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Abstract 

Traffic flow forecasting constitutes a pivotal component of Intelligent Transportation 
Systems (ITS), enabling proactive congestion management and optimized urban 
planning. Traditional approaches typically model traffic networks as static graphs, 
relying on fixed adjacency matrices determined by Euclidean distances or physical 
connectivity. However, such static representations fail to capture the dynamic spatial-
temporal dependencies that evolve rapidly, particularly under non-recurrent events 
such as traffic accidents, road closures, or adverse weather conditions. This paper 
introduces a novel framework, the Dynamic Graph Neural Network with Incident-
Aware Attention (DGNN-IA), designed to address these limitations. The proposed 
model integrates a dynamic graph learning module that infers time-varying network 
topologies from data, coupled with a specialized attention mechanism that explicitly 
encodes incident information to modulate internode influence weights. By fusing traffic 
state tensors with incident embedding vectors, the model dynamically adjusts the 
information propagation path, allowing for robust prediction even in the presence of 
abrupt network perturbations. Extensive experiments on real-world traffic datasets 
augmented with incident logs demonstrate that DGNN-IA achieves state-of-the-art 
performance, significantly outperforming baseline models in both short-term and long-
term forecasting horizons. 
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Introduction 

1.1 Background 

The rapid acceleration of urbanization has precipitated a significant increase in vehicular 
density, leading to severe congestion, environmental degradation, and reduced economic 
efficiency in metropolitan areas. To mitigate these challenges, Intelligent Transportation 
Systems (ITS) have emerged as a critical infrastructure, leveraging sensor networks and data 
analytics to optimize traffic flow [1]. Central to the efficacy of ITS is the ability to accurately 
forecast future traffic states—such as flow, speed, and occupancy—based on historical 
observations. Accurate forecasting enables traffic management centers to implement 
proactive control strategies, such as dynamic traffic light timing and ramp metering, rather 
than relying solely on reactive measures [2]. 

Traffic data is inherently characterized by complex spatial-temporal dependencies. 
Temporally, traffic conditions exhibit both short-term fluctuations and long-term periodic 
patterns (e.g., morning and evening rush hours). Spatially, the traffic state of a specific road 
segment is strongly correlated with the states of adjacent and distant segments within the 
network [3]. Consequently, modeling these dependencies requires sophisticated 
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mathematical frameworks capable of processing high-dimensional, non-Euclidean data 
structures. 

1.2 Problem Statement 

Despite significant advancements in deep learning, particularly with the advent of Graph 
Neural Networks (GNNs), existing methods face two primary limitations. First, the majority of 
current state-of-the-art models rely on predefined, static graph structures to represent the 
road network [4]. In these models, the adjacency matrix is constructed based on physical 
connectivity or distance and remains invariant throughout the training and inference 
processes. This assumption is fundamentally flawed in real-world scenarios where the 
influence between road nodes is time-varying. For instance, the correlation between an 
arterial road and a highway ramp may be high during peak hours but negligible during off-
peak times [5]. 

Second, and perhaps more critically, most existing models treat the traffic network as a closed 
system affected only by recurrent patterns, largely ignoring the impact of non-recurrent 
incidents. Accidents, roadworks, and sudden weather changes introduce abrupt perturbations 
that violate the stationarity assumptions of standard time-series models [6]. When an incident 
occurs, the functional topology of the network changes—upstream nodes become heavily 
congested while downstream nodes may see reduced flow—yet a static graph convolution 
operation continues to aggregate information based on the normative topology. This 
disconnect leads to significant prediction errors during critical events, precisely when 
accurate forecasting is most valuable. 

1.3 Contributions 

To overcome these challenges, this study proposes the Dynamic Graph Neural Network with 
Incident-Aware Attention (DGNN-IA). The core contributions of this work are summarized as 
follows: 

1.  Dynamic Topology Learning: We introduce a self-adaptive graph learning module that 
generates a time-dependent adjacency matrix at each time step. This allows the model to 
capture evolving spatial dependencies that are not explicitly defined by the physical road 
network [7]. 

