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Abstract

The accurate forecasting of intraday financial risk is a cornerstone of modern
algorithmic trading and systemic stability analysis. Traditional econometric models
often fail to capture the nonlinear dependencies and rapid regime shifts characteristic
of high-frequency limit order book (LOB) data, while standard deep learning
architectures frequently struggle with the extremely low signal-to-noise ratio inherent
in microstructure signals. This paper introduces the Volatility-Aware Temporal
Transformer (VATT), a novel deep learning architecture designed specifically for
intraday realized volatility forecasting. Unlike canonical Transformers, VATT
incorporates a specialized Volatility Gating Module (VGM) that dynamically modulates
the attention mechanism based on the prevailing market regime, allowing the model to
distinguish between transient noise and structural volatility shifts. We leverage
granular microstructure signals, including Order Flow Imbalance (OFI) and depth-
weighted spread, to enhance the feature space beyond simple price history. Extensive
experiments conducted on tick-level data for major equity indices demonstrate that
VATT significantly outperforms GARCH-family baselines and standard Long Short-Term
Memory (LSTM) networks in terms of Mean Absolute Error and Quasi-Likelihood loss.
The results suggest that integrating volatility-specific inductive biases into the
Transformer architecture is crucial for robust risk forecasting in high-frequency
domains.
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1. Introduction

1.1 Background

The analysis of financial markets has undergone a paradigm shift over the last two decades,
driven largely by the proliferation of high-frequency trading (HFT) and the availability of
granular limit order book (LOB) data. In this regime, the estimation of risk—quantified
primarily through volatility—is no longer a daily or weekly exercise but a continuous,
intraday necessity. Market makers, liquidity providers, and institutional investors require
precise forecasts of short-term variance to adjust inventory risk, calibrate execution
algorithms, and manage leverage [1].

Classically, volatility modeling has been dominated by autoregressive conditional
heteroskedasticity (ARCH) models and their generalized variants (GARCH). While these
models offer statistical interpretability and stationarity guarantees, they rely on rigid
parametric assumptions that often fail to capture the complex, non-linear interaction of
supply and demand at the microstructure level [2]. The "stylized facts" of financial time series,

419



Frontiers in Business and Finance Volume 2 Issue 1, 2025
ISSN: 3079-9325

such as fat tails, volatility clustering, and the leverage effect, are often imperfectly modeled by
linear assumptions, particularly at intraday resolutions where noise dominates the signal.

1.2 Problem Statement

Despite the success of deep learning in fields such as natural language processing and
computer vision, its application to intraday risk forecasting remains fraught with challenges.
The primary difficulty lies in the stochastic nature of financial data. Unlike language, which
possesses a distinct grammar and semantic structure, price returns are nearly martingale
processes, making prediction inherently difficult.

Standard Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks have been employed to address temporal dependencies in financial data [3].
However, these sequential architectures suffer from limitations in parallelization and often
struggle to capture long-range dependencies in time series where the relevant signal for a
volatility spike might be buried thousands of time steps in the past. Furthermore, standard
Transformer architectures, while solving the long-range dependency problem via self-
attention, lack specific inductive biases for financial volatility. They tend to treat all time steps
with equal potential importance, often overfitting to high-frequency noise rather than
focusing on structural shifts in market sentiment.

A critical gap exists in current literature regarding the integration of market microstructure
signals—such as the shape of the LOB and order flow dynamics—into a Transformer
architecture that is explicitly aware of volatility regimes. Standard attention mechanisms do
not inherently understand that market dynamics differ fundamentally during periods of calm
versus periods of stress.

1.3 Contributions

To address these limitations, this paper proposes the Volatility-Aware Temporal Transformer
(VATT). Our contributions are threefold:

First, we design a dedicated Volatility Gating Module (VGM) integrated into the Transformer
encoder. This module acts as a non-linear filter that re-weights input embeddings based on an
auxiliary estimation of the current volatility state. This allows the network to adapt its
attention span and feature focus dynamically, paying attention to different microstructure
signals depending on whether the market is trending or mean-reverting.

Second, we engineer a high-dimensional feature set derived from Level-2 LOB data. Beyond
simple price and volume, we utilize Order Flow Imbalance (OFI) and depth-weighted spreads
as inputs. These features capture the aggressive versus passive nature of market participants,
providing a leading indicator for variance that price history alone cannot supply [4].

Third, we perform a comprehensive empirical evaluation against both strong econometric
baselines (GARCH, EGARCH) and deep learning baselines (LSTM, Temporal Convolutional
Networks). We demonstrate that VATT achieves superior performance on out-of-sample data,
reducing error metrics significantly during periods of high market turbulence.
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Chapter 2: Related Work

2.1 Classical Approaches

The foundation of volatility modeling was laid by Engle with the ARCH model, subsequently
generalized by Bollerslev to GARCH. These models posit that current volatility is a function of
past squared returns and past variance [5]. While revolutionizing the field, standard GARCH
models assume a constant unconditional variance and often struggle to adapt quickly to the
structural breaks frequently observed in intraday data.

