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Abstract

Traffic flow forecasting constitutes a pivotal component of Intelligent Transportation
Systems (ITS), enabling proactive congestion management and optimized urban
planning. Traditional approaches typically model traffic networks as static graphs,
relying on fixed adjacency matrices determined by Euclidean distances or physical
connectivity. However, such static representations fail to capture the dynamic spatial-
temporal dependencies that evolve rapidly, particularly under non-recurrent events
such as traffic accidents, road closures, or adverse weather conditions. This paper
introduces a novel framework, the Dynamic Graph Neural Network with Incident-
Aware Attention (DGNN-IA), designed to address these limitations. The proposed
model integrates a dynamic graph learning module that infers time-varying network
topologies from data, coupled with a specialized attention mechanism that explicitly
encodes incident information to modulate internode influence weights. By fusing traffic
state tensors with incident embedding vectors, the model dynamically adjusts the
information propagation path, allowing for robust prediction even in the presence of
abrupt network perturbations. Extensive experiments on real-world traffic datasets
augmented with incident logs demonstrate that DGNN-IA achieves state-of-the-art
performance, significantly outperforming baseline models in both short-term and long-
term forecasting horizons.
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Introduction

1.1 Background

The rapid acceleration of urbanization has precipitated a significant increase in vehicular
density, leading to severe congestion, environmental degradation, and reduced economic
efficiency in metropolitan areas. To mitigate these challenges, Intelligent Transportation
Systems (ITS) have emerged as a critical infrastructure, leveraging sensor networks and data
analytics to optimize traffic flow [1]. Central to the efficacy of ITS is the ability to accurately
forecast future traffic states—such as flow, speed, and occupancy—based on historical
observations. Accurate forecasting enables traffic management centers to implement
proactive control strategies, such as dynamic traffic light timing and ramp metering, rather
than relying solely on reactive measures [2].

Traffic data is inherently characterized by complex spatial-temporal dependencies.
Temporally, traffic conditions exhibit both short-term fluctuations and long-term periodic
patterns (e.g., morning and evening rush hours). Spatially, the traffic state of a specific road
segment is strongly correlated with the states of adjacent and distant segments within the
network [3]. Consequently, modeling these dependencies requires sophisticated
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mathematical frameworks capable of processing high-dimensional, non-Euclidean data
structures.

1.2 Problem Statement

Despite significant advancements in deep learning, particularly with the advent of Graph
Neural Networks (GNNs), existing methods face two primary limitations. First, the majority of
current state-of-the-art models rely on predefined, static graph structures to represent the
road network [4]. In these models, the adjacency matrix is constructed based on physical
connectivity or distance and remains invariant throughout the training and inference
processes. This assumption is fundamentally flawed in real-world scenarios where the
influence between road nodes is time-varying. For instance, the correlation between an
arterial road and a highway ramp may be high during peak hours but negligible during off-
peak times [5].

Second, and perhaps more critically, most existing models treat the traffic network as a closed
system affected only by recurrent patterns, largely ignoring the impact of non-recurrent
incidents. Accidents, roadworks, and sudden weather changes introduce abrupt perturbations
that violate the stationarity assumptions of standard time-series models [6]. When an incident
occurs, the functional topology of the network changes—upstream nodes become heavily
congested while downstream nodes may see reduced flow—yet a static graph convolution
operation continues to aggregate information based on the normative topology. This
disconnect leads to significant prediction errors during critical events, precisely when
accurate forecasting is most valuable.

1.3 Contributions

To overcome these challenges, this study proposes the Dynamic Graph Neural Network with
Incident-Aware Attention (DGNN-IA). The core contributions of this work are summarized as
follows:

1. Dynamic Topology Learning: We introduce a self-adaptive graph learning module that
generates a time-dependent adjacency matrix at each time step. This allows the model to
capture evolving spatial dependencies that are not explicitly defined by the physical road
network [7].

2. Incident-Aware Attention Mechanism: We propose a novel attention layer that fuses
traffic features with incident embeddings. This mechanism allows the model to dynamically
re-weight the importance of neighbor nodes based on the presence and severity of incidents,
effectively isolating or emphasizing affected regions [8].

3. Comprehensive Evaluation: We construct a hybrid dataset combining traffic flow
readings with historical incident logs. Empirical results demonstrate the superiority of DGNN-
IA over both static GNN baselines and classical statistical methods.

Chapter 2: Related Work
2.1 Classical Approaches

The genesis of traffic forecasting research lies in statistical time-series analysis. The
Autoregressive Integrated Moving Average (ARIMA) and its variants were among the first
methods applied to traffic flow prediction. These models treat traffic data as a univariate
temporal sequence, capturing linear dependencies effectively [9]. However, ARIMA assumes
stationarity, a condition rarely met in complex traffic dynamics. To address non-linearity,

94



Frontiers in Environmental Science and Sustainability Volume 2 Issue 1, 2025
ISSN: 3079-6660

researchers explored Support Vector Regression (SVR) and Kalman Filtering techniques.
While offering improvements in stability, these classical approaches generally struggle to
model high-dimensional data and fail to account for the complex spatial interactions inherent
in road networks [10]. They typically treat each road sensor as an independent entity,
ignoring the systemic propagation of congestion.

