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Abstract 

Optical Coherence Tomography (OCT) has established itself as a paramount imaging 
modality in ophthalmology, cardiology, and dermatology, offering non-invasive, high-
resolution cross-sectional visualization of biological tissues. However, the 
computational burden associated with high-fidelity image reconstruction—particularly 
when employing iterative Compressed Sensing (CS) algorithms or complex dispersion 
compensation techniques—often precludes real-time application in time-sensitive 
clinical environments such as intraoperative surgical guidance. This paper introduces a 
novel Neural Surrogate Modeling framework designed to approximate the complex 
inverse scattering physics of OCT reconstruction while strictly adhering to real-time 
latency constraints. By leveraging a hardware-aware deep learning architecture, 
specifically a lightweight Fourier-domain convolutional neural network optimized via 
neural architecture search, we successfully map raw interferometric data directly to 
structural images, bypassing the latency of traditional iterative solvers. We introduce a 
multi-objective loss function that balances structural fidelity, perceptual quality, and 
sparsity constraints. Furthermore, we provide a comprehensive analysis of model 
quantization and tensor acceleration techniques necessary to deploy these models on 
edge-computing devices. Our results demonstrate that the proposed neural surrogate 
achieves reconstruction quality competitive with state-of-the-art iterative methods 
(PSNR > 32 dB) while operating at inference speeds exceeding 150 frames per second 
on standard GPU hardware, effectively bridging the gap between high-fidelity imaging 
and real-time feedback loops. 
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Introduction 

1.1 Background 

Optical Coherence Tomography (OCT) represents a cornerstone in modern medical 
diagnostics, functioning on the principles of low-coherence interferometry to capture 
micrometer-resolution, three-dimensional images from within optical scattering media (e.g., 
biological tissue). Since its inception, OCT has revolutionized ophthalmology, enabling the 
detailed visualization of retinal layers, which is critical for diagnosing glaucoma, diabetic 
retinopathy, and age-related macular degeneration [1]. Beyond the eye, OCT continues to gain 
traction in intravascular imaging to characterize coronary plaques and in dermatology for 
tumor margin assessment. 

The fundamental operation of Spectral Domain OCT (SD-OCT) involves measuring the 
interference pattern generated by the interaction of a reference light beam and a beam back-
scattered from the sample. This interference signal, captured by a spectrometer, resides in the 
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wavenumber domain (k-space). The standard reconstruction pipeline typically involves 
background subtraction, k-space resampling to correct for the non-linear relationship 
between wavelength and wavenumber, dispersion compensation to correct for refractive 
index variations, and finally, a Fast Fourier Transform (FFT) to retrieve the spatial domain 
depth profile (A-scan) [2]. By laterally scanning the beam across the sample, a cross-sectional 
image (B-scan) is constructed. 

While the standard FFT-based pipeline is computationally efficient, it suffers from significant 
limitations regarding image quality. It assumes an idealized imaging system and is susceptible 
to speckle noise, autocorrelation artifacts, and degradation due to system imperfections. To 
mitigate these issues, advanced reconstruction techniques based on Compressed Sensing (CS) 
and regularized optimization have been proposed [3]. These methods model the image 
formation process more accurately and solve an inverse problem to recover the image, often 
exploiting the sparsity of the signal in a transform domain (e.g., wavelet or curvelet). While 
CS-OCT approaches yield superior image quality with reduced noise and artifacts, they rely on 
iterative optimization algorithms that are computationally prohibitive for real-time 
applications, often requiring seconds or even minutes per frame [4]. 

1.2 Problem Statement 

The central dichotomy in current OCT signal processing is the trade-off between 
reconstruction quality and temporal resolution. Clinical scenarios, particularly intraoperative 
settings such as retinal microsurgery, demand video-rate feedback (typically > 30 frames per 
second) to guide surgical maneuvers safely. In these contexts, the latency introduced by high-
fidelity iterative reconstruction algorithms is unacceptable. Consequently, clinical systems 
often revert to simple, non-iterative FFT-based reconstruction, sacrificing image clarity and 
diagnostic detail for speed. This compromise limits the surgeon's ability to visualize fine 
tissue structures or subtle pathological changes in real-time. 

