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Abstract  

The advent of high-throughput sequencing technologies has ushered in an era of multi-
omics data availability, encompassing genomics, transcriptomics, epigenomics, and 
proteomics. While these diverse modalities offer complementary views of biological 
systems, integrating them to unravel complex disease mechanisms remains a 
significant computational challenge. Traditional integration methods often fail to 
capture the non-linear interactions and the underlying topological structure of 
biological networks. This paper proposes a novel framework utilizing Variational 
Graph Autoencoders (VGAE) for the robust integration of multi-omics data, specifically 
tailored for biomarker discovery in oncology. By constructing patient-similarity 
networks and leveraging the generative capabilities of variational inference, our 
approach effectively learns a low-dimensional latent representation that preserves 
both global graph structure and local feature attributes. We demonstrate that this 
method outperforms state-of-the-art matrix factorization and deep learning baselines 
in clustering accuracy and survival prediction. Furthermore, we introduce a gradient-
based attribution mechanism to identify high-confidence biomarkers, validating their 
biological relevance against known pathway databases. Our results suggest that graph-
based deep learning offers a scalable and mathematically rigorous path toward 
precision medicine. 

Keywords  

Multi-Omics Integration, Variational Graph Autoencoders, Biomarker Discovery, 
Computational Biology, Deep Learning. 

Introduction 

1.1 Background 

The biological landscape of complex diseases, particularly cancer, is characterized by 
heterogeneity at multiple molecular levels. The central dogma of molecular biology describes 
the flow of information from DNA to RNA to proteins, but this linear view simplifies the 
intricate regulatory feedback loops and environmental interactions that dictate cellular 
phenotype. To capture this complexity, researchers increasingly rely on multi-omics profiling. 
The integration of these disparate data sources—ranging from somatic mutations and copy 
number variations (CNV) to gene expression (mRNA) and protein abundance—promises a 
holistic view of disease etiology [1]. 

However, the "curse of dimensionality" poses a severe obstacle in multi-omics analysis. A 
typical dataset may contain tens of thousands of features (genes, loci, proteins) for only a few 
hundred samples (patients). This high feature-to-sample ratio makes standard statistical 
methods prone to overfitting. Furthermore, individual omics layers are often noisy and 
contain missing values. For instance, mass spectrometry-based proteomics often suffers from 
dropouts, while single-cell RNA sequencing is plagued by technical noise. Consequently, the 
development of computational methods capable of fusing these heterogeneous data types 
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while effectively reducing dimensionality is a prerequisite for advancing precision medicine 
[2]. 

1.2 Problem Statement 

Current approaches to multi-omics integration generally fall into two categories: early 
integration (concatenation of raw features) and late integration (combining predictions from 
separate models). Early integration ignores the unique statistical distributions of different 
omics layers, often allowing the modality with the highest feature count to dominate the 
learning process. Late integration, conversely, fails to capture the inter-modality correlations 
that are often the drivers of pathogenic mechanisms [3]. 

A more critical limitation of existing methods, including standard autoencoders and matrix 
factorization techniques, is their neglect of sample topology. Biological samples (patients) are 
not independent and identically distributed (i.i.d.) entities in the context of disease subtypes; 
they form manifolds where similar phenotypes share local geometric proximity. Standard 
deep learning architectures treat samples as isolated vectors, discarding the rich information 
embedded in the similarity relationships between patients. Failing to incorporate this graph 
structure leads to suboptimal latent representations and, consequently, less reliable 
biomarker identification [4]. 

1.3 Contributions 

In this work, we address these limitations by introducing a graph-theoretic deep learning 
framework. Our primary contributions are as follows: 

1.  Topological Integration: We formulate the multi-omics integration problem as a link 
prediction and node attribute reconstruction task within a Variational Graph Autoencoder 
(VGAE) architecture. This allows the model to learn representations that respect patient-
patient similarities. 

2.  Generative Modeling: By utilizing a variational objective, we enforce a probabilistic 
structure on the latent space, enabling the generation of robust embeddings even in the 
presence of noise and missing data. 

3.  Biomarker Extraction: We implement an interpretable decoding mechanism that maps 
latent features back to the original input space, facilitating the identification of specific genes 
and proteins that drive the separation of disease subtypes. 

4.  Empirical Validation: We conduct extensive experiments on The Cancer Genome Atlas 
(TCGA) datasets, demonstrating superior performance in clustering tasks compared to widely 
used baselines. 

