
Frontiers in Business and Finance Volume 2 Issue 2, 2025 

ISSN: 3079-9325  

 

379 

Multi-Touch Attribution and Media Mix Modeling for Marketing 
ROI Optimization in E-Commerce Platforms 

Jingyi Liu1*, Ying Wang2, and Han Lin3 

1 Cornell University, United States 

2 Pepperdine University, United States 

3 University of Wisconsin-Madison, United States 

* Corresponding Author: jl3758@cornell.edu 

Abstract 

The exponential growth of digital marketing channels has created unprecedented 
complexity in understanding customer journeys and optimizing marketing investments 
in e-commerce platforms. Multi-touch attribution (MTA) and media mix modeling 
(MMM) have emerged as complementary approaches for measuring marketing 
effectiveness and maximizing return on investment (ROI). This review examines the 
theoretical foundations, methodological developments, and practical applications of 
MTA and MMM in e-commerce contexts from 2019 onwards. Multi-touch attribution 
enables granular tracking of individual customer touchpoints across digital channels, 
while media mix modeling provides aggregate-level insights into marketing 
effectiveness through econometric analysis. Machine learning (ML) and artificial 
intelligence (AI) have revolutionized both approaches, enabling more accurate 
attribution modeling and predictive optimization. Recent advances integrate unified 
measurement frameworks that combine the strengths of MTA and MMM to overcome 
their individual limitations. This paper synthesizes current research on data 
integration challenges, algorithmic innovations, privacy considerations, and 
implementation strategies. The review highlights how modern attribution systems 
leverage deep learning (DL), Bayesian methods, and causal inference techniques to 
navigate the increasingly complex digital marketing ecosystem. Emerging trends 
include privacy-preserving measurement, cross-device attribution, and real-time 
optimization algorithms that adapt to dynamic market conditions. The synthesis 
reveals that successful ROI optimization requires not only sophisticated analytical 
techniques but also organizational alignment, data infrastructure investment, and 
continuous model validation against business outcomes. 
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Introduction 

The contemporary e-commerce landscape presents marketers with an unprecedented array 
of channels through which to reach potential customers, including search engines, social 
media platforms, display advertising networks, email marketing, affiliate partnerships, and 
mobile applications. This proliferation of touchpoints has fundamentally transformed the 
customer journey from a linear path to a complex, non-linear process where consumers 
interact with brands across multiple devices and platforms before making purchase decisions 
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[1]. Understanding the contribution of each marketing touchpoint to final conversions has 
become both critically important and exceptionally challenging for e-commerce businesses 
seeking to optimize their marketing investments. Traditional last-click attribution models, 
which assign full credit to the final interaction before conversion, have proven inadequate for 
capturing the nuanced reality of modern customer journeys where awareness, consideration, 
and decision-making occur across numerous interactions [2]. The inadequacy of simplistic 
attribution approaches has led to systematic misallocation of marketing budgets, with 
channels that drive initial awareness or mid-funnel consideration receiving insufficient 
investment while final-click channels are overvalued despite potentially benefiting from 
earlier touchpoints that initiated customer interest [3]. 

Multi-touch attribution (MTA) emerged as a response to these limitations, offering 
methodologies to distribute conversion credit across all touchpoints in the customer journey 
based on their actual contribution to the final outcome. By tracking individual user 
interactions across channels and applying sophisticated algorithms to determine each 
touchpoint's influence, MTA provides granular insights into channel performance and enables 
more informed budget allocation decisions [4]. The promise of MTA lies in its ability to reveal 
the full complexity of customer journeys, identifying which combinations of touchpoints work 
synergistically to drive conversions and how the sequence and timing of interactions 
influence purchase probability. However, MTA faces significant challenges including data 
fragmentation across platforms where different advertising networks and publishers 
maintain separate tracking systems, cookie deprecation due to privacy regulations that limit 
cross-site tracking capabilities, cross-device tracking limitations that create blind spots when 
customers switch between smartphones and desktop computers, and the inability to measure 
offline or upper-funnel brand-building activities that may not generate immediate trackable 
interactions [5]. These constraints have led researchers and practitioners to revisit media mix 
modeling (MMM), an econometric approach that uses aggregate-level data to quantify the 
relationship between marketing inputs and business outcomes while accounting for external 
factors such as seasonality, pricing, and competitive activities [6]. 