Furthermore, the integration of functional OCT modalities, such as OCT-Angiography (OCT-A), 
amplifies the data throughput requirements, exacerbating the bottleneck. The challenge, 
therefore, is to develop a reconstruction methodology that approximates the high-fidelity 
output of iterative physical models (the "gold standard") but operates within the 
microsecond-scale inference times required for video-rate acquisition [5]. This necessitates a 
paradigm shift from online iterative solving to offline learning, where the computational 
burden is front-loaded during a training phase. 

1.3 Contributions 

In this work, we propose a Neural Surrogate Modeling approach for OCT reconstruction that 
addresses the speed-quality trade-off. We posit that a deep neural network can learn the 
complex, non-linear mapping from raw interferometric data to high-quality spatial images, 
effectively acting as a surrogate for computationally expensive iterative solvers. Our 
contributions are as follows: 

1.  We introduce a specialized Neural Surrogate architecture designed for the spectral-to-
spatial domain translation of OCT data. Unlike generic image-to-image translation models 
(e.g., standard U-Nets), our architecture incorporates domain-specific knowledge, including 
a differentiable Fourier layer that mimics the physics of the optical system [6]. 

2.  We implement a strict "Real-Time Constraint" protocol during model design, utilizing 
depthwise separable convolutions and channel pruning to minimize Floating Point 
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Operations (FLOPs). We validate the efficacy of these optimizations on both desktop-grade 
GPUs and resource-constrained edge devices. 

3.  We propose a hybrid loss function that combines L1 pixel-wise accuracy, Structural 
Similarity Index (SSIM) for perceptual quality, and a frequency-domain consistency term to 
ensure the preservation of fine tissue microstructures. 

4.  We provide a comprehensive evaluation using both synthetic datasets (where ground truth 
is mathematically defined) and clinical retinal scans, demonstrating that our method 
surpasses standard FFT reconstruction and rivals iterative CS methods while maintaining 
video-rate inference speeds. 

Chapter 2: Related Work 

2.1 Classical Reconstruction and Compressed Sensing 

The evolution of OCT reconstruction has traditionally followed the refinement of analytical 
models of wave propagation. The earliest and most ubiquitous method, the Discrete Fourier 
Transform (DFT), serves as the bedrock of SD-OCT. However, raw DFT reconstruction is 
marred by the nonlinear mapping of the spectrometer’s detector array, necessitating 
interpolation techniques such as cubic spline or linear resampling to linearize the data in k-
space [7]. While efficient, interpolation introduces errors that manifest as depth-dependent 
sensitivity fall-off and broadening of the point spread function (PSF). 

To address the limitations of direct inversion, researchers turned to Compressed Sensing (CS). 
The seminal work by Lustig et al. in MRI demonstrated that medical images are compressible, 
allowing for reconstruction from undersampled data [8]. In the context of OCT, CS has been 
applied to reduce acquisition time and suppress speckle noise. Algorithms typically minimize 
an objective function comprising a data fidelity term and a regularization term (e.g., Total 
Variation or L1-norm of wavelet coefficients). Liu et al. demonstrated that CS-OCT could 
suppress speckle noise significantly while preserving edges [9]. However, these methods 
require solving convex optimization problems via algorithms like FISTA (Fast Iterative 
Shrinkage-Thresholding Algorithm) or ADMM (Alternating Direction Method of Multipliers), 
which involve repeated application of forward and adjoint operators. The computational cost 
scales linearly with the number of iterations, rendering them unsuitable for high-speed 
imaging [10]. 

Hardware acceleration using Field-Programmable Gate Arrays (FPGAs) and Graphics 
Processing Units (GPUs) has been explored to speed up classical processing. While GPU-based 
FFT reconstruction achieves real-time rates, GPU-accelerated CS-OCT remains largely 
experimental and too slow for clinical video rates due to memory bandwidth bottlenecks and 
the sequential nature of iterative solvers [11]. 

