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Abstract 

The proliferation of digital financial transactions has precipitated a commensurate rise 
in sophisticated financial crimes, specifically money laundering, which imposes 
significant stability risks on the global economic framework. Traditional Anti-Money 
Laundering (AML) systems, predominantly relying on rule-based engines or isolated 
machine learning models within single institutions, fail to capture the complex, cross-
institutional topology of modern laundering networks. While collaborative learning 
offers a theoretical solution, strict data privacy regulations such as the General Data 
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) inhibit 
the centralized aggregation of sensitive transaction data. This paper presents a 
comprehensive framework for Privacy-Preserving Federated Learning (PPFL) tailored 
specifically for AML applications. We propose a novel architecture that integrates 
Differential Privacy (DP) with Secure Multi-Party Computation (SMPC) to enable 
financial institutions to collaboratively train robust Deep Neural Networks (DNNs) 
without sharing raw transaction ledgers. Furthermore, we address the challenge of 
non-Independent and Identically Distributed (non-IID) data, a characteristic inherent 
to the heterogeneous customer bases of different banks. Our experimental results 
demonstrate that the proposed framework achieves detection rates comparable to 
centralized training baselines while mathematically guaranteeing data privacy, thereby 
resolving the dilemma between regulatory compliance and effective financial crime 
detection. 
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1. Introduction 

1.1 Background 

The global financial system processes billions of transactions daily, creating a vast ocean of 
data within which illicit actors attempt to conceal the origins of criminal proceeds. Money 
laundering is not merely a financial crime but a critical enabler for drug trafficking, terrorism 
financing, and corruption. The United Nations Office on Drugs and Crime estimates that 
between 2% and 5% of global GDP is laundered annually, yet the interception rate remains 
abysmally low, estimated at less than 1% [1]. This inefficiency stems largely from the siloed 
nature of current detection mechanisms. Financial institutions (FIs) operate as isolated 
entities, monitoring transactions only within their own ledgers. Consequently, sophisticated 
launderers exploit this fragmentation by layering transactions across multiple banks to break 
the audit trail, a technique known as smurfing or structuring [2]. 

In response, Artificial Intelligence (AI) and Machine Learning (ML) have been increasingly 
adopted to replace or augment rigid rule-based legacy systems. Deep learning models, capable 
of identifying non-linear patterns and complex dependencies in high-dimensional data, have 



Frontiers in Business and Finance Volume 2 Issue 1, 2025 

ISSN: 3079-9325  

 

430 

shown promise in reducing false positives—a chronic issue in AML compliance where 
legitimate transactions are flagged erroneously. However, the efficacy of these models is 
directly proportional to the volume and diversity of the training data [3]. A single institution 
often lacks the comprehensive view of the transaction graph required to identify macro-level 
laundering topologies. 

1.2 Problem Statement 

The logical solution to the data fragmentation problem—centralizing data from multiple 
institutions into a single data lake for model training—is rendered legally and ethically 
impossible by modern privacy regulations. Frameworks such as GDPR in Europe and various 
banking secrecy acts globally mandate strict controls over customer data. Sharing raw 
transaction logs, which contain personally identifiable information (PII) and sensitive 
financial behaviors, exposes institutions to severe legal penalties and reputational damage [4]. 

This creates a deadlock: effective AML detection requires data sharing, but privacy laws 
prohibit it. Federated Learning (FL) emerges as a potential paradigm to bridge this gap by 
enabling model training on decentralized data. In FL, the model travels to the data, rather than 
the data traveling to the model. However, standard FL is not a silver bullet. Recent research 
has demonstrated that gradient updates sent from clients to the central server can leak 
information about the underlying training data through reconstruction attacks [5]. 
Furthermore, the financial data distribution is highly skewed and non-IID; a retail bank in a 
rural area observes fundamentally different transaction patterns than an investment bank in a 
metropolitan financial hub. Standard averaging algorithms in FL struggle to converge or 
generalize well under such heterogeneity. 

1.3 Contributions 

This paper addresses these challenges by developing a robust PPFL framework for cross-
institution AML. Our primary contributions are as follows: 

1. We introduce a hybrid privacy preservation mechanism that combines local Differential 
Privacy (LDP) with additive homomorphic encryption to secure gradient updates, 
ensuring that neither the central server nor participating banks can reconstruct individual 
transaction histories. 

2. We propose a heterogeneity-aware aggregation algorithm designed to handle the non-IID 
nature of cross-institutional financial data, improving convergence speed and global 
model performance compared to standard Federated Averaging (FedAvg). 

3. We provide a rigorous empirical evaluation using synthetic yet realistic financial 
transaction datasets, benchmarking our approach against isolated local training and ideal 
centralized training scenarios. 

