Frontiers in Biotechnology and Genetics Volume 2 Issue 1, 2025
ISSN: 3079-6709

Multi-Omics Integration via Variational Graph Autoencoders for
Biomarker Discovery

Bo Peng!
1School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Abstract

The advent of high-throughput sequencing technologies has ushered in an era of multi-
omics data availability, encompassing genomics, transcriptomics, epigenomics, and
proteomics. While these diverse modalities offer complementary views of biological
systems, integrating them to unravel complex disease mechanisms remains a
significant computational challenge. Traditional integration methods often fail to
capture the non-linear interactions and the underlying topological structure of
biological networks. This paper proposes a novel framework utilizing Variational
Graph Autoencoders (VGAE) for the robust integration of multi-omics data, specifically
tailored for biomarker discovery in oncology. By constructing patient-similarity
networks and leveraging the generative capabilities of variational inference, our
approach effectively learns a low-dimensional latent representation that preserves
both global graph structure and local feature attributes. We demonstrate that this
method outperforms state-of-the-art matrix factorization and deep learning baselines
in clustering accuracy and survival prediction. Furthermore, we introduce a gradient-
based attribution mechanism to identify high-confidence biomarkers, validating their
biological relevance against known pathway databases. Our results suggest that graph-
based deep learning offers a scalable and mathematically rigorous path toward
precision medicine.
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Introduction

1.1 Background

The biological landscape of complex diseases, particularly cancer, is characterized by
heterogeneity at multiple molecular levels. The central dogma of molecular biology describes
the flow of information from DNA to RNA to proteins, but this linear view simplifies the
intricate regulatory feedback loops and environmental interactions that dictate cellular
phenotype. To capture this complexity, researchers increasingly rely on multi-omics profiling.
The integration of these disparate data sources—ranging from somatic mutations and copy
number variations (CNV) to gene expression (mRNA) and protein abundance—promises a
holistic view of disease etiology [1].

However, the "curse of dimensionality" poses a severe obstacle in multi-omics analysis. A
typical dataset may contain tens of thousands of features (genes, loci, proteins) for only a few
hundred samples (patients). This high feature-to-sample ratio makes standard statistical
methods prone to overfitting. Furthermore, individual omics layers are often noisy and
contain missing values. For instance, mass spectrometry-based proteomics often suffers from
dropouts, while single-cell RNA sequencing is plagued by technical noise. Consequently, the
development of computational methods capable of fusing these heterogeneous data types
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while effectively reducing dimensionality is a prerequisite for advancing precision medicine

[2].
1.2 Problem Statement

Current approaches to multi-omics integration generally fall into two categories: early
integration (concatenation of raw features) and late integration (combining predictions from
separate models). Early integration ignores the unique statistical distributions of different
omics layers, often allowing the modality with the highest feature count to dominate the
learning process. Late integration, conversely, fails to capture the inter-modality correlations
that are often the drivers of pathogenic mechanisms [3].

A more critical limitation of existing methods, including standard autoencoders and matrix
factorization techniques, is their neglect of sample topology. Biological samples (patients) are
not independent and identically distributed (i.i.d.) entities in the context of disease subtypes;
they form manifolds where similar phenotypes share local geometric proximity. Standard
deep learning architectures treat samples as isolated vectors, discarding the rich information
embedded in the similarity relationships between patients. Failing to incorporate this graph
structure leads to suboptimal latent representations and, consequently, less reliable
biomarker identification [4].

1.3 Contributions

In this work, we address these limitations by introducing a graph-theoretic deep learning
framework. Our primary contributions are as follows:

1. Topological Integration: We formulate the multi-omics integration problem as a link
prediction and node attribute reconstruction task within a Variational Graph Autoencoder
(VGAE) architecture. This allows the model to learn representations that respect patient-
patient similarities.

2. Generative Modeling: By utilizing a variational objective, we enforce a probabilistic
structure on the latent space, enabling the generation of robust embeddings even in the
presence of noise and missing data.

3. Biomarker Extraction: We implement an interpretable decoding mechanism that maps
latent features back to the original input space, facilitating the identification of specific genes
and proteins that drive the separation of disease subtypes.

4. Empirical Validation: We conduct extensive experiments on The Cancer Genome Atlas
(TCGA) datasets, demonstrating superior performance in clustering tasks compared to widely
used baselines.

Chapter 2: Related Work
2.1 Classical Approaches

The early landscape of multi-omics integration was dominated by dimensionality reduction
techniques rooted in linear algebra. Principal Component Analysis (PCA) and its variations
were among the first attempts to reduce the complexity of genomic data. However, PCA
focuses on maximizing variance and does not necessarily preserve the correlations between
different data modalities.
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To address multi-view data, Canonical Correlation Analysis (CCA) was adapted to maximize
the correlation between linear combinations of variables from two datasets [5]. While CCA
provides a theoretical foundation for integration, it is limited to two modalities and assumes
linear relationships, which are rarely the case in complex biological systems. Extensions like
Regularized Generalized CCA (RGCCA) allowed for more than two blocks of data but retained
the linearity constraint.