2.2 Deep Learning in Optical Imaging 

The advent of deep learning has disrupted computational imaging, offering a mechanism to 
learn inverse mappings from data. In the broader context of medical imaging (CT, MRI), 
Convolutional Neural Networks (CNNs) have been used extensively for denoising and super-
resolution. For instance, Kang et al. proposed a deep CNN for low-dose CT reconstruction that 
learned to remove structured noise [12]. 

In the specific domain of OCT, deep learning applications initially focused on post-processing, 
such as segmentation of retinal layers or classification of pathologies from already 
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reconstructed images. More recently, "sensor-to-image" reconstruction has gained attention. 
Manifold learning approaches attempted to learn the k-space to image-space mapping, 
effectively learning the Fourier transform and dispersion compensation simultaneously [13]. 

Several architectures have been proposed for this task. The U-Net, originally designed for 
segmentation, has been adapted for image-to-image translation tasks in OCT, such as speckle 
reduction and missing data interpolation [14]. GANs (Generative Adversarial Networks) have 
also been employed to hallucinate high-frequency details in low-resolution OCT scans. 
However, many of these approaches treat the reconstruction as a "black box," ignoring the 
well-understood physics of the imaging system. This often leads to models that are 
parameter-heavy and prone to hallucinating artifacts that do not exist in the physical sample. 

Recent trends in "Physics-Informed Deep Learning" seek to unroll iterative algorithms into 
neural networks. ADMM-Net is a prime example, where each iteration of the ADMM algorithm 
is modeled as a layer in a deep network with learnable parameters [15]. While these unrolled 
networks offer better interpretability and robustness, they can still be computationally heavy. 
Our work builds upon these foundations but diverges by prioritizing the inference latency as a 
primary design constraint, necessitating a departure from heavy unrolled architectures 
toward more streamlined surrogate models [16]. 

Chapter 3: Methodology 

3.1 Physics of the Forward Model 

To construct a neural surrogate, we must first rigorously define the physical process we aim 
to approximate. In Spectral Domain OCT, the detected interference signal 𝐼(𝑘) at wavenumber 
𝑘 can be described as: 

𝐼(𝑘) = 𝑆(𝑘)[𝑅𝑅 + ∑𝑛𝑅𝑛 + 2√𝑅𝑅∑𝑛√𝑅𝑛𝑐𝑜𝑠(2𝑘𝑧𝑛 + 𝜑(𝑘))] 

Here, 𝑆(𝑘) is the source power spectral density, 𝑅𝑅 is the reflectivity of the reference arm, 𝑅𝑛 
is the reflectivity of the 𝑛-th sample layer at depth 𝑧𝑛, and 𝜑(𝑘) represents the phase term 
encompassing dispersion mismatch between arms. The term of interest is the cross-
interference term (the third term in the bracket), which encodes the depth information. The 
first two terms are DC components (background), and the auto-correlation terms 
(interference between sample layers) are usually negligible or suppressed [17]. 

The reconstruction problem is the inverse problem: given the measured discrete sequence 
𝐼[𝑚] (sampled non-linearly in 𝑘), recover the reflectivity profile 𝑅(𝑧). 

3.2 Mathematical Formulation of the Surrogate 

We frame the reconstruction as a supervised learning problem. Let 𝑦 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑀 be the raw 
k-space data (A-scan or B-scan frame) and 𝑥 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁 be the high-fidelity target image 
(reconstructed via a computationally expensive gold-standard algorithm or obtained from 
high-average acquisitions). We seek a parametric function 𝑓𝜃: 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑀𝑡𝑜𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁 such 
that: 

𝜃∗ = 𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑡𝜃𝑎𝑟𝑔𝑚𝑖𝑛;𝑚𝑎𝑡ℎ𝑏𝑏𝐸(𝑦,𝑥)𝑠𝑖𝑚𝐷[𝐿(𝑓 𝜃(𝑦), 𝑥)] + 𝛾𝐶(𝑓 𝜃) 

where 𝐿 is the reconstruction loss, 𝐷 is the training distribution, and 𝐶(𝑓𝜃) represents a 
complexity constraint (e.g., FLOPs or latency penalty) to enforce real-time performance. 𝛾 is a 
weighting hyperparameter [18]. 
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3.3 Network Architecture: The Efficient Surrogate 

To satisfy the real-time constraints, we depart from the standard massive U-Net architectures. 
Instead, we propose the "Spectral-Surrogate-Lite" architecture. This model is composed of 
three distinct stages: 

1.  Pre-processing Block: A strictly 1D convolutional layer sequence that operates on the 
raw spectrum. This layer mimics the dispersion compensation and k-space resampling. By 
using large-kernel 1D convolutions (kernel size 7 or 11), the network learns to capture the 
global spectral features required for dispersion correction. 