Chapter 2: Related Work 

2.1 Classical Approaches and Isolated Learning 

Historically, AML compliance has relied on expert systems defined by static rules (e.g., 
flagging cash deposits over $10,000). While transparent, these systems suffer from high false 
positive rates, often exceeding 95%, which places a massive burden on human analysts [6]. 
With the advent of data mining, institutions began employing classical machine learning 
algorithms such as Random Forests, Support Vector Machines (SVMs), and Gradient Boosting 
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Decision Trees (GBDTs). These models significantly improved detection capabilities by 
learning from historical Suspicious Activity Reports (SARs). 

However, these deployments have traditionally been isolated. A study by Weber et al. 
demonstrated that while individual banks could detect local anomalies, they consistently 
failed to identify laundering rings that propagated funds through multiple institutions [7]. The 
lack of a global perspective means that a launderer can appear as a low-risk customer to Bank 
A and Bank B individually, while the combined behavior reveals a clear pattern of layering. 
The industry's reliance on isolated learning has created a systemic vulnerability that 
adversarial actors actively exploit. 

2.2 Privacy-Preserving Machine Learning 

The concept of Federated Learning was introduced by Google in 2016 primarily for mobile 
edge computing, but its application to finance has gained traction recently. Yang et al. 
categorized FL into horizontal, vertical, and transfer learning settings, identifying horizontal 
FL as the most applicable architecture for banks sharing similar feature spaces (transaction 
logs) but different sample spaces (customer bases) [8]. 

Despite the decentralized nature of FL, privacy guarantees are not inherent. Comparison 
studies have shown that without additional privacy layers, deep learning models are 
susceptible to membership inference attacks, where an attacker can determine if a specific 
individual's data was used in training [9]. To mitigate this, Differential Privacy (DP) has been 
integrated into FL. DP adds calibrated noise to the gradients, masking the contribution of any 
single data point. However, applying DP in finance involves a delicate trade-off; excessive 
noise degrades the utility of the model, which is unacceptable in AML where missing a true 
positive carries legal risks. 

Secure Multi-Party Computation (SMPC) offers an alternative or complementary approach. 
SMPC protocols allow parties to compute a function jointly while keeping their inputs private. 
In the context of FL, this ensures that the central server sees only the aggregated update, not 
the individual updates from each bank [10]. While cryptographically secure, SMPC often 
introduces significant communication and computational overheads, which can be prohibitive 
for large-scale deep learning models. Our work seeks to balance these constraints by 
optimizing the integration of DP and lightweight encryption. 

Chapter 3: Methodology 

Our proposed framework, SecureFedAML, operates on a horizontal federated learning 
architecture involving 𝐾 financial institutions (clients) and one regulatory authority or 
trusted third party acting as the central aggregation server. The objective is to train a global 
Deep Neural Network (DNN) that minimizes a loss function over the aggregate data 
distribution without exposing raw data. 

3.1 Architectural Overview 

The training process follows a synchronous round-based protocol. In each communication 
round 𝑡, the central server distributes the current global model parameters 𝑤𝑡 to a subset of 
eligible clients. Each client 𝑘 performs local training on its private dataset 𝐷𝑘 using Stochastic 
Gradient Descent (SGD) to compute the local update 𝛻𝑤𝑡

𝑘. 

Critically, before transmitting this update, the client applies a privacy-preserving 
transformation. The transformed updates are sent to the server, which aggregates them to 
produce the new global model state 𝑤𝑡+1. This cycle repeats until convergence criteria are 
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met. The architecture is designed to be agnostic to the underlying neural network structure, 
though we utilize a Long Short-Term Memory (LSTM) network in our experiments to capture 
the temporal dependencies inherent in transaction sequences [11]. 

3.2 Differential Privacy Mechanism 

To prevent gradient leakage, we employ client-side Differential Privacy. Specifically, we utilize 
the Gaussian Mechanism, which is favored for its sharp tail decay. For a given client 𝑘, the 
gradient 𝑔𝑘 is first clipped to a maximum 𝐿2-norm threshold 𝐶 to bound the sensitivity of the 
update. This clipping ensures that the influence of any single transaction batch is limited. 

After clipping, Gaussian noise is added to the gradient. The noise scale is determined by the 
privacy budget 𝜀 and the failure probability 𝛿. By injecting noise locally, we provide a stronger 
privacy guarantee than central DP, as the server never sees the exact gradient of any 
institution. However, since summing noisy gradients accumulates variance, we employ a 
sophisticated noise reduction technique during aggregation, relying on the law of large 
numbers where the sum of noise from many clients tends to average out, provided the noise is 
zero-mean [12]. 