Chapter 2: Related Work 

2.1 Classical Approaches 

The early landscape of multi-omics integration was dominated by dimensionality reduction 
techniques rooted in linear algebra. Principal Component Analysis (PCA) and its variations 
were among the first attempts to reduce the complexity of genomic data. However, PCA 
focuses on maximizing variance and does not necessarily preserve the correlations between 
different data modalities. 
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To address multi-view data, Canonical Correlation Analysis (CCA) was adapted to maximize 
the correlation between linear combinations of variables from two datasets [5]. While CCA 
provides a theoretical foundation for integration, it is limited to two modalities and assumes 
linear relationships, which are rarely the case in complex biological systems. Extensions like 
Regularized Generalized CCA (RGCCA) allowed for more than two blocks of data but retained 
the linearity constraint. 

Matrix factorization methods represented a significant leap forward. Joint Non-negative 
Matrix Factorization (jNMF) projects multiple data matrices onto a common basis matrix, 
identifying shared patterns across omics layers [6]. Similarly, Similarity Network Fusion 
(SNF) constructs similarity networks for each data type and fuses them using an iterative non-
linear diffusion process. SNF has been highly influential because it explicitly models the 
sample topology [7]. However, SNF is primarily a clustering tool; it does not inherently learn a 
low-dimensional feature representation that can be used for downstream tasks like 
classification or generation, nor does it easily handle the reconstruction of features for 
biomarker discovery. 

2.2 Deep Learning Methods 

The resurgence of neural networks brought non-linear integration capability. Autoencoders 
(AE) became a popular choice for compressing high-dimensional omics data. Multimodal 
Autoencoders use separate encoder branches for each omics type, concatenating the hidden 
layers into a shared representation before decoding. This allows the model to capture non-
linear cross-modality interactions [8]. 

Variational Autoencoders (VAEs) extended this by introducing a probabilistic constraint on 
the latent space, usually forcing it to approximate a standard Gaussian distribution. This 
regularization prevents the model from memorizing the training data (overfitting) and 
ensures a smooth latent space suitable for interpolation. OmiVAE and similar architectures 
have shown success in classifying cancer subtypes using multi-omics inputs [9]. 

Despite these successes, standard VAEs and AEs operate on Euclidean grid data. They do not 
naturally handle graph-structured data. In biological contexts, gene regulatory networks and 
protein-protein interaction (PPI) networks provide crucial prior knowledge. Graph Neural 
Networks (GNNs), including Graph Convolutional Networks (GCNs), have emerged to process 
such non-Euclidean data [10]. GCNs aggregate information from a node's neighbors, 
effectively smoothing features over the graph topology. The Variational Graph Autoencoder 
(VGAE), introduced by Kipf and Welling, combines the GCN's ability to process graph 
structure with the VAE's generative power. However, the application of VGAEs specifically for 
integrating multi-omics data and extracting ranked biomarkers remains an active and 
challenging area of research. 

Chapter 3: Methodology 

Our proposed framework consists of three distinct phases: (1) Data Pre-processing and Graph 
Construction, (2) The Variational Graph Autoencoder Architecture, and (3) The Biomarker 
Discovery Mechanism. 

3.1 Pre-processing and Graph Construction 

The input data comprises 𝑀 modalities (e.g., mRNA expression, DNA methylation, miRNA). Let 
𝑋(𝑚) ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐹𝑚  denote the feature matrix for modality 𝑚, where 𝑁 is the number of 
patients and 𝐹𝑚 is the number of features in that modality. 
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First, we address the heterogeneity in data distribution. mRNA data is typically log-
transformed and Z-score normalized. DNA methylation data (beta values) is effectively 
bounded between 0 and 1, requiring no further scaling, though logit transformation is 
sometimes applied. Missing values are imputed using a K-Nearest Neighbors (KNN) imputer 
within each modality to preserve local feature structures [11]. 

To leverage the VGAE, we must define a graph structure 𝐺 = (𝑉, 𝐸) where nodes 𝑉 represent 
patients. Since biological ground-truth patient networks are rarely available, we construct a 
Patient Similarity Network (PSN). For each modality, we compute a pairwise distance matrix 
(e.g., Euclidean or Cosine distance). We then fuse these distance matrices using similarity 
network fusion techniques or simple averaging to obtain a global adjacency matrix 𝐴. To 
ensure the graph is sparse and computationally efficient for GCN propagation, we retain only 
the top 𝑘 neighbors for each node, resulting in a binary or weighted adjacency matrix 
𝐴 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝑁 [12]. 

Concurrently, the feature matrices 𝑋(𝑚) are concatenated to form a unified feature matrix 
𝑋 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐹𝑡𝑜𝑡𝑎𝑙 , where 𝐹𝑡𝑜𝑡𝑎𝑙 = ∑𝐹𝑚. This matrix 𝑋 serves as the node attribute matrix 
for the graph. 

 
Figure 1: System Architecture 

3.2 Variational Graph Autoencoder Architecture 

The core of our methodology is the VGAE, which learns a latent variable 𝑍 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝐷 
(where 𝐷𝑙𝑙𝐹𝑡𝑜𝑡𝑎𝑙) that explains the observed graph structure 𝐴 and node features 𝑋. 

3.2.1 The Probabilistic Encoder 

The encoder is modeled as a two-layer Graph Convolutional Network (GCN). The GCN 
propagation rule is defined as: 

𝐻(𝑙+1) = 𝜎(𝑡𝑖𝑙𝑑𝑒𝐷−1/2𝑡𝑖𝑙𝑑𝑒𝐴𝑡𝑖𝑙𝑑𝑒𝐷−1/2𝐻(𝑙)𝑊(𝑙)) 

where 𝑡𝑖𝑙𝑑𝑒𝐴 = 𝐴 + 𝐼𝑁 is the adjacency matrix with self-loops, 𝑡𝑖𝑙𝑑𝑒𝐷 is the degree matrix, 
𝑊(𝑙) are trainable weights, and 𝜎 is a non-linear activation function (ReLU). 
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In the variational setting, the encoder determines the parameters of the posterior distribution 
𝑞(𝑍|𝑋, 𝐴), which we assume to be Gaussian. We utilize two parallel GCNs sharing the first 
layer to predict the mean matrix 𝜇 and the logarithm of the standard deviation vector 𝑙𝑜𝑔𝜎: 

𝜇 = 𝐺𝐶𝑁𝜇(𝑋, 𝐴) 

𝑙𝑜𝑔𝜎 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) 

The posterior is then given by 𝑞(𝑍|𝑋, 𝐴) = ∏𝑖=1
𝑁𝑞(𝑧𝑖|𝑋, 𝐴) , with 

𝑞(𝑧𝑖|𝑋, 𝐴) = 𝑁(𝑧𝑖|𝜇𝑖, 𝑑𝑖𝑎𝑔(𝜎𝑖
2)). 

3.2.2 Reparameterization and Decoding 

To allow backpropagation through the stochastic sampling process, we employ the 
reparameterization trick: 

𝑍 = 𝜇 + 𝜀𝑜𝑑𝑜𝑡𝜎 

where 𝜀𝑠𝑖𝑚𝑁(0, 𝐼). 

The decoder consists of two components. The first is a structural decoder (dot product) used 
to reconstruct the adjacency matrix: 

𝑝(𝐴|𝑍) = ∏𝑖=1
𝑁∏𝑗=1

𝑁𝜎(𝑧𝑖
𝑇𝑧𝑗) 

where 𝜎 here represents the sigmoid function. 

Crucially for biomarker discovery, we add a feature decoder—a Multi-Layer Perceptron 
(MLP)—to reconstruct the original multi-omics features from the latent embeddings. This 
dual-decoding strategy ensures the latent space captures both topological information and 
feature-level details [13]. 

3.2.3 Optimization Objective 

The model is trained by minimizing a loss function composed of the reconstruction loss (for 
both graph and features) and the Kullback-Leibler (KL) divergence, which acts as a 
regularizer enforcing the latent distribution to match a unit Gaussian prior 𝑝(𝑍) = 𝑁(0, 𝐼). 

The Evidence Lower Bound (ELBO) objective function is mathematically formulated as: 

𝐿 = 𝑚𝑎𝑡ℎ𝑏𝑏𝐸𝑞(𝑍|𝑋,𝐴)[𝑙𝑜𝑔𝑝(𝐴|𝑍)] + 𝛾𝑚𝑎𝑡ℎ𝑏𝑏𝐸𝑞(𝑍|𝑋,𝐴)[𝑙𝑜𝑔𝑝(𝑋|𝑍)] − 𝛽𝐾𝐿[𝑞(𝑍|𝑋, 𝐴)|𝑝(𝑍)] 

Here, the first term measures the reconstruction accuracy of the graph structure (binary 
cross-entropy), the second term measures the reconstruction accuracy of the omics features 
(mean squared error), and the third term is the KL divergence. The hyperparameters 𝛾 and 𝛽 
control the trade-off between feature reconstruction, structure preservation, and latent space 
regularization. 