Media mix modeling (MMM) offers complementary advantages to MTA by providing a holistic 
view of marketing effectiveness across all channels, including traditional media that lack 
digital tracking capabilities, and by being inherently privacy-compliant since it operates on 
aggregated rather than individual-level data. The approach has been revitalized by advances 
in machine learning (ML) and artificial intelligence (AI) that enable more sophisticated 
modeling of non-linear relationships, dynamic effects, and interaction patterns between 
different marketing activities [7]. Recent developments have focused on reducing the latency 
of MMM insights through automated data pipelines and real-time model updating, addressing 
a historical criticism that traditional MMM provided insights too slowly for tactical decision-
making [8]. The integration of Bayesian hierarchical modeling has further enhanced MMM by 
enabling more robust uncertainty quantification and the incorporation of prior knowledge 
from past campaigns or similar markets, allowing practitioners to leverage learnings across 
different product categories or geographic regions [9]. 

The convergence of MTA and MMM represents a promising frontier in marketing 
measurement, with researchers developing unified frameworks that leverage the granular 
insights of attribution models alongside the comprehensive perspective of econometric 
analysis. These hybrid approaches aim to overcome the limitations of each method 
individually while providing decision-makers with a more complete understanding of 
marketing effectiveness across both short-term conversion dynamics and long-term brand-
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building impacts [10]. The rise of privacy regulations including the General Data Protection 
Regulation and California Consumer Privacy Act has accelerated interest in measurement 
solutions that balance granular insights with privacy preservation, making the MTA-MMM 
integration particularly timely as marketers seek alternatives to traditional cookie-based 
tracking [11]. E-commerce platforms face unique challenges in implementing these 
methodologies due to their rapid transaction cycles where purchase decisions can occur 
within hours of initial exposure, high customer acquisition costs that demand precise 
measurement to maintain profitability, intense competition that requires continuous 
optimization to maintain market share, and the need for real-time optimization to maintain 
profitability in thin-margin businesses where small improvements in marketing efficiency 
translate directly to bottom-line results [12]. 

This review paper synthesizes recent academic and industry research on MTA and MMM 
applications in e-commerce platforms, examining methodological innovations, 
implementation challenges, and future directions for marketing ROI optimization. The 
analysis encompasses algorithmic developments in attribution modeling including deep 
learning architectures and game-theoretic approaches, advances in econometric techniques 
for mix modeling including Bayesian methods and causal inference frameworks, data 
infrastructure requirements for collecting and integrating multi-source marketing data, 
organizational implementation considerations including change management and stakeholder 
alignment, and emerging trends including privacy-preserving measurement techniques and 
cross-platform attribution strategies. By providing a comprehensive overview of the current 
state of knowledge, this review aims to guide both researchers seeking to advance the field 
through novel methodological contributions and practitioners working to implement effective 
measurement systems in their organizations to drive tangible improvements in marketing 
ROI. The subsequent sections examine the evolution of attribution and modeling approaches 
from rule-based heuristics to sophisticated ML algorithms, explore specific methodological 
frameworks including neural network architectures and Bayesian hierarchical models, 
discuss practical applications and challenges including data quality issues and organizational 
barriers, and conclude with insights into future research directions and implementation 
strategies for maximizing marketing ROI in the dynamic e-commerce environment. 

2. Literature Review 

The evolution of marketing attribution methodologies reflects the increasing complexity of 
customer journeys in digital environments where consumers may interact with dozens of 
touchpoints before completing a purchase. Early research on attribution focused primarily on 
comparing simple rule-based models including first-click attribution that assigns all credit to 
the initial touchpoint, last-click attribution that credits only the final interaction, and linear 
attribution that distributes credit equally across all touchpoints, with scholars noting that 
each approach made different implicit assumptions about customer behavior and touchpoint 
influence [13]. Studies comparing these heuristic models found significant discrepancies in 
channel performance evaluation depending on the attribution rule applied, with search 
advertising appearing highly effective under last-click attribution but receiving less credit 
under first-click models that emphasized awareness channels, highlighting the need for data-
driven approaches that could empirically determine touchpoint contributions rather than 
relying on predetermined rules [14]. The recognition that customer journeys vary 
substantially across industries where business-to-business purchases involve extended 
evaluation periods while impulse purchases complete quickly, across products where high-
consideration items generate more pre-purchase research than routine consumables, and 
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across customer segments where new customers conduct more extensive research than 
repeat purchasers, led researchers to explore algorithmic attribution methods capable of 
learning optimal credit distribution from historical conversion data specific to each business 
context [15]. 