Matrix factorization methods represented a significant leap forward. Joint Non-negative
Matrix Factorization (jNMF) projects multiple data matrices onto a common basis matrix,
identifying shared patterns across omics layers [6]. Similarly, Similarity Network Fusion
(SNF) constructs similarity networks for each data type and fuses them using an iterative non-
linear diffusion process. SNF has been highly influential because it explicitly models the
sample topology [7]. However, SNF is primarily a clustering tool; it does not inherently learn a
low-dimensional feature representation that can be used for downstream tasks like
classification or generation, nor does it easily handle the reconstruction of features for
biomarker discovery.

2.2 Deep Learning Methods

The resurgence of neural networks brought non-linear integration capability. Autoencoders
(AE) became a popular choice for compressing high-dimensional omics data. Multimodal
Autoencoders use separate encoder branches for each omics type, concatenating the hidden
layers into a shared representation before decoding. This allows the model to capture non-
linear cross-modality interactions [8].

Variational Autoencoders (VAEs) extended this by introducing a probabilistic constraint on
the latent space, usually forcing it to approximate a standard Gaussian distribution. This
regularization prevents the model from memorizing the training data (overfitting) and
ensures a smooth latent space suitable for interpolation. OmiVAE and similar architectures
have shown success in classifying cancer subtypes using multi-omics inputs [9].

Despite these successes, standard VAEs and AEs operate on Euclidean grid data. They do not
naturally handle graph-structured data. In biological contexts, gene regulatory networks and
protein-protein interaction (PPI) networks provide crucial prior knowledge. Graph Neural
Networks (GNNs), including Graph Convolutional Networks (GCNs), have emerged to process
such non-Euclidean data [10]. GCNs aggregate information from a node's neighbors,
effectively smoothing features over the graph topology. The Variational Graph Autoencoder
(VGAE), introduced by Kipf and Welling, combines the GCN's ability to process graph
structure with the VAE's generative power. However, the application of VGAEs specifically for
integrating multi-omics data and extracting ranked biomarkers remains an active and
challenging area of research.

Chapter 3: Methodology

Our proposed framework consists of three distinct phases: (1) Data Pre-processing and Graph
Construction, (2) The Variational Graph Autoencoder Architecture, and (3) The Biomarker
Discovery Mechanism.

3.1 Pre-processing and Graph Construction

The input data comprises M modalities (e.g., mRNA expression, DNA methylation, miRNA). Let
X™ € mathbbRV*Fm denote the feature matrix for modality m, where N is the number of
patients and F,, is the number of features in that modality.
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First, we address the heterogeneity in data distribution. mRNA data is typically log-
transformed and Z-score normalized. DNA methylation data (beta values) is effectively
bounded between 0 and 1, requiring no further scaling, though logit transformation is
sometimes applied. Missing values are imputed using a K-Nearest Neighbors (KNN) imputer
within each modality to preserve local feature structures [11].

To leverage the VGAE, we must define a graph structure ¢ = (V, E) where nodes V represent
patients. Since biological ground-truth patient networks are rarely available, we construct a
Patient Similarity Network (PSN). For each modality, we compute a pairwise distance matrix
(e.g., Euclidean or Cosine distance). We then fuse these distance matrices using similarity
network fusion techniques or simple averaging to obtain a global adjacency matrix A. To
ensure the graph is sparse and computationally efficient for GCN propagation, we retain only
the top k neighbors for each node, resulting in a binary or weighted adjacency matrix
A € mathbbRN*N [12].

Concurrently, the feature matrices X(™ are concatenated to form a unified feature matrix
X € mathbbRN*Ftotal, where F,,tq; = Y.F,. This matrix X serves as the node attribute matrix
for the graph.

Figure 1: System Architecture — Multi-Omoics VGAE
Framework
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Figure 1: System Architecture

3.2 Variational Graph Autoencoder Architecture

The core of our methodology is the VGAE, which learns a latent variable Z € mathbbRN*P

(where DIlF;,:4;) that explains the observed graph structure 4 and node features X.

3.2.1 The Probabilistic Encoder

The encoder is modeled as a two-layer Graph Convolutional Network (GCN). The GCN
propagation rule is defined as:

HD = g(tildeD~Y?tildeAtildeD~Y/2HOW 1)

where tildeA = A + I is the adjacency matrix with self-loops, tildeD is the degree matrix,
W ® are trainable weights, and ¢ is a non-linear activation function (ReLU).
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In the variational setting, the encoder determines the parameters of the posterior distribution
q(Z|X,A), which we assume to be Gaussian. We utilize two parallel GCNs sharing the first
layer to predict the mean matrix y and the logarithm of the standard deviation vector logo:

u = GCN,(X,A)
logo = GCN,(X,A)
The posterior is then given by q(Z|X,A) = ]_[i:qu(zl-|X, A, with
q(zi|X,A) = N(z|p;, diag(0;*)).
3.2.2 Reparameterization and Decoding

To allow backpropagation through the stochastic sampling process, we employ the
reparameterization trick:

Z = u+ eodoto
where esimN (0, I).