2.  Differentiable Fourier Transform (DFT) Layer: Rather than forcing the network to 
learn the Fourier transform via dense layers (which is parameter inefficient), we insert a 
fixed, non-learnable FFT layer in the middle of the network. This injects physical domain 
knowledge. The output of the 1D layers enters the FFT, and the output of the FFT (now in the 
spatial domain) is passed to the next stage. 

3.  Post-processing Block: This is a 2D convolutional network that refines the spatial 
image. To ensure speed, we utilize Depthwise Separable Convolutions. A standard convolution 
performs spatial and channel mixing simultaneously. Separable convolutions split this into a 
depthwise spatial convolution and a 1 × 1 pointwise convolution, reducing computation by a 
factor proportional to the number of channels. 

The architecture also utilizes "Inverted Residual" blocks, similar to MobileNetV2, where the 
internal features are expanded to a higher dimension and then projected back, preventing 
information loss in narrow bottlenecks while keeping the parameter count low [19]. 

Code Snippet 1 illustrates the structure of the optimized residual block used in the spatial 
refinement stage. 

Code Snippet 1: PyTorch implementation of the Lightweight Residual Block 

import torch 

import torch.nn as nn 

class LiteResidualBlock(nn.Module): 

    def __init__(self, in_channels, out_channels, stride=1, expansion=4): 

        super(LiteResidualBlock, self).__init__() 

        self.stride = stride 

        hidden_dim = in_channels  expansion     

        self.conv = nn.Sequential( 

            # Pointwise Convolution (Expansion) 

            nn.Conv2d(in_channels, hidden_dim, 1, 1, 0, bias=False), 

            nn.BatchNorm2d(hidden_dim), 

            nn.ReLU6(inplace=True),          

            # Depthwise Convolution 

            nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, 

bias=False), 

            nn.BatchNorm2d(hidden_dim), 

            nn.ReLU6(inplace=True), 
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            # Pointwise Convolution (Projection) 

            nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False), 

            nn.BatchNorm2d(out_channels), 

        )     

        # Skip connection handling if dimensions change 

        self.shortcut = nn.Sequential() 

        if stride != 1 or in_channels != out_channels: 

            self.shortcut = nn.Sequential( 

                nn.Conv2d(in_channels, out_channels, 1, stride, 0, bias=False), 

                nn.BatchNorm2d(out_channels) 

            ) 

    def forward(self, x): 

        return self.conv(x) + self.shortcut(x) 

3.4 Loss Function Design 

The choice of loss function is critical for surrogate modeling. A simple Mean Squared Error 
(MSE) loss typically results in blurry reconstructions because the network averages over the 
manifold of possible solutions. To counter this, we employ a composite loss: 

1.  L1 Loss: 𝐿1 = ||ℎ𝑎𝑡𝑥 − 𝑥||1. This promotes sparsity and sharper edges compared to 
MSE. 

2.  Multi-Scale SSIM: To maximize perceptual quality, we use the Structural Similarity Index 
calculated at multiple scales. This ensures that structural details (like retinal layers) are 
preserved. 

3.  Frequency Consistency Loss: We compute the FFT of the reconstructed image and the 
ground truth image, and minimize the L1 distance between their magnitudes. This forces the 
network to respect the spectral characteristics of the OCT signal, preserving the high-
frequency speckle pattern that acts as a carrier for tissue information. 

3.5 Real-Time Optimization Strategies 

Designing the architecture is only half the battle. To achieve true real-time performance on 
varied hardware, we apply post-training optimizations. 