Shapley value-based attribution emerged as a game-theoretic approach to fairly distribute 
conversion credit among touchpoints by considering all possible orderings of customer 
interactions and calculating each touchpoint's marginal contribution across these 
permutations, ensuring that credit allocation satisfies desirable properties including 
symmetry where identical touchpoints receive equal credit and additivity where total credit 
sums to the conversion value [16]. This method provides a mathematically principled solution 
to the attribution problem and has been shown to produce more stable and interpretable 
results compared to arbitrary rule-based approaches, particularly in scenarios where 
touchpoint interactions exhibit strong synergistic effects such as when display advertising 
generates awareness that makes subsequent search advertisements more effective [17]. 
However, the computational complexity of Shapley value calculations grows exponentially 
with the number of touchpoints, creating scalability challenges for e-commerce platforms 
with extensive customer journeys that may involve twenty or more interactions across 
multiple weeks, leading researchers to develop approximation algorithms using Monte Carlo 
sampling and other techniques to make the approach tractable for real-world applications 
with millions of customer journeys [18]. Markov chain models represent another probabilistic 
approach to attribution that models customer journeys as sequences of state transitions 
between touchpoints, with conversion credit allocated based on the removal effect where 
each touchpoint's contribution is measured by how much conversion probability decreases 
when that touchpoint is removed from possible journey paths [19]. 

The application of survival analysis techniques to attribution modeling has provided insights 
into how different touchpoints affect both the timing and likelihood of conversions 
throughout the customer journey, recognizing that marketing effectiveness has temporal 
dimensions beyond simple conversion probability. Researchers have developed hazard 
models that account for the dynamic nature of conversion probabilities as customers progress 
through various stages of the purchase funnel, revealing that certain touchpoints such as 
retargeting advertisements primarily accelerate conversions by reducing time-to-purchase 
while others such as content marketing increase overall conversion likelihood by building 
product knowledge and trust [20]. Machine learning approaches have revolutionized 
attribution modeling by enabling the discovery of complex, non-linear relationships between 
touchpoint exposures and conversion outcomes that traditional statistical models fail to 
capture. Gradient boosting machines and random forests have been successfully applied to 
predict conversion probabilities based on touchpoint sequences, with feature importance 
metrics derived from these models used to assign attribution weights that reflect each 
channel's predictive contribution to conversion outcomes [21]. Deep learning (DL) models, 
particularly recurrent neural networks and long short-term memory networks, have 
demonstrated superior performance in capturing sequential dependencies in customer 
journeys and predicting conversion likelihood based on historical interaction patterns, with 
the ability to learn that certain touchpoint sequences are particularly effective while others 
signal low purchase intent [22]. 

Attention mechanisms adapted from natural language processing have been incorporated into 
attribution models to automatically learn which touchpoints deserve more credit based on 
their contextual relevance within specific journey sequences, allowing the model to discover 
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that the same touchpoint may be highly influential in certain journey contexts but less 
important in others [23]. The interpretability challenges associated with complex ML models, 
particularly the black-box nature of DL architectures that make it difficult for marketers to 
understand why specific attribution weights were assigned, have spurred research into 
explainable AI techniques including SHAP values and attention visualization that can provide 
transparent insights into attribution decisions while maintaining the predictive accuracy 
advantages of sophisticated models [24]. Media mix modeling has undergone significant 
methodological evolution since its origins in econometric analysis of advertising effectiveness 
conducted by consumer goods companies seeking to quantify television and print advertising 
impacts on sales. Traditional MMM relied heavily on linear regression with lagged variables to 
account for delayed effects where advertising exposure in one period influences sales in 
future periods, and adstocked transformations to capture advertising carry-over effects 
where exposure builds up over time and gradually decays rather than having purely 
instantaneous impact [25]. 

The adstock transformation, which models how advertising exposure accumulates in 
consumer memory and decays at a rate determined by creative quality and media 
characteristics, has been refined through research on optimal decay rate estimation using 
methods including grid search over candidate parameters and maximum likelihood 
estimation, along with the incorporation of saturation effects that reflect diminishing 
marginal returns where the tenth advertising impression generates less incremental impact 
than the first [26]. Researchers have developed sophisticated functional forms including S-
curves that capture threshold effects where minimal advertising generates little response 
until reaching awareness thresholds and Hill functions commonly used in pharmacology that 
flexibly model both threshold and saturation phenomena through shape and scale parameters 
[27]. Bayesian approaches to MMM have gained prominence due to their ability to incorporate 
prior knowledge from previous analyses or expert judgment about reasonable effect sizes, 
provide probabilistic forecasts with explicit uncertainty estimates rather than point 
predictions, and naturally handle hierarchical data structures common in multi-market 
analyses where some parameters are shared across markets while others vary to reflect local 
conditions [28]. 