The decoder consists of two components. The first is a structural decoder (dot product) used
to reconstruct the adjacency matrix:

P(A12) = li=1"Tlj=1" 0(z"2)
where o here represents the sigmoid function.

Crucially for biomarker discovery, we add a feature decoder—a Multi-Layer Perceptron
(MLP)—to reconstruct the original multi-omics features from the latent embeddings. This
dual-decoding strategy ensures the latent space captures both topological information and
feature-level details [13].

3.2.3 Optimization Objective

The model is trained by minimizing a loss function composed of the reconstruction loss (for
both graph and features) and the Kullback-Leibler (KL) divergence, which acts as a
regularizer enforcing the latent distribution to match a unit Gaussian prior p(Z) = N(0, I).

The Evidence Lower Bound (ELBO) objective function is mathematically formulated as:

L = mathbbEqzx,4)[logp(A|Z)] + ymathbbEqgz x4 [logp(X|Z)] — BKL[q(Z]X, A)|p(Z)]

Here, the first term measures the reconstruction accuracy of the graph structure (binary
cross-entropy), the second term measures the reconstruction accuracy of the omics features
(mean squared error), and the third term is the KL divergence. The hyperparameters y and
control the trade-off between feature reconstruction, structure preservation, and latent space
regularization.

3.3 Biomarker Identification Strategy

Once the model is trained, the feature decoder contains the mapping from the compressed
latent space back to the high-dimensional omics space. To identify biomarkers, we analyze the
weights of the feature decoder. Features (genes/proteins) associated with large absolute
weights in the decoder layers contribute most significantly to the variations in the latent
representations.
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Alternatively, we employ gradient-based saliency mapping. We compute the gradient of the
latent representation with respect to the input features for specific clusters of interest.
Features with high gradient magnitudes are considered "drivers" of that cluster's specific
phenotype. This method allows us to rank genes not just by global variance, but by their
specific contribution to distinguishing disease subtypes [14].

Code Snippet 1 presents the implementation of the VGAE Encoder class using a standard
geometric deep learning library structure.

Code Snippet 1
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch geometric.nn import GCNConv
class VariationalGCNEncoder (nn.Module) :
def init (self, in channels, hidden channels, out channels):
super (VariationalGCNEncoder, self). init ()
# Shared first layer to extract high-level features
self.convl = GCNConv (in_ channels, hidden channels)
# Branch for Mean (Mu)
self.conv_mu = GCNConv (hidden channels, out channels)
# Branch for Log-Variance (LogSigma)
self.conv_logstd = GCNConv (hidden channels, out channels)
def forward(self, x, edge index):
# Initial graph convolution with ReLU activation
x = self.convl (x, edge index)
x = F.relu(x)
# Compute parameters for the latent distribution
mu = self.conv mu(x, edge index)
logstd = self.conv_logstd(x, edge index)
return mu, logstd
def reparameterize(self, mu, logstd):
if self.training:
# Sample epsilon from standard normal
std = torch.exp(logstd)
eps = torch.randn_ like (std)
return mu + eps std
else:
# During inference, return deterministic mean

return mu
Chapter 4: Experiments and Analysis

4.1 Experimental Setup

Datasets: We utilized multi-omics data from the TCGA repository, specifically focusing on
Breast Invasive Carcinoma (BRCA) and Glioblastoma Multiforme (GBM). For BRCA, we
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integrated DNA Methylation (Illumina HumanMethylation450), Gene Expression (RNA-Seq
v2), and miRNA Expression. The pre-processed dataset contained approximately 600 patients
with complete data across all three modalities.

Baselines: We compared our VGAE approach against three distinct categories of methods:
1. Linear Factorization: Joint NMF (jNMF).
2. Network Fusion: Similarity Network Fusion (SNF).

3. Deep Learning: A standard multimodal Autoencoder (AE) without graph convolutions,
and MOFA+ (Multi-Omics Factor Analysis).

Metrics: To evaluate the quality of the learned representations, we performed K-means
clustering on the latent embeddings. We measured performance using Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI), using the established PAM50 subtypes for
BRCA as the ground truth labels. Furthermore, we assessed the clinical utility via survival
analysis (Log-rank test p-values) on the resulting clusters [15].

