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Abstract 

The accurate forecasting of intraday financial risk is a cornerstone of modern 
algorithmic trading and systemic stability analysis. Traditional econometric models 
often fail to capture the nonlinear dependencies and rapid regime shifts characteristic 
of high-frequency limit order book (LOB) data, while standard deep learning 
architectures frequently struggle with the extremely low signal-to-noise ratio inherent 
in microstructure signals. This paper introduces the Volatility-Aware Temporal 
Transformer (VATT), a novel deep learning architecture designed specifically for 
intraday realized volatility forecasting. Unlike canonical Transformers, VATT 
incorporates a specialized Volatility Gating Module (VGM) that dynamically modulates 
the attention mechanism based on the prevailing market regime, allowing the model to 
distinguish between transient noise and structural volatility shifts. We leverage 
granular microstructure signals, including Order Flow Imbalance (OFI) and depth-
weighted spread, to enhance the feature space beyond simple price history. Extensive 
experiments conducted on tick-level data for major equity indices demonstrate that 
VATT significantly outperforms GARCH-family baselines and standard Long Short-Term 
Memory (LSTM) networks in terms of Mean Absolute Error and Quasi-Likelihood loss. 
The results suggest that integrating volatility-specific inductive biases into the 
Transformer architecture is crucial for robust risk forecasting in high-frequency 
domains. 
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1. Introduction 

1.1 Background 

The analysis of financial markets has undergone a paradigm shift over the last two decades, 
driven largely by the proliferation of high-frequency trading (HFT) and the availability of 
granular limit order book (LOB) data. In this regime, the estimation of risk—quantified 
primarily through volatility—is no longer a daily or weekly exercise but a continuous, 
intraday necessity. Market makers, liquidity providers, and institutional investors require 
precise forecasts of short-term variance to adjust inventory risk, calibrate execution 
algorithms, and manage leverage [1]. 

Classically, volatility modeling has been dominated by autoregressive conditional 
heteroskedasticity (ARCH) models and their generalized variants (GARCH). While these 
models offer statistical interpretability and stationarity guarantees, they rely on rigid 
parametric assumptions that often fail to capture the complex, non-linear interaction of 
supply and demand at the microstructure level [2]. The "stylized facts" of financial time series, 
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such as fat tails, volatility clustering, and the leverage effect, are often imperfectly modeled by 
linear assumptions, particularly at intraday resolutions where noise dominates the signal. 

1.2 Problem Statement 

Despite the success of deep learning in fields such as natural language processing and 
computer vision, its application to intraday risk forecasting remains fraught with challenges. 
The primary difficulty lies in the stochastic nature of financial data. Unlike language, which 
possesses a distinct grammar and semantic structure, price returns are nearly martingale 
processes, making prediction inherently difficult. 

Standard Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 
networks have been employed to address temporal dependencies in financial data [3]. 
However, these sequential architectures suffer from limitations in parallelization and often 
struggle to capture long-range dependencies in time series where the relevant signal for a 
volatility spike might be buried thousands of time steps in the past. Furthermore, standard 
Transformer architectures, while solving the long-range dependency problem via self-
attention, lack specific inductive biases for financial volatility. They tend to treat all time steps 
with equal potential importance, often overfitting to high-frequency noise rather than 
focusing on structural shifts in market sentiment. 

A critical gap exists in current literature regarding the integration of market microstructure 
signals—such as the shape of the LOB and order flow dynamics—into a Transformer 
architecture that is explicitly aware of volatility regimes. Standard attention mechanisms do 
not inherently understand that market dynamics differ fundamentally during periods of calm 
versus periods of stress. 

1.3 Contributions 

To address these limitations, this paper proposes the Volatility-Aware Temporal Transformer 
(VATT). Our contributions are threefold: 

First, we design a dedicated Volatility Gating Module (VGM) integrated into the Transformer 
encoder. This module acts as a non-linear filter that re-weights input embeddings based on an 
auxiliary estimation of the current volatility state. This allows the network to adapt its 
attention span and feature focus dynamically, paying attention to different microstructure 
signals depending on whether the market is trending or mean-reverting. 