2.2 Deep Learning Methods

The resurgence of neural networks shifted the paradigm toward data-driven approaches
capable of modeling non-linear spatial-temporal correlations. Early deep learning attempts
utilized Convolutional Neural Networks (CNNs) by converting traffic networks into grid-based
images [11]. While innovative, this approach introduces geometric distortion, as road
networks are naturally irregular graphs, not Euclidean grids.

Subsequently, Graph Convolutional Networks (GNNs) became the standard for traffic
forecasting. Models such as the Spatial-Temporal Graph Convolutional Network (ST-GCN) and
Diffusion Convolutional Recurrent Neural Network (DCRNN) successfully extended
convolution operations to non-Euclidean graph structures [12]. These models utilize a fixed
graph structure to perform message passing between nodes. More recently, attention-based
mechanisms, such as Graph Attention Networks (GAT), have been employed to learn the
importance of different neighbors [13].

However, a recurring deficiency in the literature is the handling of external factors. While
some studies incorporate weather or time-of-day information as auxiliary features, few
explicitly model discrete incidents as topological disruptors. Most models relying on Graph
WaveNet or similar architectures still operate on the premise that the underlying graph
structure is slowly changing or static, which inhibits their ability to react to sudden shocks
caused by accidents [14]. The proposed DGNN-IA specifically targets this gap by coupling
dynamic graph generation with explicit incident modeling.

Chapter 3: Methodology

3.1 Preliminaries

We represent the traffic network as a graph ¢ = (V,E), whereV is the set of N nodes
representing sensors or road segments, and E is the set of edges. The traffic state at time t is
denoted by a feature matrix X, € mathbbR"*¢, where C represents the number of features
(e.g., flow, speed). Additionally, we introduce an incident tensor I; € mathbbRY*X, where K
represents the dimensionality of incident attributes (e.g., type, severity, duration). The
objective is to learn a function f that maps historical traffic and incident data to future traffic
states: [X¢_r41, - Xes le—r41, - -+, I ]xrightarrowf X, 1.

3.2 Dynamic Graph Learning

A core limitation of static GNNs is reliance on a pre-computed adjacency matrix A. To capture
the changing dependencies, we implement a dynamic graph learning module. Instead of a
fixed A, we compute a time-specific adjacency matrix A; based on the hidden states of the
nodes. We utilize two learnable node embedding dictionaries, E;, E, € mathbbR¥*%, The
dynamic spatial dependency at time t is derived from the similarity of node embeddings
modulated by current traffic conditions [15].

This generated graph allows the model to discover latent connections. For example, two
geographically distant roads might exhibit synchronized traffic patterns due to a shared
destination (e.g., a stadium during an event). A static distance-based graph would miss this

95



Frontiers in Environmental Science and Sustainability Volume 2 Issue 1, 2025
ISSN: 3079-6660

connection, whereas the dynamic learner can assign a high weight to the corresponding edge
based on feature similarity.

Input Tensors e

— 7 > (
Traffic Matrix (T) Dynamic Graph  {Opafs Adjecancy
Incident Matrix (S) f<—f Genera tor {(:g}zﬁ }4’ Matrix (A)
—— S o
A~ —

e ~

Temporal
Convolution
Layer

A T
= e
Traffic Matrix = ! — Temporal
Incident Matrix (S) le—j— Feature Embeding | <~ Incident-Aware > Convolution
- i < Attention Layer_— \ = taver
T 2 J o — SS/AN o)

2] Output
= Prediction (Y)

Figure 1: Architecture of DGNN

3.3 Incident-Aware Attention Mechanism

The pivotal component of our framework is the Incident-Aware Attention (IAA) mechanism.
Standard graph attention mechanisms compute weights based solely on node features. Our
approach modifies the attention score calculation to explicitly account for the incident tensor
I;.

When an incident occurs at node j, the influence of node j on its neighbors i should change. In
the case of a blockage, the flow from j to i might drop to zero, or the congestion at j might
propagate to i rapidly. We model this by concatenating the node features with the incident
embeddings before computing the attention coefficients.

Let hi(t) denote the hidden state of node i at time t. The attention coefficient a'l-j(t), indicating

the importance of node j to node i, is computed. We utilize a learnable weight matrix W and a
specialized incident projection function ¢. The attention mechanism is formalized as follows:

exp(LeakyReLU (T [Wh;®, ||, Whj®, ||, 0(1;;)]))
Yken,exp(LeakyReLU(aT [Whi®, ||, Wh,©, 1|, 0 (1 )]))

a;® =

In this formulation, || denotes the concatenation operation, and a is a learnable parameter
vector. The term ¢(J; j(t)) incorporates the incident information into the edge weight
calculation. If no incident is present, this term is a zero vector, and the mechanism reverts to
standard self-attention. However, when an incident is active, the non-linear transformation
allows the model to drastically inhibit or amplify the edge weight «; j(t), effectively effectively
rewiring the graph locally around the incident [16].