Implementation Details: The model was implemented in PyTorch. The hidden dimension was
set to 64, and the latent dimension was set to 16. We trained for 500 epochs using the Adam
optimizer with a learning rate of 0.001. The adjacency matrix was built using a K-nearest
neighbor graph (K = 10) derived from the mean Pearson correlation across modalities.

4.2 Results and Discussion

The clustering performance is summarized in Table 1. The VGAE-based approach
demonstrates a consistent advantage over both linear and non-graph deep learning methods.

Table 1: Clustering Performance on TCGA-BRCA Dataset

Method ARI (Adjusted RandNMI (Normalized Silhouette Score
Index) Mutual Information)

jNMF 0.42 0.45 0.18

SNF 0.51 0.54 0.22

Standard AE 0.58 0.60 0.29

MOFA+ 0.61 0.63 0.31

Proposed VGAE 0.74 0.72 0.38

The superior performance of the VGAE can be attributed to the "smoothing" effect of the
graph convolution layers. In the standard AE, if a patient has a noisy expression profile due to
technical errors, the model might map them to an incorrect region of the latent space. In the
VGAE, the node's representation is aggregated from its neighbors. Since neighbors in the PSN
are likely to be biologically similar, this aggregation acts as a powerful denoising mechanism,
correcting outliers and reinforcing cluster density.

The jNMF and SNF methods, while capturing some structure, struggled with the non-
linearities present in the expression data. SNF performed decently in clustering but provided
no direct mechanism for feature reconstruction, limiting its interpretability.

To visualize the quality of the learned embeddings, we projected the latent space of the VGAE
into two dimensions using t-SNE (Figure 2). The plot reveals distinct, well-separated clusters
corresponding to the major breast cancer subtypes (Luminal A, Luminal B, Basal, HER2).
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Notably, the Basal subtype, known for its aggressive nature and distinct molecular profile,
forms a tight, isolated cluster, suggesting that our model successfully captured the strong
signal associated with this phenotype.

Figure 2: Latent Space Visualization
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Figure 2: Latent Space Visualization

4.3 Biomarker Analysis

We performed the gradient-based attribution analysis described in the Methodology. For the
Basal subtype cluster, the top-ranked features included FOXA1, GATA3, and ESR1 (showing
negative contribution, consistent with Basal being triple-negative) and MKI67 (high
proliferation). These genes are well-documented biomarkers in breast oncology. Interestingly,
the model also highlighted several long non-coding RNAs (IncRNAs) with high centrality in the
graph structure, candidates that traditional differential expression analysis might miss due to
lower absolute abundance levels [16].

We also evaluated the stability of the biomarkers by running the model on bootstrapped
subsets of the data. The overlap of top-50 biomarkers across runs was approximately 85% for
the VGAE, compared to only 60% for the standard AE. This stability is likely conferred by the
graph structure, which anchors the learning process in the global topology of the patient
cohort rather than relying solely on individual feature variance [17].

Chapter 5: Conclusion

5.1 Summary and Implications

In this paper, we presented a comprehensive framework for multi-omics integration using
Variational Graph Autoencoders. By synthesizing genomic, transcriptomic, and epigenetic
data within a graph-theoretic structure, we addressed the twin challenges of high
dimensionality and biological noise. Our experimental results on TCGA datasets confirmed
that incorporating patient similarity networks into the deep learning architecture
significantly improves clustering accuracy and biological relevance compared to state-of-the-
art baselines.

The implications of this work extend beyond simple classification. The generative nature of
the VGAE allows for the simulation of synthetic omics profiles, which could be invaluable for
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data augmentation in rare disease studies. Furthermore, the ability to reconstruct features
from the latent space provides a bridge between the "black box" of deep learning and the
interpretability required by clinicians. The biomarkers identified by our model align with
known pathological pathways, validating the method's ability to extract meaningful biological
signals.

5.2 Limitations and Future Directions

Despite these promising results, several limitations persist. First, the construction of the input
graph is a heuristic process. The choice of distance metric and the number of neighbors (k) in
the KNN graph can influence downstream performance. Future work should explore end-to-
end learning of the graph structure, where the adjacency matrix is dynamically optimized
alongside the model weights rather than being fixed a priori.

Second, while the current model integrates multi-omics data at the patient level (sample
integration), it treats the relationships between genes (feature integration) implicitly.
Incorporating biological prior knowledge, such as protein-protein interaction networks or
gene regulatory networks, directly into the graph architecture—perhaps using heterogeneous
graph neural networks—could further enhance the model's ability to discover mechanically
relevant biomarkers.

Finally, computational scalability remains a concern for extremely large datasets, such as
those arising from single-cell sequencing. The O(N?) complexity of calculating pairwise
distances for graph construction becomes prohibitive as N grows into the millions. Future
iterations of this work will investigate sampling-based GCN training methods and sparse
attention mechanisms to extend the VGAE framework to the single-cell resolution.
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