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Abstract

The integration of Large Language Models (LLMs) into clinical workflows promises to
revolutionize medical informatics by automating tasks such as clinical note
summarization, diagnostic coding, and patient triage. However, the deployment of
these models is severely constrained by the sensitivity of clinical data and stringent
regulatory frameworks regarding Protected Health Information (PHI). Standard de-
identification techniques often fail to prevent memorization of training data, leaving
models vulnerable to membership inference and reconstruction attacks. This paper
presents a comprehensive framework for Privacy-Aware Clinical NLP, utilizing
Differentially Private Fine-Tuning (DP-FT) on transformer-based architectures. We
propose a hybrid approach that integrates Low-Rank Adaptation (LoRA) with
Differentially Private Stochastic Gradient Descent (DP-SGD) to mitigate the
computational overhead and utility degradation typically associated with private
training. By injecting calibrated Gaussian noise into the gradient updates of low-rank
adapters while keeping the pre-trained backbone frozen, we achieve a rigorous privacy
guarantee without catastrophic forgetting. Our experimental results on the MIMIC-III
and MIMIC-IV datasets demonstrate that our method retains high clinical utility in
Named Entity Recognition (NER) and summarization tasks while satisfying strict
differential privacy budgets (£<3). This work bridges the gap between theoretical
privacy guarantees and practical clinical utility, offering a viable path for the secure
deployment of LLMs in healthcare environments.
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Introduction

1.1 Background

The exponential growth of digitized health records has created a repository of unstructured
data that holds immense potential for improving patient care and advancing medical research.
Electronic Health Records (EHRs) contain detailed patient histories, clinician notes, radiology
reports, and discharge summaries that are rich in phenotypic information. Historically,
extracting actionable insights from this textual data was a labor-intensive process reliant on
manual chart review or brittle rule-based systems. The advent of Deep Learning, and
specifically the Transformer architecture, has fundamentally altered this landscape. Large
Language Models (LLMs) such as BERT, GPT-3, and their clinical variants (e.g.,, BioBERT,
ClinicalBERT) have demonstrated human-level performance on various Natural Language
Processing (NLP) benchmarks.

In the clinical domain, these models are increasingly tasked with complex functions ranging
from extracting adverse drug events to generating patient-friendly summaries of complex
medical jargon. The semantic understanding possessed by LLMs allows them to parse context,
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resolve abbreviations, and infer causality in ways that previous statistical methods could not.
Consequently, healthcare institutions are eager to fine-tune these general-purpose models on
their internal, private datasets to create specialized tools tailored to their specific patient
demographics and therapeutic focuses.

1.2 Problem Statement

Despite the clear utility of clinical LLMs, their adoption is hindered by a critical bottleneck:
data privacy. Clinical notes are replete with Protected Health Information (PHI), including
names, dates, geographic locations, and specific medical histories that can uniquely identify
individuals. Regulatory frameworks such as GDPR in Europe and HIPAA in the United States
mandate strict protection of this data. While traditional de-identification methods—such as
masking entities or replacing names with pseudonyms—are commonly employed, they are
insufficient for training generative models.

Recent research has demonstrated that LLMs have a high capacity for memorization [1].
Adversaries can execute membership inference attacks to determine if a specific patient's
record was used in the training set, or worse, perform model inversion attacks to reconstruct
actual training sequences. This phenomenon is particularly acute in fine-tuning scenarios
where the model is updated on a small, domain-specific corpus. The standard optimization
process, utilizing Stochastic Gradient Descent (SGD), encodes the specifics of the training data
directly into the model weights. Once the model is deployed or shared, this encoded
information becomes a vector for privacy leakage. Therefore, the challenge lies in enabling the
model to learn the general syntax and medical reasoning found in the private dataset without
memorizing the specific idiosyncrasies of individual patients.

1.3 Contributions

To address these challenges, this paper introduces a robust methodology for privacy-
preserving clinical NLP. We focus on the application of Differential Privacy (DP), the gold
standard for algorithmic privacy, to the fine-tuning of Large Language Models. Our
contributions are threefold:

1. We develop a parameter-efficient Differentially Private Fine-Tuning framework that
combines Low-Rank Adaptation (LoRA) with DP-SGD. This approach significantly reduces the
dimensionality of the gradient updates that require noise injection, thereby improving the
signal-to-noise ratio and preserving model utility [2].