Extensions such as the Exponential GARCH (EGARCH) were introduced to handle the leverage
effect, where negative returns are correlated with higher subsequent volatility than positive
returns of the same magnitude [6]. Realized Volatility (RV), calculated by summing squared
intraday returns, became a standard proxy for latent volatility, leading to the Heterogeneous
Autoregressive (HAR-RV) model. The HAR-RV framework posits that volatility cascades from
different time horizons (daily, weekly, monthly). While HAR-RV improves upon GARCH for
intraday data, it remains a linear model limited in its ability to capture complex interactions
between LOB liquidity and price variance.

2.2 Deep Learning Methods

The advent of deep learning brought non-linear approximation capabilities to finance. RNNs
and LSTMs became popular for their ability to maintain state over time, theoretically allowing
them to model volatility clustering more effectively than finite-window autoregressive models
[7]. Research has shown that LSTMs can outperform GARCH-type models when trained on
large datasets, particularly when auxiliary data is included [8].

However, the sequential processing nature of RNNs prohibits efficient training on very long
sequences, a necessity for high-frequency data where a single day may contain tens of
thousands of ticks. The introduction of the Transformer architecture by Vaswani et al.
revolutionized sequence modeling by replacing recurrence with self-attention [9].

In the financial domain, researchers have begun adapting Transformers for time series
forecasting. Wu et al. introduced the Adversarial Sparse Transformer for time series,
highlighting the need to reduce the quadratic complexity of attention for long sequences [10].
More recently, researchers have explored hybrid models combining Convolutional Neural
Networks (CNNs) for feature extraction from the LOB with LSTM or Transformer backends for
temporal aggregation [11]. Despite these advances, few architectures explicitly model the
heteroskedastic nature of the data within the attention mechanism itself, a gap this paper
aims to fill.

Chapter 3: Methodology

3.1 Data Preprocessing and Feature Engineering

The quality of inputs is paramount in microstructure analysis. We utilize Level-2 Limit Order
Book data, which provides the price and volume for the top N levels of the bid and ask sides.
Raw price levels are non-stationary; therefore, we convert all price series into log-returns.

For feature engineering, we move beyond price and volume to capture the dynamics of
liquidity provision. We compute the Order Flow Imbalance (OFI) at level k, which
approximates the net flow of aggressive orders. We also calculate the Depth Balance, which
measures the ratio of liquidity available on the bid side versus the ask side. These features are
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critical because volatility is often preceded by a drying up of liquidity on one side of the book
[12].

All input features are normalized. Given the presence of outliers in financial data (flash
crashes, news shocks), we utilize robust scaling based on the interquartile range rather than
standard Z-score normalization to prevent extreme values from distorting the gradient
descent process.

3.2 The Volatility-Aware Temporal Transformer (VATT)

The core architecture of VATT consists of an embedding layer, a stack of volatility-aware
encoder layers, and a temporal pooling decoder.

3.2.1 Input Embedding and Positional Encoding

Time series data possesses a strict temporal ordering. Unlike Natural Language Processing
where relative position matters, in finance, absolute timestamps (time of day) also carry
signal due to the U-shaped intraday volatility curve (high volatility at open and close). We
employ a learnable time-of-day embedding added to the standard sinusoidal positional
encodings. This allows the model to learn that volatility dynamics at 09:30 AM differ from
those at 12:00 PM.

3.2.2 Volatility Gating Module (VGM)

Standard self-attention mechanisms calculate the relevance of time step j to time step i using
a dot product of queries and keys. However, in finance, relevance is regime-dependent. During
low volatility, long-term mean reversion trends might be relevant. During high volatility, only
the most recent ticks matter.

We introduce the VGM, a lightweight sub-network that runs in parallel to the main attention
block. It takes the recent history of squared returns and outputs a scalar gating factor,
vy € [0,1]. This factor modulates the skip connections within the Transformer block. If the
detected regime is highly noisy, the gate dampens the contribution of the self-attention
mechanism, forcing the model to rely more on the immediate previous state (residual path)
akin to a random walk, thereby preventing overfitting to noise [13].

3.2.3 Volatility-Biased Attention Mechanism

We modify the canonical Scaled Dot-Product Attention. In the standard formulation, attention
scores are derived purely from content similarity. We introduce a volatility bias matrix that
penalizes attention to distant time steps when local volatility is high, effectively inducing a
dynamic look-back window.