3.3 Biomarker Identification Strategy 

Once the model is trained, the feature decoder contains the mapping from the compressed 
latent space back to the high-dimensional omics space. To identify biomarkers, we analyze the 
weights of the feature decoder. Features (genes/proteins) associated with large absolute 
weights in the decoder layers contribute most significantly to the variations in the latent 
representations. 
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Alternatively, we employ gradient-based saliency mapping. We compute the gradient of the 
latent representation with respect to the input features for specific clusters of interest. 
Features with high gradient magnitudes are considered "drivers" of that cluster's specific 
phenotype. This method allows us to rank genes not just by global variance, but by their 
specific contribution to distinguishing disease subtypes [14]. 

Code Snippet 1 presents the implementation of the VGAE Encoder class using a standard 
geometric deep learning library structure. 

Code Snippet 1 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from torch_geometric.nn import GCNConv 

class VariationalGCNEncoder(nn.Module): 

    def __init__(self, in_channels, hidden_channels, out_channels): 

        super(VariationalGCNEncoder, self).__init__() 

        # Shared first layer to extract high-level features 

        self.conv1 = GCNConv(in_channels, hidden_channels)         

        # Branch for Mean (Mu) 

        self.conv_mu = GCNConv(hidden_channels, out_channels)        

        # Branch for Log-Variance (LogSigma) 

        self.conv_logstd = GCNConv(hidden_channels, out_channels) 

    def forward(self, x, edge_index): 

        # Initial graph convolution with ReLU activation 

        x = self.conv1(x, edge_index) 

        x = F.relu(x)     

        # Compute parameters for the latent distribution 

        mu = self.conv_mu(x, edge_index) 

        logstd = self.conv_logstd(x, edge_index)         

        return mu, logstd 

    def reparameterize(self, mu, logstd): 

        if self.training: 

            # Sample epsilon from standard normal 

            std = torch.exp(logstd) 

            eps = torch.randn_like(std) 

            return mu + eps  std 

        else: 

            # During inference, return deterministic mean 

            return mu 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

Datasets: We utilized multi-omics data from the TCGA repository, specifically focusing on 
Breast Invasive Carcinoma (BRCA) and Glioblastoma Multiforme (GBM). For BRCA, we 
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integrated DNA Methylation (Illumina HumanMethylation450), Gene Expression (RNA-Seq 
v2), and miRNA Expression. The pre-processed dataset contained approximately 600 patients 
with complete data across all three modalities. 

Baselines: We compared our VGAE approach against three distinct categories of methods: 

1.  Linear Factorization: Joint NMF (jNMF). 

2.  Network Fusion: Similarity Network Fusion (SNF). 

3.  Deep Learning: A standard multimodal Autoencoder (AE) without graph convolutions, 
and MOFA+ (Multi-Omics Factor Analysis). 

Metrics: To evaluate the quality of the learned representations, we performed K-means 
clustering on the latent embeddings. We measured performance using Adjusted Rand Index 
(ARI) and Normalized Mutual Information (NMI), using the established PAM50 subtypes for 
BRCA as the ground truth labels. Furthermore, we assessed the clinical utility via survival 
analysis (Log-rank test p-values) on the resulting clusters [15]. 

Implementation Details: The model was implemented in PyTorch. The hidden dimension was 
set to 64, and the latent dimension was set to 16. We trained for 500 epochs using the Adam 
optimizer with a learning rate of 0.001. The adjacency matrix was built using a K-nearest 
neighbor graph (𝐾 = 10) derived from the mean Pearson correlation across modalities. 

4.2 Results and Discussion 

The clustering performance is summarized in Table 1. The VGAE-based approach 
demonstrates a consistent advantage over both linear and non-graph deep learning methods. 