2. We provide a rigorous theoretical analysis and empirical evaluation of the privacy-utility
trade-off in the context of clinical tasks. Unlike general domain studies, we focus on the
specific degradation of medical entity recognition and clinical reasoning capabilities under
varying noise multipliers.

3. We demonstrate through extensive experiments on the MIMIC-III and MIMIC-IV datasets
that our approach achieves state-of-the-art performance for private clinical models,
outperforming full-parameter DP fine-tuning baselines while maintaining strict privacy
budgets.

Chapter 2: Related Work

2.1 Classical Approaches to Clinical Privacy

Prior to the dominance of neural networks, privacy in clinical text mining relied heavily on
redaction and sanitization. Rule-based systems utilizing regular expressions and dictionary
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lookups were the standard for scrubbing PHI from datasets. These methods, while effective
for obvious identifiers like social security numbers, often failed to capture quasi-identifiers or
context-dependent PHI, such as rare disease mentions combined with demographic data.

Statistical privacy definitions like k-anonymity and [-diversity were introduced to provide
formal guarantees for structured data. However, applying these concepts to high-dimensional,
unstructured text proved mathematically intractable. The unique nature of linguistic
expression means that almost any sufficiently long sentence is unique to its author or subject.
Consequently, the research community shifted focus toward Differential Privacy (DP), which
provides a probabilistic guarantee that the output of an algorithm is insensitive to the
presence or absence of any single individual in the dataset [3].

2.2 Deep Learning and Differential Privacy

The intersection of Deep Learning and Differential Privacy was formalized with the
introduction of Differentially Private Stochastic Gradient Descent (DP-SGD) by Abadi et al.
This algorithm modifies the standard optimization loop by clipping per-sample gradients to a
maximum norm and adding Gaussian noise to the aggregated batch gradient. While
theoretically sound, naive application of DP-SGD to large models results in substantial
performance degradation. The noise scales with the dimension of the model; for LLMs with
billions of parameters, the amount of noise required to satisfy privacy constraints often
overwhelms the learning signal.

In the clinical domain, early attempts utilized DP-SGD to train smaller Recurrent Neural
Networks (RNNs) or Convolutional Neural Networks (CNNs) for mortality prediction and
diagnosis classification [4]. As architectures shifted to Transformers, the computational cost
of per-sample gradient clipping became prohibitive. Recent advancements have explored the
use of Parameter-Efficient Fine-Tuning (PEFT) methods as a mechanism to facilitate private
training. By updating only a small subset of parameters (adapters) or learning a low-
dimensional projection of the weights, researchers hope to reduce the noise impact. However,
the specific application of these techniques to complex clinical extraction tasks, which require
high precision, remains an active area of investigation [5].

Chapter 3: Methodology

3.1 Differential Privacy Preliminaries

Differential Privacy constitutes a mathematical framework for quantifying privacy leakage. A
randomized algorithm M is said to be (¢, §)-differentially private if for all adjacent datasets D
and D' that differ by a single element (e.g., one patient's record), and for all subsets of outputs
SsubseteqRange (M), the following inequality holds:

Pr[M(D) € S] < ePr[M(D") € S|+ 6

The parameter ¢ (epsilon) denotes the privacy budget, limiting the multiplicative difference in
outcome probabilities. A lower ¢ indicates stronger privacy. The parameter § (delta)
represents the probability of the privacy guarantee failing, typically set to be smaller than the
inverse of the dataset size. In the context of training neural networks, we utilize the Gaussian
Mechanism, which achieves DP by adding noise drawn from a normal distribution to the
gradients during the optimization process.
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3.2 The DP-LoRA Framework

Our proposed framework, DP-LoRA (Differentially Private Low-Rank Adaptation), addresses
the dimensionality challenge inherent in applying DP-SGD to LLMs. Standard fine-tuning
updates all weights W in the network. In contrast, LoRA freezes the pre-trained weights W,
and constrains the weight update AW by representing it as the product of two low-rank
matrices A and B, where W, + AW = W, + BA. Here, A and B have rankr, where rlld (the
dimension of the model layers).