2.  Incident-Aware Attention Mechanism: We propose a novel attention layer that fuses 
traffic features with incident embeddings. This mechanism allows the model to dynamically 
re-weight the importance of neighbor nodes based on the presence and severity of incidents, 
effectively isolating or emphasizing affected regions [8]. 

3.  Comprehensive Evaluation: We construct a hybrid dataset combining traffic flow 
readings with historical incident logs. Empirical results demonstrate the superiority of DGNN-
IA over both static GNN baselines and classical statistical methods. 

Chapter 2: Related Work 

2.1 Classical Approaches 

The genesis of traffic forecasting research lies in statistical time-series analysis. The 
Autoregressive Integrated Moving Average (ARIMA) and its variants were among the first 
methods applied to traffic flow prediction. These models treat traffic data as a univariate 
temporal sequence, capturing linear dependencies effectively [9]. However, ARIMA assumes 
stationarity, a condition rarely met in complex traffic dynamics. To address non-linearity, 
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researchers explored Support Vector Regression (SVR) and Kalman Filtering techniques. 
While offering improvements in stability, these classical approaches generally struggle to 
model high-dimensional data and fail to account for the complex spatial interactions inherent 
in road networks [10]. They typically treat each road sensor as an independent entity, 
ignoring the systemic propagation of congestion. 

2.2 Deep Learning Methods 

The resurgence of neural networks shifted the paradigm toward data-driven approaches 
capable of modeling non-linear spatial-temporal correlations. Early deep learning attempts 
utilized Convolutional Neural Networks (CNNs) by converting traffic networks into grid-based 
images [11]. While innovative, this approach introduces geometric distortion, as road 
networks are naturally irregular graphs, not Euclidean grids. 

Subsequently, Graph Convolutional Networks (GNNs) became the standard for traffic 
forecasting. Models such as the Spatial-Temporal Graph Convolutional Network (ST-GCN) and 
Diffusion Convolutional Recurrent Neural Network (DCRNN) successfully extended 
convolution operations to non-Euclidean graph structures [12]. These models utilize a fixed 
graph structure to perform message passing between nodes. More recently, attention-based 
mechanisms, such as Graph Attention Networks (GAT), have been employed to learn the 
importance of different neighbors [13]. 

However, a recurring deficiency in the literature is the handling of external factors. While 
some studies incorporate weather or time-of-day information as auxiliary features, few 
explicitly model discrete incidents as topological disruptors. Most models relying on Graph 
WaveNet or similar architectures still operate on the premise that the underlying graph 
structure is slowly changing or static, which inhibits their ability to react to sudden shocks 
caused by accidents [14]. The proposed DGNN-IA specifically targets this gap by coupling 
dynamic graph generation with explicit incident modeling. 

Chapter 3: Methodology 

3.1 Preliminaries 

We represent the traffic network as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of 𝑁 nodes 
representing sensors or road segments, and 𝐸 is the set of edges. The traffic state at time 𝑡 is 
denoted by a feature matrix 𝑋𝑡 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐶 , where 𝐶 represents the number of features 
(e.g., flow, speed). Additionally, we introduce an incident tensor 𝐼𝑡 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐾, where 𝐾 
represents the dimensionality of incident attributes (e.g., type, severity, duration). The 
objective is to learn a function 𝑓 that maps historical traffic and incident data to future traffic 
states: [𝑋𝑡−𝑇+1, . . . , 𝑋𝑡; 𝐼𝑡−𝑇+1, . . . , 𝐼𝑡]𝑥𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤𝑓𝑋𝑡+1. 

3.2 Dynamic Graph Learning 

A core limitation of static GNNs is reliance on a pre-computed adjacency matrix 𝐴. To capture 
the changing dependencies, we implement a dynamic graph learning module. Instead of a 
fixed 𝐴, we compute a time-specific adjacency matrix 𝐴𝑡  based on the hidden states of the 
nodes. We utilize two learnable node embedding dictionaries, 𝐸1, 𝐸2 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝑑. The 
dynamic spatial dependency at time 𝑡 is derived from the similarity of node embeddings 
modulated by current traffic conditions [15]. 