Second, we engineer a high-dimensional feature set derived from Level-2 LOB data. Beyond 
simple price and volume, we utilize Order Flow Imbalance (OFI) and depth-weighted spreads 
as inputs. These features capture the aggressive versus passive nature of market participants, 
providing a leading indicator for variance that price history alone cannot supply [4]. 

Third, we perform a comprehensive empirical evaluation against both strong econometric 
baselines (GARCH, EGARCH) and deep learning baselines (LSTM, Temporal Convolutional 
Networks). We demonstrate that VATT achieves superior performance on out-of-sample data, 
reducing error metrics significantly during periods of high market turbulence. 
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Chapter 2: Related Work 

2.1 Classical Approaches 

The foundation of volatility modeling was laid by Engle with the ARCH model, subsequently 
generalized by Bollerslev to GARCH. These models posit that current volatility is a function of 
past squared returns and past variance [5]. While revolutionizing the field, standard GARCH 
models assume a constant unconditional variance and often struggle to adapt quickly to the 
structural breaks frequently observed in intraday data. 

Extensions such as the Exponential GARCH (EGARCH) were introduced to handle the leverage 
effect, where negative returns are correlated with higher subsequent volatility than positive 
returns of the same magnitude [6]. Realized Volatility (RV), calculated by summing squared 
intraday returns, became a standard proxy for latent volatility, leading to the Heterogeneous 
Autoregressive (HAR-RV) model. The HAR-RV framework posits that volatility cascades from 
different time horizons (daily, weekly, monthly). While HAR-RV improves upon GARCH for 
intraday data, it remains a linear model limited in its ability to capture complex interactions 
between LOB liquidity and price variance. 

2.2 Deep Learning Methods 

The advent of deep learning brought non-linear approximation capabilities to finance. RNNs 
and LSTMs became popular for their ability to maintain state over time, theoretically allowing 
them to model volatility clustering more effectively than finite-window autoregressive models 
[7]. Research has shown that LSTMs can outperform GARCH-type models when trained on 
large datasets, particularly when auxiliary data is included [8]. 

However, the sequential processing nature of RNNs prohibits efficient training on very long 
sequences, a necessity for high-frequency data where a single day may contain tens of 
thousands of ticks. The introduction of the Transformer architecture by Vaswani et al. 
revolutionized sequence modeling by replacing recurrence with self-attention [9]. 

In the financial domain, researchers have begun adapting Transformers for time series 
forecasting. Wu et al. introduced the Adversarial Sparse Transformer for time series, 
highlighting the need to reduce the quadratic complexity of attention for long sequences [10]. 
More recently, researchers have explored hybrid models combining Convolutional Neural 
Networks (CNNs) for feature extraction from the LOB with LSTM or Transformer backends for 
temporal aggregation [11]. Despite these advances, few architectures explicitly model the 
heteroskedastic nature of the data within the attention mechanism itself, a gap this paper 
aims to fill. 

Chapter 3: Methodology 

3.1 Data Preprocessing and Feature Engineering 

The quality of inputs is paramount in microstructure analysis. We utilize Level-2 Limit Order 
Book data, which provides the price and volume for the top 𝑁 levels of the bid and ask sides. 
Raw price levels are non-stationary; therefore, we convert all price series into log-returns. 

For feature engineering, we move beyond price and volume to capture the dynamics of 
liquidity provision. We compute the Order Flow Imbalance (OFI) at level 𝑘 , which 
approximates the net flow of aggressive orders. We also calculate the Depth Balance, which 
measures the ratio of liquidity available on the bid side versus the ask side. These features are 
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critical because volatility is often preceded by a drying up of liquidity on one side of the book 
[12]. 

All input features are normalized. Given the presence of outliers in financial data (flash 
crashes, news shocks), we utilize robust scaling based on the interquartile range rather than 
standard Z-score normalization to prevent extreme values from distorting the gradient 
descent process. 