3.3 Weighted Aggregation for Non-IID Data 

Financial data is inherently non-IID. A regional cooperative bank may have a dataset 
dominated by agricultural loans and small retail transactions, while a multinational bank's 
dataset is heavily skewed towards high-frequency trading and cross-border wires. Standard 
FedAvg, which weights contributions solely based on dataset size, fails to account for the 
distributional divergence. 

We introduce a contribution-based weighting scheme. The server maintains a history of 
validation performance for each client. Clients whose updates consistently move the global 
model towards lower loss on a hold-out validation set (maintained by the regulator using 
synthetic or anonymized historical data) are assigned higher importance. This dynamic 
weighting prevents the global model from overfitting to the specific distributions of the 
largest banks while ignoring the subtle but critical patterns found in smaller institutions [13]. 

3.4 Mathematical Formalization 

The core update rule for our SecureFedAML framework, incorporating both the momentum-
based gradient descent and the differential privacy noise injection, is formally defined below. 
Let 𝑒𝑡𝑎 be the learning rate, 𝑁 be the total number of participating clients, and 𝑁 denote the 
Gaussian distribution. 

𝑤𝑡+1 = 𝑤𝑡 − 𝑒𝑡𝑎(∑𝑘=1
𝑁𝛼𝑘(𝐶𝑙𝑖𝑝(𝛻𝐹𝑘(𝑤𝑡), 𝐶) + 𝑁(0, 𝜎2𝐶2𝐼))) 

In this equation, 𝛻𝐹𝑘(𝑤𝑡) represents the local gradient computed by client 𝑘. The function 
𝐶𝑙𝑖𝑝(·, 𝐶) enforces the sensitivity bound 𝐶. The term 𝑁(0, 𝜎2𝐶2𝐼) represents the additive 
Gaussian noise scaled by the variance 𝜎2 and the clipping threshold. The coefficient 𝛼𝑘 
represents the dynamic aggregation weight derived from our non-IID handling mechanism, 
such that ∑𝛼𝑘 = 1. This formulation ensures that the update step moves the model in the 
direction of the steepest descent on the global loss surface while satisfying the definitions of 
(𝜀, 𝛿)-Differential Privacy. 



Frontiers in Business and Finance Volume 2 Issue 1, 2025 

ISSN: 3079-9325  

 

433 

3.5 Cryptographic Reinforcement 

While DP protects against inference attacks, it does not hide the values from the server if the 
noise is small. To achieve defense-in-depth, we layer an Additive Homomorphic Encryption 
(AHE) scheme, specifically the Paillier cryptosystem, on top of the noisy gradients. Clients 
encrypt their noisy gradients before transmission. The server, possessing the additive 
homomorphic property, sums the encrypted gradients to obtain the encrypted global update. 
The server does not possess the private decryption key; the result is sent back to the clients 
(or a key management authority) for decryption. This ensures that the server performs 
aggregation blindly, seeing neither the raw data nor the individual model updates [14]. 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To evaluate the efficacy of SecureFedAML, we simulate a federated environment using 
PyTorch. The simulation involves 10 distinct clients representing financial institutions of 
varying sizes. We utilize the Elliptic Data Set, a widely used benchmark for AML consisting of 
over 200,000 Bitcoin transactions mapped to real-world entities belonging to licit (exchange, 
wallet service) and illicit (scam, ransomware, terrorist organization) categories [15]. 

To simulate the non-IID nature of the banking system, we partition the dataset using a 
Dirichlet distribution. This creates a scenario where some clients hold data predominantly 
from one class or transaction type, mimicking the specialization of real-world banks. The 
global model is a four-layer Deep Neural Network with dropout layers to prevent overfitting. 
We compare our framework against three baselines: 

1.  Centralized Learning: The ideal scenario where all data is pooled (ignoring privacy) to 
train a single model. 

2.  Local Learning: Each bank trains a model exclusively on its own data without 
collaboration. 

3.  Standard FedAvg: A basic federated learning implementation without our specialized 
heterogeneity handling or DP mechanisms. 

The experiments were conducted on a cluster of NVIDIA A100 GPUs. The privacy parameters 
were set to 𝜀 = 3.0 and 𝛿 = 10−5, representing a moderate privacy budget that balances 
security and utility [16]. 

4.2 Dataset Characteristics 

The following table details the distribution of the dataset across the simulated nodes. The 
imbalance is intentional to stress-test the aggregation algorithm. 