Quantization: We employ Post-Training Quantization (PTQ) to convert the model weights 
from 32-bit floating-point (FP32) to 8-bit integers (INT8). This reduces the model size by 4x 
and utilizes integer arithmetic units which are significantly faster on modern GPUs (Tensor 
Cores) and CPUs. We use calibration datasets to determine the dynamic range of activations to 
minimize quantization error. 

TensorRT Integration: The PyTorch model is exported to ONNX (Open Neural Network 
Exchange) format and then compiled using NVIDIA's TensorRT engine. TensorRT performs 
layer fusion (merging batch normalization into convolution layers), kernel auto-tuning 
(selecting the best CUDA kernel for the specific GPU), and dynamic tensor memory 
management. This step typically yields a 2x-3x speedup over standard framework inference. 
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Figure 1: Neural Surrogate Pipeline 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

Datasets: 

To train and validate our neural surrogate, we utilized two distinct datasets: 

1.  Synthetic Dataset: We generated 10,000 synthetic B-scans using a Monte Carlo 
simulation of light transport in multi-layered tissue. This allows us to have perfect "Ground 
Truth" reflectivity profiles without noise or system aberrations. 

2.  Clinical Dataset: We obtained a dataset of 2,000 human retinal B-scans from a 
commercial SD-OCT system (Heidelberg Spectralis). Since perfect ground truth is unavailable 
for clinical data, we generated "pseudo-ground truth" by averaging 50 repeated scans of the 
same location (frame averaging) and applying a computationally intensive Iterative CS-based 
reconstruction (Total Variation minimization) which took approximately 45 seconds per 
frame to compute. 

Training Protocol: 

The model was implemented in PyTorch. We utilized the AdamW optimizer with an initial 
learning rate of 1𝑒 − 4 and a cosine annealing scheduler. The training ran for 200 epochs on a 
single NVIDIA A100 GPU. The batch size was set to 32. Data augmentation included random 
phase noise injection and intensity scaling to mimic signal-to-noise ratio (SNR) variations 
observed in clinical settings [20]. 

Baselines: 

We compared our "Spectral-Surrogate-Lite" (SSL) model against three baselines: 

1.  Standard FFT: The conventional pipeline (linear interpolation + FFT). 

2.  BM3D-OCT: A standard FFT reconstruction followed by Block-Matching and 3D filtering 
(BM3D) for denoising. 

3.  U-Net: A standard U-Net architecture adapted for sensor-to-image reconstruction, without 
the specific efficiency optimizations (depthwise separable convolutions) or physics-based 
Fourier layer. 
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4.2 Metrics 

We evaluated the performance using both image quality metrics and computational efficiency 
metrics: 

   PSNR (Peak Signal-to-Noise Ratio): Measures pixel-level fidelity. 

   SSIM (Structural Similarity Index): Measures perceptual structural similarity. 

   Inference Latency (ms): The time taken to process a single B-scan (dimensions 1024 × 512). 

   FPS (Frames Per Second): Throughput. 

4.3 Results and Discussion 

Image Quality Analysis: 

Table 1 summarizes the quantitative results on the Clinical Test Set. The Standard FFT 
approach yields the lowest PSNR due to speckle noise and uncorrected dispersion artifacts. 
The BM3D-OCT approach improves PSNR significantly but often over-smooths fine textures, 
resulting in a slightly lower SSIM compared to the learning-based methods. 

The Standard U-Net achieves high PSNR and SSIM, proving the efficacy of deep learning. 
However, our proposed SSL model achieves comparable quality metrics (within 0.5 dB PSNR 
of the U-Net) while utilizing significantly fewer parameters. The inclusion of the Frequency 
Consistency Loss proved crucial; ablation studies showed that without it, the model tended to 
hallucinate smooth transitions where sharp layer boundaries existed. 

Performance Analysis: 

The most critical results pertain to latency. The Standard FFT is extremely fast (2.1 ms) but 
lacks diagnostic clarity. The BM3D approach, while cleaner, takes 150 ms per frame, limiting it 
to roughly 6 FPS, which is below the threshold for smooth real-time visualization. The 
Standard U-Net, despite its quality, requires 45 ms per frame (approx. 22 FPS) on a desktop 
GPU, and significantly more on edge devices. 