3.2 The Volatility-Aware Temporal Transformer (VATT) 

The core architecture of VATT consists of an embedding layer, a stack of volatility-aware 
encoder layers, and a temporal pooling decoder. 

3.2.1 Input Embedding and Positional Encoding 

Time series data possesses a strict temporal ordering. Unlike Natural Language Processing 
where relative position matters, in finance, absolute timestamps (time of day) also carry 
signal due to the U-shaped intraday volatility curve (high volatility at open and close). We 
employ a learnable time-of-day embedding added to the standard sinusoidal positional 
encodings. This allows the model to learn that volatility dynamics at 09:30 AM differ from 
those at 12:00 PM. 

3.2.2 Volatility Gating Module (VGM) 

Standard self-attention mechanisms calculate the relevance of time step 𝑗 to time step 𝑖 using 
a dot product of queries and keys. However, in finance, relevance is regime-dependent. During 
low volatility, long-term mean reversion trends might be relevant. During high volatility, only 
the most recent ticks matter. 

We introduce the VGM, a lightweight sub-network that runs in parallel to the main attention 
block. It takes the recent history of squared returns and outputs a scalar gating factor, 
𝛾 ∈ [0,1]. This factor modulates the skip connections within the Transformer block. If the 
detected regime is highly noisy, the gate dampens the contribution of the self-attention 
mechanism, forcing the model to rely more on the immediate previous state (residual path) 
akin to a random walk, thereby preventing overfitting to noise [13]. 

3.2.3 Volatility-Biased Attention Mechanism 

We modify the canonical Scaled Dot-Product Attention. In the standard formulation, attention 
scores are derived purely from content similarity. We introduce a volatility bias matrix that 
penalizes attention to distant time steps when local volatility is high, effectively inducing a 
dynamic look-back window. 

The formula for our modified attention mechanism is presented below. We utilize a learnable 
volatility bias term 𝐵𝑣𝑜𝑙 which is computed via a non-linear projection of the localized 
standard deviation of the input sequence. This bias is added to the scaled dot product before 
the softmax operation, altering the probability distribution of the attention weights. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
+ 𝜆 · 𝐵𝑣𝑜𝑙)𝑉 

Here, 𝑄,𝐾, 𝑉 represent the Query, Key, and Value matrices respectively. 𝑑𝑘 is the dimension of 
the keys. 𝐵𝑣𝑜𝑙 is the volatility-derived bias matrix, and 𝜆 is a learnable scalar parameter that 
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controls the magnitude of the volatility adjustment. This formulation ensures that when 
structural volatility is high, the attention mechanism can be sharply focused or diffused based 
on the learned optimal strategy for that regime. 

3.2.4 Implementation Details 

The model is implemented using PyTorch. The encoder consists of 4 identical layers with 8 
attention heads each. The hidden dimension is set to 128. We utilize the Gaussian Error Linear 
Unit (GELU) activation function rather than ReLU, as GELU's smooth probabilistic nature has 
been shown to improve convergence in Transformer models. Dropout is applied at a rate of 
0.1 to prevent overfitting. 

The loss function employed is not Mean Squared Error (MSE), which assumes Gaussian 
residuals, but rather the Heteroskedastic Loss or Quasi-Likelihood (QLIKE) loss. This loss 
function is more robust to the fat-tailed distribution of squared returns and penalizes under-
prediction of volatility more heavily than over-prediction, aligning with risk management 
priorities where underestimating risk is more costly than overestimating it. 

The following code snippet demonstrates the implementation of the Volatility Gating Module 
within the forward pass of the encoder layer. 