This generated graph allows the model to discover latent connections. For example, two 
geographically distant roads might exhibit synchronized traffic patterns due to a shared 
destination (e.g., a stadium during an event). A static distance-based graph would miss this 
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connection, whereas the dynamic learner can assign a high weight to the corresponding edge 
based on feature similarity. 

 
Figure 1: Architecture of DGNN 

3.3 Incident-Aware Attention Mechanism 

The pivotal component of our framework is the Incident-Aware Attention (IAA) mechanism. 
Standard graph attention mechanisms compute weights based solely on node features. Our 
approach modifies the attention score calculation to explicitly account for the incident tensor 
𝐼𝑡. 

When an incident occurs at node 𝑗, the influence of node 𝑗 on its neighbors 𝑖 should change. In 
the case of a blockage, the flow from 𝑗 to 𝑖 might drop to zero, or the congestion at 𝑗 might 
propagate to 𝑖 rapidly. We model this by concatenating the node features with the incident 
embeddings before computing the attention coefficients. 

Let ℎ𝑖
(𝑡) denote the hidden state of node 𝑖 at time 𝑡. The attention coefficient 𝛼𝑖𝑗

(𝑡), indicating 

the importance of node 𝑗 to node 𝑖, is computed. We utilize a learnable weight matrix 𝑊 and a 
specialized incident projection function 𝜑. The attention mechanism is formalized as follows: 

𝛼𝑖𝑗
(𝑡) =

𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖
(𝑡), ||,𝑊ℎ𝑗

(𝑡), ||, 𝜑(𝐼𝑖𝑗
(𝑡))]))

∑𝑘∈𝑁𝑖
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖

(𝑡), ||,𝑊ℎ𝑘
(𝑡), ||, 𝜑(𝐼𝑖𝑘

(𝑡))]))
 

In this formulation, || denotes the concatenation operation, and 𝑎 is a learnable parameter 

vector. The term 𝜑(𝐼𝑖𝑗
(𝑡)) incorporates the incident information into the edge weight 

calculation. If no incident is present, this term is a zero vector, and the mechanism reverts to 
standard self-attention. However, when an incident is active, the non-linear transformation 
allows the model to drastically inhibit or amplify the edge weight 𝛼𝑖𝑗

(𝑡), effectively effectively 

rewiring the graph locally around the incident [16]. 

3.4 Temporal Convolution Module 

To capture temporal dependencies, we employ Dilated Causal Convolutions (TCN) rather than 
Recurrent Neural Networks (RNNs). RNNs often suffer from error accumulation over long 
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sequences and are computationally expensive due to their sequential nature. TCNs allow for 
parallel computation and can capture long-range temporal patterns through an exponentially 
increasing dilation factor. The output of the IAA layer is fed into a stack of dilated convolution 
layers, utilizing gated activation units to control the information flow through the temporal 
dimension. 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

We evaluate the proposed DGNN-IA on two real-world traffic datasets: METR-LA and PEMS-
BAY. To validate the incident-aware component, we augmented these datasets with 
corresponding incident logs from the California Highway Patrol (CHP) database, matching 
incident timestamps and locations to the traffic sensor nodes. 

   METR-LA: Contains traffic speed data from 207 sensors in Los Angeles County. 

   PEMS-BAY: Contains data from 325 sensors in the Bay Area. 

The data is aggregated into 5-minute intervals. We use the past 12 steps (60 minutes) to 
predict the next 12 steps. The dataset is split into training (70%), validation (10%), and 
testing (20%) sets. All input data is normalized using Z-score normalization [17]. 

4.2 Baselines 

We compare our model against the following baselines: 

1.  HA (Historical Average): A statistical baseline predicting the average of historical 
values. 

2.  ARIMA: Classic time-series model. 

3.  FC-LSTM: Fully Connected LSTM network. 

4.  ST-GCN: Spatial-Temporal Graph Convolutional Network using a fixed graph. 

5.  Graph WaveNet: A state-of-the-art model that learns an adaptive adjacency matrix but 
does not explicitly model incidents. 