Table 1: Clustering Performance on TCGA-BRCA Dataset 

Method ARI (Adjusted Rand 
Index) 

NMI (Normalized 
Mutual Information) 

Silhouette Score 

jNMF 0.42 0.45 0.18 

SNF 0.51 0.54 0.22 

Standard AE 0.58 0.60 0.29 

MOFA+ 0.61 0.63 0.31 

Proposed VGAE 0.74 0.72 0.38 

The superior performance of the VGAE can be attributed to the "smoothing" effect of the 
graph convolution layers. In the standard AE, if a patient has a noisy expression profile due to 
technical errors, the model might map them to an incorrect region of the latent space. In the 
VGAE, the node's representation is aggregated from its neighbors. Since neighbors in the PSN 
are likely to be biologically similar, this aggregation acts as a powerful denoising mechanism, 
correcting outliers and reinforcing cluster density. 

The jNMF and SNF methods, while capturing some structure, struggled with the non-
linearities present in the expression data. SNF performed decently in clustering but provided 
no direct mechanism for feature reconstruction, limiting its interpretability. 

To visualize the quality of the learned embeddings, we projected the latent space of the VGAE 
into two dimensions using t-SNE (Figure 2). The plot reveals distinct, well-separated clusters 
corresponding to the major breast cancer subtypes (Luminal A, Luminal B, Basal, HER2). 



Frontiers in Biotechnology and Genetics Volume 2 Issue 1, 2025 

ISSN: 3079-6709  

 

58 

Notably, the Basal subtype, known for its aggressive nature and distinct molecular profile, 
forms a tight, isolated cluster, suggesting that our model successfully captured the strong 
signal associated with this phenotype. 

 
Figure 2: Latent Space Visualization 

4.3 Biomarker Analysis 

We performed the gradient-based attribution analysis described in the Methodology. For the 
Basal subtype cluster, the top-ranked features included FOXA1, GATA3, and ESR1 (showing 
negative contribution, consistent with Basal being triple-negative) and MKI67 (high 
proliferation). These genes are well-documented biomarkers in breast oncology. Interestingly, 
the model also highlighted several long non-coding RNAs (lncRNAs) with high centrality in the 
graph structure, candidates that traditional differential expression analysis might miss due to 
lower absolute abundance levels [16]. 

We also evaluated the stability of the biomarkers by running the model on bootstrapped 
subsets of the data. The overlap of top-50 biomarkers across runs was approximately 85% for 
the VGAE, compared to only 60% for the standard AE. This stability is likely conferred by the 
graph structure, which anchors the learning process in the global topology of the patient 
cohort rather than relying solely on individual feature variance [17]. 

Chapter 5: Conclusion 

5.1 Summary and Implications 

In this paper, we presented a comprehensive framework for multi-omics integration using 
Variational Graph Autoencoders. By synthesizing genomic, transcriptomic, and epigenetic 
data within a graph-theoretic structure, we addressed the twin challenges of high 
dimensionality and biological noise. Our experimental results on TCGA datasets confirmed 
that incorporating patient similarity networks into the deep learning architecture 
significantly improves clustering accuracy and biological relevance compared to state-of-the-
art baselines. 

The implications of this work extend beyond simple classification. The generative nature of 
the VGAE allows for the simulation of synthetic omics profiles, which could be invaluable for 
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data augmentation in rare disease studies. Furthermore, the ability to reconstruct features 
from the latent space provides a bridge between the "black box" of deep learning and the 
interpretability required by clinicians. The biomarkers identified by our model align with 
known pathological pathways, validating the method's ability to extract meaningful biological 
signals. 

5.2 Limitations and Future Directions 

Despite these promising results, several limitations persist. First, the construction of the input 
graph is a heuristic process. The choice of distance metric and the number of neighbors (𝑘) in 
the KNN graph can influence downstream performance. Future work should explore end-to-
end learning of the graph structure, where the adjacency matrix is dynamically optimized 
alongside the model weights rather than being fixed a priori. 

Second, while the current model integrates multi-omics data at the patient level (sample 
integration), it treats the relationships between genes (feature integration) implicitly. 
Incorporating biological prior knowledge, such as protein-protein interaction networks or 
gene regulatory networks, directly into the graph architecture—perhaps using heterogeneous 
graph neural networks—could further enhance the model's ability to discover mechanically 
relevant biomarkers. 

Finally, computational scalability remains a concern for extremely large datasets, such as 
those arising from single-cell sequencing. The 𝑂(𝑁2) complexity of calculating pairwise 
distances for graph construction becomes prohibitive as 𝑁 grows into the millions. Future 
iterations of this work will investigate sampling-based GCN training methods and sparse 
attention mechanisms to extend the VGAE framework to the single-cell resolution. 
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