3.4 Temporal Convolution Module

To capture temporal dependencies, we employ Dilated Causal Convolutions (TCN) rather than
Recurrent Neural Networks (RNNs). RNNs often suffer from error accumulation over long
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sequences and are computationally expensive due to their sequential nature. TCNs allow for
parallel computation and can capture long-range temporal patterns through an exponentially
increasing dilation factor. The output of the IAA layer is fed into a stack of dilated convolution
layers, utilizing gated activation units to control the information flow through the temporal
dimension.

Chapter 4: Experiments and Analysis

4.1 Experimental Setup

We evaluate the proposed DGNN-IA on two real-world traffic datasets: METR-LA and PEMS-
BAY. To validate the incident-aware component, we augmented these datasets with
corresponding incident logs from the California Highway Patrol (CHP) database, matching
incident timestamps and locations to the traffic sensor nodes.

METR-LA: Contains traffic speed data from 207 sensors in Los Angeles County.
PEMS-BAY: Contains data from 325 sensors in the Bay Area.

The data is aggregated into 5-minute intervals. We use the past 12 steps (60 minutes) to
predict the next 12 steps. The dataset is split into training (70%), validation (10%), and
testing (20%) sets. All input data is normalized using Z-score normalization [17].

4.2 Baselines

We compare our model against the following baselines:

1. HA (Historical Average): A statistical baseline predicting the average of historical
values.

2. ARIMA: Classic time-series model.
3. FC-LSTM: Fully Connected LSTM network.
4. ST-GCN: Spatial-Temporal Graph Convolutional Network using a fixed graph.

5. Graph WaveNet: A state-of-the-art model that learns an adaptive adjacency matrix but
does not explicitly model incidents.

4.3 Results and Analysis

Table 1 presents the performance comparison on the METR-LA dataset for prediction
horizons of 15, 30, and 60 minutes. The evaluation metrics used are Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).

Model 15 min 30 min 60 min
(MAE/RMSE/MAPE) (MAE/RMSE/MAPE) (MAE/RMSE/MAPE)
HA 4.16 /7.80 / 13.0% 4.16 /7.80 / 13.0% 4.16 /7.80 / 13.0%
ARIMA 3.99 /8.21 / 9.6% 5.15/10.45/12.7% 6.90/13.23 /17.4%
FC-LSTM 3.44 / 6.30 / 9.6% 3.77 / 7.23 / 10.9% 4.37 /8.69 / 13.2%
ST-GCN 2.88 /5.74 / 7.6% 3.47 / 7.24 / 9.6% 4.59/9.40 / 12.7%
Graph WaveNet 2.69 /5.15/6.9% 3.07 / 6.22 / 8.4% 3.53/7.37 / 10.0%
DGNN-IA (Ours) 2.51/4.88/6.2% 2.85/5.75/7.3% 3.22 /6.68 / 8.8%
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Table 1: Performance comparison of different models on the METR-LA dataset.

The results indicate that DGNN-IA consistently outperforms all baselines across all prediction
horizons [18]. The improvement is particularly noticeable in the 60-minute horizon. While
Graph WaveNet performs competitively due to its adaptive graph learning, it lacks the explicit
incident awareness mechanism. Our analysis of specific test cases involving major accidents
revealed that while WaveNet's error spiked during the onset of congestion, DGNN-IA adjusted
its weights rapidly, resulting in a 15% lower error rate specifically during incident intervals.
This confirms that integrating incident data as a structural modifier rather than just a feature
input is crucial for resilience.

Chapter 5: Conclusion

5.1 Summary of Outcomes and Implications

This paper presented the Dynamic Graph Neural Network with Incident-Aware Attention
(DGNN-IA), a comprehensive framework for traffic flow forecasting in non-stationary
environments. By synthesizing dynamic graph learning with a novel attention mechanism that
explicitly encodes incident data, the proposed model addresses the critical inability of static
GNNs to adapt to sudden network perturbations. The dynamic graph module successfully
captures latent, time-varying spatial dependencies, while the incident-aware attention
mechanism allows for local topological rewiring in response to accidents and closures.
Empirical validation on real-world datasets demonstrates that DGNN-IA achieves superior
accuracy compared to state-of-the-art baselines. These findings have significant implications
for the development of next-generation Intelligent Transportation Systems, suggesting that
future models must move beyond static topological assumptions and integrate heterogeneous
data sources such as event logs directly into the graph structure.

5.2 Limitations and Next Steps

Despite the promising results, several limitations remain. First, the computational complexity
of calculating the dynamic attention mechanism scales quadratically with the number of
nodes, O(N?), which may pose challenges for deploying the model on extremely large-scale
city-wide networks. Second, the model's performance is contingent on the quality and
timeliness of the incident data; reporting delays or missing logs can degrade the efficacy of the
attention mechanism.

Future research directions will focus on two main areas. To address scalability, we intend to
explore sparse attention mechanisms or graph partitioning techniques to reduce
computational overhead. Additionally, we plan to extend the incident-aware framework to
multimodal transportation networks, integrating subway and bus data to model the cascading
effects of incidents across different modes of transport. Finally, investigating the application
of Federated Learning could facilitate the training of such models across multiple jurisdictions
without compromising data privacy.
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