracy and support wider clinical use ofAR depth
sensing.

4. Conclusion

This study evaluated the performance of three depth-sensing devices—Kinect
v2, RealSense D455, and HoloLens 2—under simulated operating room
conditions with variations in illumination, occlusion, and surgeon motion.
Results showed that RealSense D455 achieved the lowest mean error and
highest frame stability, while Kinect v2 was most sensitive to glare and
occlusion. HoloLens 2 performed moderately, but with greater error
increase under dynamic conditions. The main innovations of this work are
the use of a large trial set, side-by-side benchmarking under realistic
scenarios, and multi-metric evaluation including temporal stability
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and robustness to glare. These findings provide scientific evidence for selecting
and calibrating depth sensors in clinical AR applications. The results have
potential to guide the design of hybrid calibration workflows and adaptive
filtering strategies that improve reliability in surgery. However, limitations
remain, including the use of phantoms rather than in vivo anatomy and the
restricted range of lighting and geometry conditions. Future research should
extend the evaluation to clinical trials and test integration with multimodal
tracking systems, which will be essential for achieving safe and precise AR
surgical navigation.
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