By fine-tuning only A and B, we reduce the number of trainable parameters by several orders
of magnitude. This has a twofold benefit for privacy. First, it reduces the computational
overhead of computing per-sample gradients, which is the primary bottleneck in DP-SGD
implementations. Second, and more crucially, it reduces the vector space of the gradient
updates. Since the variance of the noise added in DP-SGD is independent of the number of
parameters, but the "useful” gradient norm often scales with the model size, restricting
updates to a low-rank subspace concentrates the learning signal, making it more robust to the
injected noise [6].

3.3 Algorithm Execution

The training process proceeds as follows. We initialize the clinical LLM with pre-trained
weights (e.g., from a general domain model like LLaMA-2 or a medical model like BioGPT). We
inject LoRA adapter layers into the query and value projection matrices of the Transformer
attention blocks. The original weights are frozen.

During the forward pass, the model processes a batch of clinical text. In the backward pass, we
compute gradients with respect to the LoRA parameters only. To ensure differential privacy,
we implement the following modifications to the gradient update step:

1. Per-Sample Gradient Computation: We compute the gradient of the loss function L
for each individual sample x; in the batch B. Let g; = VyL(6,x;), where 6 represents the
trainable LoRA parameters.

2. Gradient Clipping: To bound the sensitivity of the learning process, each per-sample
gradient g; is clipped to a maximum L, norm C. If |g;|, > C, the gradient is scaled down;
otherwise, it is preserved. This ensures that no single training example can influence the
aggregate gradient by more than C.

3. Noise Injection: We aggregate the clipped gradients and add Gaussian noise. The update
rule is formally defined as:

1
Orp1 =0, — eta(ﬁ Cieptildeg; + N(0,02C?1)))
Here, tildeg; is the clipped gradient, eta is the learning rate, and ¢ is the noise multiplier
determined by the privacy accounting method (we use Rényi Differential Privacy
accountants) to satisfy the target (&, ) budget over the course of training epochs [7].
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Figure 1: Schematic of the DP

3.4 Handling Clinical Context

Clinical text poses unique challenges due to long document lengths and fragmented syntax. To
maximize the utility of our private model, we employ a sliding window approach for
tokenization, ensuring that long discharge summaries are processed in manageable chunks
without losing context. Additionally, we utilize specific prompt engineering templates
designed to guide the model towards extracting structured outputs (e.g., JSON formatted
entity lists) which helps in stabilizing the gradient descent process by reducing the variance in
target outputs [8].

Chapter 4: Experiments and Analysis

4.1 Experimental Setup

We evaluated our framework on two primary tasks: Clinical Named Entity Recognition (NER)
and Clinical Note Summarization.

Datasets:

1. MIMIC-III: A large database comprising de-identified health-related data associated with
over 40,000 patients who stayed in critical care units. We utilized the discharge summaries
for NER tasks, focusing on extracting "Problem", "Treatment”, and "Test" entities (i2b2 2010
shared task format).

2. MIMIC-IV: The updated version of the MIMIC dataset. We used this for the summarization
task, pairing "Hospital Course" sections with the "Discharge Diagnosis" and brief summary
sections.

Baselines: We compared our DP-LoRA approach against three baselines:

Non-Private FT: Full fine-tuning of the model without any privacy constraints (Upper
bound on performance).

DP-Full: Differentially Private fine-tuning of all model parameters.
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DP-Prefix: Differentially Private Prefix Tuning, an alternative PEFT method.
Model Architecture:

We utilized the LLaMA-2-7b model as our base foundation model. For the DP implementation,
we used the Opacus library in PyTorch. The target privacy budget was set to ¢ = 3 with
8 = 1le~>, a standard setting in academic literature that offers strong privacy protection.

4.2 Utility Results

We assessed the utility of the models using the F1-score for the NER task and ROUGE-L scores
for the summarization task. The results are summarized in Table 1.

Model Variant Privacy BudgetNER F1-Score (MIMIC-Summarization
(\epsilon) I11) ROUGE-L (MIMIC-1V)

Non-Private FT \infty 0.864 0.421

DP-Full 3.0 0.612 0.285

DP-Prefix 3.0 0.745 0.334

DP-LoRA (Ours) 3.0 0.812 0.389

Table 1 demonstrates that the DP-LoRA method significantly outperforms the DP-Full
baseline. The full parameter fine-tuning under differential privacy suffers from the "curse of
dimensionality," where the noise required to cover billions of parameters destroys the
linguistic capabilities of the model. Our method, by restricting updates to rank-8 adapters,
retains nearly 94% of the performance of the non-private baseline on the NER task. This
result suggests that the knowledge required for clinical adaptation lies in a low-dimensional
subspace, which can be learned effectively even under noise [9].