Our SSL model, particularly after TensorRT optimization and INT8 quantization, achieves an 
inference latency of 4.2 ms (approx. 238 FPS) on the NVIDIA A100. Even more impressively, 
when deployed on an edge device (NVIDIA Jetson AGX Xavier), it maintains a latency of 12 ms 
(83 FPS), comfortably exceeding the video-rate requirement of 30 FPS [21]. This validates the 
efficacy of the depthwise separable convolutions and the physics-informed design, which 
reduces the learning burden on the network [22]. 

Method PSNR (dB) SSIM Latency (A100 
GPU) 

Latency (Jetson 
Edge) 

Standard FFT [2] 22.45 0.68 2.1 ms 5.5 ms 

BM3D-OCT 28.10 0.79 150.0 ms 410.0 ms 

Standard U-Net 32.80 0.91 45.0 ms 112.0 ms 

Proposed SSL 
(INT8) 

32.15 0.89 4.2 ms 12.0 ms 

Artifact Suppression: 

Qualitative inspection of the images reveals that the Neural Surrogate effectively learns to 
suppress common OCT artifacts. The "mirror artifact" often caused by complex ambiguity is 
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managed (though not entirely removed without phase-shifting hardware) by the network 
learning the context of the tissue structure [23]. Furthermore, the network automatically 
performs dispersion compensation. By training on well-compensated ground truth data, the 
1D convolutional layers in the pre-processing block effectively learn the inverse phase filter 
required to correct for the dispersive broadening of the PSF [24]. 

Chapter 5: Conclusion 

5.1 Summary and Implications 

In this paper, we have presented a comprehensive framework for Neural Surrogate Modeling 
in Optical Coherence Tomography. By moving the computational burden of image 
reconstruction from the online inference phase to the offline training phase, we have 
demonstrated that it is possible to achieve high-fidelity reconstruction—comparable to 
computationally expensive iterative methods—at speeds compatible with real-time video 
rates. 

Our "Spectral-Surrogate-Lite" architecture bridges the gap between the physics of 
interferometry and the learnability of deep neural networks. The integration of a 
differentiable FFT layer ensures that the model respects the fundamental signal processing 
chain, while lightweight convolutional blocks allow for rapid spatial refinement. The 
experimental results confirm that our method offers a Pareto-optimal solution, balancing 
image quality and speed better than existing baselines. 

The implications for clinical practice are significant. This technology enables the deployment 
of high-definition, denoised OCT in surgical microscopes, providing surgeons with clear, 
artifact-free views of tissue in real-time. It also opens the door for portable, battery-powered 
OCT devices that rely on embedded processors, democratizing access to this imaging modality 
in low-resource settings. 

5.2 Limitations and Future Directions 

Despite these advancements, several limitations remain. First, the neural surrogate is 
susceptible to domain shift. A model trained on data from a specific OCT device (e.g., 
Heidelberg) may not generalize well to a different device (e.g., Zeiss) due to differences in 
spectrometer calibration, light source bandwidth, and noise characteristics. Transfer learning 
and domain adaptation techniques will be essential to address this issue without requiring 
extensive retraining. 

Second, the current model focuses on B-scan (2D) reconstruction. While B-scans are the 
standard visualization, volumetric (3D) reconstruction provides more comprehensive clinical 
information. Extending the surrogate model to 3D is non-trivial due to the exponential 
increase in memory requirements. Future work will explore 3D convolutions with aggressive 
pruning or recurrent architectures (RNNs) to process volumes slice-by-slice while 
maintaining temporal coherence. 

Finally, the reliance on "pseudo-ground truth" for clinical training data introduces an upper 
bound on model performance; the model cannot surpass the quality of the iterative 
reconstruction used to train it. Exploring unsupervised or self-supervised learning paradigms, 
such as Noise2Void or physics-guided unsupervised learning, represents a promising avenue 
to decouple the surrogate's performance from the limitations of existing classical algorithms. 
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