Client ID Dataset Size (samples) Illicit Ratio (%) Dominant Feature 
Type 

Bank 1 (Major) 85,000 2.1% International Wire 

Bank 2 (Major) 60,000 1.8% Corporate Forex 

Bank 3 (Regional) 15,000 0.5% Retail/Mortgage 

Bank 4 (Crypto-
focused) 

12,000 18.5% High-
Frequency/Digital 

Banks 5-10 (Small) ~4,500 each 0.2% - 5.0% Mixed 
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4.3 Results and Discussion 

The primary metrics for evaluation are Precision, Recall, and the F1-Score. In AML, Recall (the 
ability to catch all money laundering instances) is often prioritized over Precision, although 
high False Positives are costly. 

 
Figure 1: Performance Comparison Chart 

As illustrated in Figure 1, the Local Learning approach performs poorly, achieving an average 
F1-score of only 0.58. This confirms the hypothesis that individual banks lack sufficient 
"criminal" samples to learn robust decision boundaries. The isolated models overfit to normal 
transactions and fail to recognize novel laundering vectors. 

Standard FedAvg improves performance significantly to an F1-score of 0.76, demonstrating 
the value of collaboration. However, the curve exhibits high volatility, a symptom of the non-
IID data distribution where divergent updates from different clients pull the global model in 
conflicting directions [17]. 

Our proposed SecureFedAML framework achieves an F1-score of 0.82, closely trailing the 
Centralized baseline of 0.85. The gap of 0.03 represents the "cost of privacy"—the utility loss 
due to DP noise and the lack of direct data access. Critically, our method converges more 
smoothly than Standard FedAvg, validating the effectiveness of the heterogeneity-aware 
weighting mechanism. 

4.4 Privacy vs. Utility Trade-off 

We conducted an ablation study to analyze the impact of the privacy budget 𝜀. As 𝜀 decreases 
(stricter privacy, more noise), the model utility drops. At 𝜀 = 0.5, the F1-score degrades to 
0.65, rendering the model marginally better than local learning. Conversely, at 𝜀 = 8.0, the 
performance matches the non-private FedAvg, but the privacy guarantee weakens against 
theoretical infinite-resource attackers. The chosen value of 𝜀 = 3.0 represents an optimal 
operating point for AML compliance, providing a mathematically rigorous defense against 
reconstruction attacks while maintaining high detection rates [18]. 

The following table summarizes the comparative performance metrics at convergence (Round 
100). 

Model Architecture Precision Recall F1-Score 
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Centralized (No 
Privacy) 

0.88 0.83 0.85 

SecureFedAML (Ours) 0.84 0.80 0.82 

Standard FedAvg 0.79 0.73 0.76 

Local Learning (Avg) 0.65 0.52 0.58 

The results highlight that our framework preserves the high Recall necessary for AML (0.80), 
ensuring that the majority of illicit transactions are flagged, while maintaining acceptable 
Precision. 

Chapter 5: Conclusion 

5.1 Summary of Findings and Practical Implications 

This research has presented a comprehensive framework for enabling privacy-preserving 
collaboration among financial institutions to combat money laundering. By integrating 
Federated Learning with Differential Privacy and Homomorphic Encryption, we have 
demonstrated that it is possible to break down data silos without compromising regulatory 
compliance. The SecureFedAML architecture allows banks to leverage the collective 
intelligence of the financial network, identifying complex laundering patterns that would 
remain invisible to isolated entities. 

The implications of this work extend beyond technical metrics. For the financial industry, it 
offers a pathway to reduce the exorbitant fines associated with compliance failures. For 
regulators, it provides a blueprint for a more resilient monitoring infrastructure that respects 
citizen privacy. The ability to achieve an F1-score within 3% of the centralized baseline 
suggests that the technological barriers to privacy-preserving AML are surmountable. 

5.2 Study Limitations and Directions for Future Research 

Despite the promising results, several limitations remain. The current framework assumes a 
semi-honest threat model where the server follows the protocol but attempts to infer 
information. Robustness against malicious clients who might intentionally poison the model 
(data poisoning attacks) requires further investigation into Byzantine-robust aggregation 
protocols. Additionally, the computational overhead of Homomorphic Encryption, while 
manageable in our simulation, poses latency challenges for real-time transaction monitoring 
at the scale of global payment networks. 

Future research will focus on optimizing the cryptographic primitives to reduce 
communication costs and exploring the application of Vertical Federated Learning for 
scenarios where banks wish to collaborate with non-financial entities, such as 
telecommunications providers or e-commerce platforms, to enrich the feature space for even 
more accurate detection. The evolution of AML systems must be continuous, as the 
adversarial nature of financial crime ensures that laundering techniques will evolve in parallel 
with detection capabilities. 
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