Code Snippet 1: PyTorch implementation of the Volatility Gating Module 

import torch 

import torch.nn as nn 

import math 

class VolatilityGatingModule(nn.Module): 

    def __init__(self, d_model, history_window=20): 

        super(VolatilityGatingModule, self).__init__() 

        self.history_window = history_window 

        # Simple conv layer to extract local volatility features 

        self.vol_extractor = nn.Sequential( 

            nn.Conv1d(in_channels=d_model, out_channels=32, kernel_size=3, 

padding=1), 

            nn.GELU(), 

            nn.Conv1d(in_channels=32, out_channels=1, kernel_size=3, padding=1), 

            nn.Sigmoid() 

        ) 

    def forward(self, x): 

        # x shape: [Batch, Seq_Len, d_model] 

        # Transpose for Conv1d: [Batch, d_model, Seq_Len] 

        x_in = x.transpose(1, 2)       

        # Calculate gating factor gamma based on local features 

        # Returns shape: [Batch, 1, Seq_Len] 

        gamma = self.vol_extractor(x_in)         

        # Transpose back to match input for broadcasting 

        gamma = gamma.transpose(1, 2)         

        return gamma 
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class VolatilityAwareEncoderLayer(nn.Module): 

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1): 

        super(VolatilityAwareEncoderLayer, self).__init__() 

        self.self_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True) 

        self.vgm = VolatilityGatingModule(d_model)        

        # Implementation of Feedforward model 

        self.linear1 = nn.Linear(d_model, dim_feedforward) 

        self.dropout = nn.Dropout(dropout) 

        self.linear2 = nn.Linear(dim_feedforward, d_model) 

        self.norm1 = nn.LayerNorm(d_model) 

        self.norm2 = nn.LayerNorm(d_model) 

        self.dropout1 = nn.Dropout(dropout) 

        self.dropout2 = nn.Dropout(dropout) 

        self.activation = nn.GELU() 

    def forward(self, src): 

        # Calculate Volatility Gate 

        gamma = self.vgm(src)         

        # Self-Attention Block 

        src2 = self.self_attn(src, src, src)[0]        

        # Apply gating: Scale attention output by gamma 

        # If volatility is high/confusing, gamma -> 0, relying on residual 

        src = src + self.dropout1(src2  gamma) 

        src = self.norm1(src)        

        # Feed-forward Block 

        src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) 

        src = src + self.dropout2(src2) 

        src = self.norm2(src) 

        return src 

 
Figure 1: Architectural Schematic of VATT 
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Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

We evaluate the proposed VATT model using the LOBSTER dataset, which provides high-
fidelity limit order book data for NASDAQ-traded stocks. We select five highly liquid tickers 
(AAPL, MSFT, AMZN, GOOGL, INTC) covering the period from January 2022 to December 
2022. This period is chosen specifically because it encompasses various market regimes, 
including the high-volatility drawdown observed in the technology sector during that year. 

The data is sampled at 1-minute intervals. The prediction target is the realized volatility for 
the next 10-minute window, calculated as the sum of squared 10-second returns. The dataset 
is split into training (Jan-Aug), validation (Sep-Oct), and testing (Nov-Dec). 

4.2 Baselines 

To establish the efficacy of VATT, we compare it against a spectrum of models ranging from 
classical econometrics to state-of-the-art deep learning: 

1.  GARCH(1,1): The industry standard for volatility forecasting [14]. 

2.  LSTM: A stacked LSTM network with 2 layers and 128 hidden units, representing 
standard sequential deep learning [15]. 

3.  TCN (Temporal Convolutional Network): A dilated causal convolution network that 
captures long-range dependencies efficiently [16]. 

4.  Transformer (Vanilla): The standard Vaswani architecture without the volatility gating 
mechanism or bias. 

4.3 Results and Discussion 

Table 1 presents the performance comparison across all five stocks. We report the Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), and QLIKE loss. Lower values 
indicate better performance. 

Model MAE (10^{-4}) RMSE (10^{-4}) QLIKE 

GARCH(1,1) 4.12 6.33 2.85 

LSTM 3.56 5.42 2.51 

TCN 3.48 5.28 2.45 

Transformer (Vanilla) 3.45 5.15 2.48 

VATT (Ours) 3.01 4.65 2.12 

The results indicate that VATT outperforms all baselines consistently. While the Vanilla 
Transformer offers a slight improvement over the LSTM and TCN due to its ability to model 
global context, it struggles to outperform them significantly in QLIKE, likely because it treats 
noise and signal similarly. VATT, by virtue of the VGM, achieves a substantial reduction in 
QLIKE. This confirms that the model is particularly effective at accurately scaling the variance 
prediction, avoiding the costly underestimation of risk. 