The formula for our modified attention mechanism is presented below. We utilize a learnable
volatility bias term B,,,; which is computed via a non-linear projection of the localized
standard deviation of the input sequence. This bias is added to the scaled dot product before
the softmax operation, altering the probability distribution of the attention weights.

T

Attention(Q,K,V) = softmax(Q

Vd,

Here, Q, K,V represent the Query, Key, and Value matrices respectively. dj, is the dimension of
the keys. B,,,; is the volatility-derived bias matrix, and A is a learnable scalar parameter that

+ A * Bvol)V
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controls the magnitude of the volatility adjustment. This formulation ensures that when
structural volatility is high, the attention mechanism can be sharply focused or diffused based
on the learned optimal strategy for that regime.

3.2.4 Implementation Details

The model is implemented using PyTorch. The encoder consists of 4 identical layers with 8
attention heads each. The hidden dimension is set to 128. We utilize the Gaussian Error Linear
Unit (GELU) activation function rather than ReLU, as GELU's smooth probabilistic nature has
been shown to improve convergence in Transformer models. Dropout is applied at a rate of
0.1 to prevent overfitting.

The loss function employed is not Mean Squared Error (MSE), which assumes Gaussian
residuals, but rather the Heteroskedastic Loss or Quasi-Likelihood (QLIKE) loss. This loss
function is more robust to the fat-tailed distribution of squared returns and penalizes under-
prediction of volatility more heavily than over-prediction, aligning with risk management
priorities where underestimating risk is more costly than overestimating it.

The following code snippet demonstrates the implementation of the Volatility Gating Module
within the forward pass of the encoder layer.

Code Snippet 1: PyTorch implementation of the Volatility Gating Module

import torch

import torch.nn as nn

import math

class VolatilityGatingModule (nn.Module) :

def init (self, d model, history window=20) :

super (VolatilityGatingModule, self). init ()
self.history window = history window
# Simple conv layer to extract local volatility features
self.vol extractor = nn.Sequential (

nn.Convld(in_ channels=d model, out channels=32, kernel size=3,
padding=1),

nn.GELU (),
nn.Convld(in channels=32, out channels=1, kernel size=3, padding=1l),
nn.Sigmoid ()

)

def forward(self, x):

# x shape: [Batch, Seq Len, d model]

# Transpose for Convld: [Batch, d model, Seqg Len]

X in = x.transpose(l, 2)

# Calculate gating factor gamma based on local features

# Returns shape: [Batch, 1, Seq Len]

gamma = self.vol extractor(x in)

# Transpose back to match input for broadcasting

gamma = gamma.transpose(l, 2)

return gamma
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class VolatilityAwareEncoderLayer (nn.Module) :

def

def

__init (self, d model, nhead, dim feedforward=2048, dropout=0.1):

super (VolatilityAwareEncoderLayer, self). init ()
self.self attn = nn.MultiheadAttention(d model, nhead, batch first=True)
self.vgm = VolatilityGatingModule (d model)

# Implementation of Feedforward model

self.linearl nn.Linear (d model, dim feedforward)

self.dropout nn.Dropout (dropout)

self.linear2 = nn.Linear (dim feedforward, d model)

self.norml nn.LayerNorm(d model)

self.norm?2 nn.LayerNorm(d model)
self.dropoutl = nn.Dropout (dropout)
self.dropout2 = nn.Dropout (dropout)
self.activation = nn.GELU ()

forward(self, src):

# Calculate Volatility Gate

gamma = self.vgm(szrc)

# Self-Attention Block

src2 = self.self attn(src, src, src) [0]

# Apply gating: Scale attention output by gamma
# If volatility is high/confusing, gamma -> 0, relying on residual
src = src + self.dropoutl (src2 gamma)

src = self.norml (src)

# Feed-forward Block

src2 = self.linear2(self.dropout(self.activation(self.linearl(src))))
src = src + self.dropout2(src2)
src = self.norm2 (src)

return src
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Figure 1: Architectural Schematic of VATT
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Chapter 4: Experiments and Analysis

4.1 Experimental Setup

We evaluate the proposed VATT model using the LOBSTER dataset, which provides high-
fidelity limit order book data for NASDAQ-traded stocks. We select five highly liquid tickers
(AAPL, MSFT, AMZN, GOOGL, INTC) covering the period from January 2022 to December
2022. This period is chosen specifically because it encompasses various market regimes,
including the high-volatility drawdown observed in the technology sector during that year.

The data is sampled at 1-minute intervals. The prediction target is the realized volatility for
the next 10-minute window, calculated as the sum of squared 10-second returns. The dataset
is split into training (Jan-Aug), validation (Sep-Oct), and testing (Nov-Dec).