The development of probabilistic programming frameworks including Stan and PyMC has 
made Bayesian MMM more accessible to practitioners by simplifying model specification 
through high-level syntax and automating inference through efficient sampling algorithms 
including Hamiltonian Monte Carlo that explore posterior distributions more effectively than 
traditional Metropolis-Hastings approaches [29]. Research on MMM has increasingly focused 
on reducing model latency by moving from quarterly or annual modeling cycles that provided 
strategic insights but limited tactical utility, to weekly or even daily model updates enabled by 
automated data pipelines that continuously ingest marketing spending and outcome data 
along with efficient estimation algorithms based on variational inference that approximate 
posterior distributions orders of magnitude faster than full Markov chain Monte Carlo 
sampling [30]. The integration of external data sources including weather patterns that affect 
consumer behavior for certain product categories, economic indicators such as 
unemployment rates and consumer confidence that influence discretionary spending, and 
competitive activity including competitor pricing and promotional intensity, has enhanced 
MMM by better isolating the true causal impact of a company's own marketing activities from 
confounding factors that might otherwise bias effect estimates. 
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Causal inference techniques have been incorporated into both attribution and media mix 
modeling to strengthen the credibility of derived insights and support counterfactual 
reasoning about what outcomes would have occurred under alternative marketing strategies, 
moving beyond correlational analysis to establish more defensible causal claims. Recent 
symmetry-aware causal-inference frameworks for web performance modeling further 
illustrate how incorporating structural knowledge and invariant dependency patterns can 
improve causal identifiability and intervention effectiveness, offering valuable methodological 
guidance for causal marketing attribution and ROI optimization in complex digital ecosystems 
[31]. Researchers have applied difference-in-differences designs to estimate incremental lift 
from marketing campaigns by comparing outcomes in treated groups exposed to marketing 
activities versus control groups that were not exposed, while accounting for pre-existing 
trends that might otherwise be mistaken for marketing effects [32]. Synthetic control 
methods originally developed for policy evaluation have been adapted to marketing contexts 
to construct appropriate counterfactuals for treated units by creating weighted combinations 
of control units that closely match pre-intervention characteristics, enabling causal inference 
in settings where traditional randomized experiments are infeasible due to business 
constraints [33]. Instrumental variable approaches have been used to address endogeneity 
concerns in MMM where marketing spending decisions may be correlated with unobserved 
factors affecting sales, such as anticipated demand shocks based on proprietary market 
intelligence that prompt managers to increase advertising investment in specific periods, 
creating spurious correlation between spending and outcomes [34]. 

The integration of MTA and MMM has emerged as a critical research direction aimed at 
overcoming the complementary limitations of each approach and providing marketers with a 
more complete picture of marketing effectiveness. While MTA provides granular user-level 
insights into the digital customer journey but struggles with view-through attribution where 
display advertisement exposures may influence consumers who do not immediately click, and 
cannot measure offline channels including television and outdoor advertising, MMM offers 
comprehensive channel coverage including traditional media but lacks the individual journey 
details needed to understand conversion path dynamics and optimize real-time bidding 
strategies [35]. Unified measurement frameworks attempt to combine these strengths by 
using MTA insights to inform MMM prior distributions on digital channel effectiveness, 
incorporating MMM-derived estimates of offline channel impact as additional features in 
attribution models to account for unmeasured touchpoints, or jointly estimating both models 
within a hierarchical Bayesian framework that enforces consistency between the granular and 
aggregate perspectives [36]. 

Research has explored how bottom-up MTA data aggregated to weekly or daily levels can be 
used to validate and calibrate top-down MMM estimates, creating a consistency check where 
substantial divergence between the two approaches signals potential issues such as tracking 
gaps in the attribution data or misspecified functional forms in the mix model that warrant 
further investigation [37]. The complementary time horizons of MTA which excels at 
explaining short-term conversion dynamics that occur within days or weeks of touchpoint 
exposure, and MMM which better captures long-term brand-building effects that may take 
months to fully manifest in sales outcomes, have motivated researchers to develop 
frameworks that explicitly model different temporal scales of marketing impact through 
multi-level models with separate parameters for immediate response and long-term brand 
equity contributions [38]. Privacy considerations have become increasingly central to 
attribution and modeling research as regulatory changes including the European Union's 
General Data Protection Regulation that requires explicit user consent for tracking and 
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platform policy changes including Apple's App Tracking Transparency framework and 
Google's planned deprecation of third-party cookies limit access to individual-level tracking 
data that has historically powered attribution systems [39]. 