To further understand the contribution of the Volatility Gating Module, we conducted an 
ablation study. We trained variants of the model: one without the VGM and one without the 
Volatility-Biased Attention (VBA) but with VGM. 
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Configuration AAPL (RMSE) MSFT (RMSE) 

Full VATT 4.65 4.72 

VATT w/o VGM 5.10 5.18 

VATT w/o VBA 4.88 4.95 

Table 2 demonstrates that the removal of the VGM results in a performance degradation back 
to near-Vanilla Transformer levels. This suggests that the gating mechanism is the primary 
driver of the performance gain. The Volatility-Biased Attention contributes a smaller but non-
negligible improvement [17]. 

Finally, we analyzed the computational efficiency of the models. While Transformers are 
generally more computationally intensive than GARCH models, they allow for parallelized 
training unlike LSTMs. 

Model Training Time (hrs) Inference Latency (ms) 

LSTM 12.5 4.2 

Transformer 8.2 3.8 

VATT 9.1 4.1 

Table 3 shows that VATT incurs only a marginal increase in training time and inference 
latency compared to the standard Transformer. The VGM is a lightweight convolutional block 
that adds negligible overhead compared to the heavy matrix multiplications in the attention 
layers. Crucially, the inference latency remains well within the requirements for intraday 
trading systems, typically operating on second or minute-level frequencies [18]. 

The superior performance of VATT can be attributed to its ability to dynamically "switch" 
processing modes. Visualizing the attention weights reveals that during stable periods, the 
attention heads attend broadly to the past 60 minutes of history. However, immediately 
following a volatility spike (e.g., a large order imbalance), the attention weights collapse to the 
most recent 2-3 minutes. This adaptive receptive field mimics the intuition of human traders 
who discard stale information when the market regime shifts abruptly. 

Chapter 5: Conclusion 

This paper presented the Volatility-Aware Temporal Transformer (VATT), a deep learning 
architecture capable of robust intraday risk forecasting using market microstructure signals. 
By integrating a Volatility Gating Module and a volatility-biased attention mechanism, we 
successfully imbued the Transformer architecture with financial inductive biases. Our 
experiments on the LOBSTER dataset demonstrated that VATT significantly reduces 
forecasting error compared to traditional GARCH models and standard deep learning 
baselines. 

The implications of this work are significant for the field of algorithmic trading and automated 
risk management. The ability to accurately forecast realized volatility at intraday horizons 
allows for more efficient execution of large orders, minimizing market impact. Furthermore, 
the success of the VGM suggests that "regime-aware" neural network components are a 
promising direction for financial machine learning, bridging the gap between econometrics 
and black-box deep learning. 

While VATT shows promise, several limitations exist. First, the model relies heavily on the 
quality and granularity of Level-2 LOB data. In markets where such data is expensive or 
unavailable (e.g., fragmented cryptocurrency exchanges or dark pools), the efficacy of the 
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microstructure features may be diminished. Second, while the computational cost is 
acceptable for minute-level trading, it may still be prohibitive for ultra-high-frequency 
(microsecond-level) applications where FPGA-based logic is required. 

Future research will focus on two main avenues. Firstly, we aim to investigate the application 
of VATT to multi-asset volatility forecasting, attempting to capture spillover effects between 
correlated assets using a graph-based extension of the attention mechanism. Secondly, we 
plan to explore the use of Reinforcement Learning (RL) to automatically optimize the 
hyperparameters of the gating mechanism, potentially allowing the model to learn its own 
definition of "volatility regime" without explicit supervision on squared returns. By 
continuing to refine these mechanisms, we move closer to fully autonomous, risk-aware 
financial systems. 
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