4.2 Baselines

To establish the efficacy of VATT, we compare it against a spectrum of models ranging from
classical econometrics to state-of-the-art deep learning:

1. GARCH(1,1): The industry standard for volatility forecasting [14].

2. LSTM: A stacked LSTM network with 2 layers and 128 hidden units, representing
standard sequential deep learning [15].

3. TCN (Temporal Convolutional Network): A dilated causal convolution network that
captures long-range dependencies efficiently [16].

4. Transformer (Vanilla): The standard Vaswani architecture without the volatility gating
mechanism or bias.

4.3 Results and Discussion

Table 1 presents the performance comparison across all five stocks. We report the Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and QLIKE loss. Lower values
indicate better performance.

Model MAE (107{-4}) RMSE (107{-4}) QLIKE
GARCH(1,1) 412 6.33 2.85
LSTM 3.56 5.42 2.51
TCN 3.48 5.28 2.45
Transformer (Vanilla) 3.45 5.15 2.48
VATT (Ours) 3.01 4.65 2.12

The results indicate that VATT outperforms all baselines consistently. While the Vanilla
Transformer offers a slight improvement over the LSTM and TCN due to its ability to model
global context, it struggles to outperform them significantly in QLIKE, likely because it treats
noise and signal similarly. VATT, by virtue of the VGM, achieves a substantial reduction in
QLIKE. This confirms that the model is particularly effective at accurately scaling the variance
prediction, avoiding the costly underestimation of risk.

To further understand the contribution of the Volatility Gating Module, we conducted an
ablation study. We trained variants of the model: one without the VGM and one without the
Volatility-Biased Attention (VBA) but with VGM.
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Configuration AAPL (RMSE) MSFT (RMSE)
Full VATT 4.65 4.72
VATT w/o VGM 5.10 5.18
VATT w/o VBA 4.88 4.95

Table 2 demonstrates that the removal of the VGM results in a performance degradation back
to near-Vanilla Transformer levels. This suggests that the gating mechanism is the primary
driver of the performance gain. The Volatility-Biased Attention contributes a smaller but non-
negligible improvement [17].

Finally, we analyzed the computational efficiency of the models. While Transformers are
generally more computationally intensive than GARCH models, they allow for parallelized
training unlike LSTMs.

Model Training Time (hrs) Inference Latency (ms)
LSTM 12.5 4.2
Transformer 8.2 3.8
VATT 9.1 4.1

Table 3 shows that VATT incurs only a marginal increase in training time and inference
latency compared to the standard Transformer. The VGM is a lightweight convolutional block
that adds negligible overhead compared to the heavy matrix multiplications in the attention
layers. Crucially, the inference latency remains well within the requirements for intraday
trading systems, typically operating on second or minute-level frequencies [18].

The superior performance of VATT can be attributed to its ability to dynamically "switch"
processing modes. Visualizing the attention weights reveals that during stable periods, the
attention heads attend broadly to the past 60 minutes of history. However, immediately
following a volatility spike (e.g., a large order imbalance), the attention weights collapse to the
most recent 2-3 minutes. This adaptive receptive field mimics the intuition of human traders
who discard stale information when the market regime shifts abruptly.

Chapter 5: Conclusion

This paper presented the Volatility-Aware Temporal Transformer (VATT), a deep learning
architecture capable of robust intraday risk forecasting using market microstructure signals.
By integrating a Volatility Gating Module and a volatility-biased attention mechanism, we
successfully imbued the Transformer architecture with financial inductive biases. Our
experiments on the LOBSTER dataset demonstrated that VATT significantly reduces
forecasting error compared to traditional GARCH models and standard deep learning
baselines.

The implications of this work are significant for the field of algorithmic trading and automated
risk management. The ability to accurately forecast realized volatility at intraday horizons
allows for more efficient execution of large orders, minimizing market impact. Furthermore,
the success of the VGM suggests that "regime-aware" neural network components are a
promising direction for financial machine learning, bridging the gap between econometrics
and black-box deep learning.

While VATT shows promise, several limitations exist. First, the model relies heavily on the
quality and granularity of Level-2 LOB data. In markets where such data is expensive or
unavailable (e.g., fragmented cryptocurrency exchanges or dark pools), the efficacy of the
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microstructure features may be diminished. Second, while the computational cost is
acceptable for minute-level trading, it may still be prohibitive for ultra-high-frequency
(microsecond-level) applications where FPGA-based logic is required.

Future research will focus on two main avenues. Firstly, we aim to investigate the application
of VATT to multi-asset volatility forecasting, attempting to capture spillover effects between
correlated assets using a graph-based extension of the attention mechanism. Secondly, we
plan to explore the use of Reinforcement Learning (RL) to automatically optimize the
hyperparameters of the gating mechanism, potentially allowing the model to learn its own
definition of "volatility regime" without explicit supervision on squared returns. By
continuing to refine these mechanisms, we move closer to fully autonomous, risk-aware
financial systems.
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