4.3 Privacy Analysis and Attack Simulation

To verify the practical privacy protection offered by our method, we simulated a Membership
Inference Attack (MIA). In this scenario, an adversary attempts to determine whether a
specific clinical record was used during the training of the model. We utilized a likelihood-
ratio attack, where the adversary compares the loss of a target sample against a threshold
derived from shadow models.

Training Method Privacy Budget (\epsilon) MIA Success Rate (AUC)
Non-Private FT \infty 0.89
DP-LoRA 8.0 0.64
DP-LoRA 3.0 0.53
DP-LoRA 1.0 0.51

As shown in Table 2, the non-private model is highly susceptible to membership inference,
with an Area Under the Curve (AUC) of 0.89, indicating near-certainty in identifying training
participants. As we tighten the privacy budget (lowering €), the attack success rate drops
significantly. At e = 3.0, the success rate is 0.53, which is marginally better than random
guessing (0.50). This confirms that our DP-LoRA implementation effectively masks the
contribution of individual patients, rendering the model resistant to memorization-based
attacks [10].

4.4 Ablation Study on Gradient Clipping

We further analyzed the impact of the gradient clipping threshold C. We found that clinical
text often produces gradients with heavy tails due to the high variance in sentence length and
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terminology. Setting C too low resulted in bias, as informative gradients were aggressively
truncated. Setting C too high increased the sensitivity, requiring larger noise variances (o) to
satisfy the privacy budget. Our experiments indicated that an adaptive clipping strategy,
where C is set to the 80th percentile of the gradient norms observed during the first few
iterations, yielded the optimal balance between bias and variance [11].

Chapter 5: Conclusion

5.1 Summary and Implications

This paper has presented a comprehensive investigation into the feasibility of deploying
Large Language Models in the clinical domain under strict privacy constraints. We identified
that the primary barrier to adoption—the risk of PHI leakage—can be effectively mitigated
through the integration of Differentially Private Stochastic Gradient Descent with Low-Rank
Adaptation (DP-LoRA). Our methodology addresses the limitations of previous approaches by
drastically reducing the parameter space susceptible to noise, thereby preserving the delicate
semantic structures required for medical reasoning.

The implications of this work are significant for the healthcare industry. By establishing that
high-utility clinical models can be trained with formal privacy guarantees (¢ < 3), we provide
a pathway for cross-institutional collaboration. Hospitals could potentially train shared
models on decentralized data without ever exposing raw patient records, relying on the
privacy guarantees of the training algorithm to satisfy regulatory compliance. This
democratizes access to state-of-the-art Al tools, allowing smaller clinics with limited data to
benefit from models fine-tuned on vast, diverse datasets from larger institutions.

5.2 Limitations and Future Directions

Despite the promising results, several limitations remain. First, the computational cost of DP-
SGD, even with LoRA, is higher than standard fine-tuning due to the inability to fully utilize
batch-parallelization optimizations (as per-sample gradients are required). This increases the
carbon footprint and time required for training. Second, while our method protects against
membership inference, it does not guarantee protection against other forms of adversarial
attacks, such as prompt injection or jailbreaking, which manipulate the model's output
generation rather than exploiting its training data memorization.

Future research should focus on three key areas:

1. Algorithmic Efficiency: Developing approximation methods for per-sample gradients
that allow for faster training on consumer-grade hardware.

2. Contextual Privacy: Exploring definitions of privacy that are tailored to the semantic
content of the text, rather than treating all tokens as equally sensitive. This could allow for
less noise on medical terms and more noise on identifiers.

3. Federated Learning Integration: Combining DP-LoRA with Federated Learning to
create a distributed training ecosystem that offers both privacy-at-source and privacy-in-
model guarantees.

By addressing these challenges, the field can move closer to an era of secure, Al-driven
healthcare that respects patient confidentiality while maximizing the quality of care.
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