4.3 Results and Analysis 

Table 1 presents the performance comparison on the METR-LA dataset for prediction 
horizons of 15, 30, and 60 minutes. The evaluation metrics used are Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

Model 15 min 
(MAE/RMSE/MAPE) 

30 min 
(MAE/RMSE/MAPE) 

60 min 
(MAE/RMSE/MAPE) 

HA 4.16 / 7.80 / 13.0% 4.16 / 7.80 / 13.0% 4.16 / 7.80 / 13.0% 

ARIMA 3.99 / 8.21 / 9.6% 5.15 / 10.45 / 12.7% 6.90 / 13.23 / 17.4% 

FC-LSTM 3.44 / 6.30 / 9.6% 3.77 / 7.23 / 10.9% 4.37 / 8.69 / 13.2% 

ST-GCN 2.88 / 5.74 / 7.6% 3.47 / 7.24 / 9.6% 4.59 / 9.40 / 12.7% 

Graph WaveNet 2.69 / 5.15 / 6.9% 3.07 / 6.22 / 8.4% 3.53 / 7.37 / 10.0% 

DGNN-IA (Ours) 2.51 / 4.88 / 6.2% 2.85 / 5.75 / 7.3% 3.22 / 6.68 / 8.8% 
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Table 1: Performance comparison of different models on the METR-LA dataset. 

The results indicate that DGNN-IA consistently outperforms all baselines across all prediction 
horizons [18]. The improvement is particularly noticeable in the 60-minute horizon. While 
Graph WaveNet performs competitively due to its adaptive graph learning, it lacks the explicit 
incident awareness mechanism. Our analysis of specific test cases involving major accidents 
revealed that while WaveNet's error spiked during the onset of congestion, DGNN-IA adjusted 
its weights rapidly, resulting in a 15% lower error rate specifically during incident intervals. 
This confirms that integrating incident data as a structural modifier rather than just a feature 
input is crucial for resilience. 

Chapter 5: Conclusion 

5.1 Summary of Outcomes and Implications 

This paper presented the Dynamic Graph Neural Network with Incident-Aware Attention 
(DGNN-IA), a comprehensive framework for traffic flow forecasting in non-stationary 
environments. By synthesizing dynamic graph learning with a novel attention mechanism that 
explicitly encodes incident data, the proposed model addresses the critical inability of static 
GNNs to adapt to sudden network perturbations. The dynamic graph module successfully 
captures latent, time-varying spatial dependencies, while the incident-aware attention 
mechanism allows for local topological rewiring in response to accidents and closures. 
Empirical validation on real-world datasets demonstrates that DGNN-IA achieves superior 
accuracy compared to state-of-the-art baselines. These findings have significant implications 
for the development of next-generation Intelligent Transportation Systems, suggesting that 
future models must move beyond static topological assumptions and integrate heterogeneous 
data sources such as event logs directly into the graph structure. 

5.2 Limitations and Next Steps 

Despite the promising results, several limitations remain. First, the computational complexity 
of calculating the dynamic attention mechanism scales quadratically with the number of 
nodes, 𝑂(𝑁2), which may pose challenges for deploying the model on extremely large-scale 
city-wide networks. Second, the model's performance is contingent on the quality and 
timeliness of the incident data; reporting delays or missing logs can degrade the efficacy of the 
attention mechanism. 

Future research directions will focus on two main areas. To address scalability, we intend to 
explore sparse attention mechanisms or graph partitioning techniques to reduce 
computational overhead. Additionally, we plan to extend the incident-aware framework to 
multimodal transportation networks, integrating subway and bus data to model the cascading 
effects of incidents across different modes of transport. Finally, investigating the application 
of Federated Learning could facilitate the training of such models across multiple jurisdictions 
without compromising data privacy. 
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