Differential privacy techniques that add calibrated noise to attribution results have been 
proposed to enable MTA while providing mathematical guarantees that individual user data 
cannot be reconstructed from published attribution results, balancing the utility of attribution 
insights with privacy protection through tunable privacy budgets [40]. Federated learning 
approaches allow attribution models to be trained on decentralized data across multiple 
parties including advertisers, publishers, and measurement providers without sharing raw 
user-level data, instead exchanging only model parameters or gradients that aggregate 
information from many users, addressing both privacy concerns and the data fragmentation 
challenges inherent in cross-platform attribution [41]. Researchers have investigated how 
MMM can serve as a privacy-friendly alternative or complement to MTA in the post-cookie era, 
with empirical studies showing that aggregate-level modeling can still provide actionable 
insights for strategic budget allocation decisions even when the granular user-level data 
required for tactical optimization is unavailable due to privacy constraints [42]. Cross-device 
attribution has emerged as a critical challenge given that modern consumers frequently 
switch between smartphones used for mobile browsing during commutes, tablets used for 
relaxed evening research, and desktop computers used for final purchase transactions, 
creating fragmented journey views when tracking systems cannot link these devices to the 
same individual [43]. Deterministic cross-device matching based on user logins to proprietary 
accounts provides accurate device linking when available, but requires users to authenticate 
across all touchpoints which occurs inconsistently in practice as consumers may browse 
anonymously before logging in to complete purchases [44]. 

3. Methodological Frameworks and Algorithmic Innovations 

Contemporary MTA frameworks increasingly leverage advanced ML algorithms to model the 
complex relationships between customer touchpoints and conversion outcomes, moving 
beyond simple rule-based credit allocation to sophisticated predictive models that learn 
attribution patterns from data. Deep neural network architectures have been specifically 
designed to process sequential customer journey data, with researchers developing models 
that incorporate attention mechanisms adapted from natural language processing to 
automatically identify which interactions are most influential for particular types of 
conversions, allowing the same touchpoint to receive different credit depending on its context 
within the broader journey [45]. These DL approaches treat customer journeys as sequences 
analogous to sentences in text analysis, applying recurrent layers including long short-term 
memory units that maintain memory of earlier touchpoints while processing later 
interactions to capture temporal dependencies, and using embedding layers to represent 
different channel types as continuous vectors that encode behavioral similarities discovered 
from data rather than relying on manually specified channel taxonomies [46]. 
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Figure 1: Neural network architecture for multi-touch attribution showing the input layer, 
embedding layers, recurrent LSTM layers, attention mechanism, and conversion probability 
output. 

Figure 1 illustrates the neural network architecture commonly employed for deep learning-
based multi-touch attribution. The input layer receives touchpoint sequences where each 
interaction is represented as a combination of channel type, timestamp, and engagement 
features such as click depth and time-on-site. Embedding layers transform categorical channel 
identifiers into dense vector representations that capture behavioral similarities between 
channels learned from data. The recurrent LSTM layers process sequential journey data while 
maintaining memory of previous interactions, enabling the model to learn that certain 
touchpoint sequences are particularly effective predictors of conversion. The attention 
mechanism computes importance weights for each touchpoint based on contextual relevance, 
allowing the same channel to receive different attribution credit depending on its position and 
surrounding interactions within the journey. The output layer produces conversion 
probability predictions that, when compared across journeys with and without specific 
touchpoints, yield attribution weights reflecting each channel's incremental contribution. 

The ability of these models to automatically learn hierarchical representations from raw 
clickstream data eliminates the need for extensive manual feature engineering that 
characterized earlier attribution systems, making them particularly valuable in e-commerce 
environments where customer behavior patterns evolve rapidly due to changing consumer 
preferences, emerging technologies, and competitive dynamics [47]. Transformer-based 
architectures originally developed for machine translation have been adapted to attribution 
tasks, with self-attention mechanisms enabling the model to weigh the relevance of each 
touchpoint relative to all other touchpoints in the journey simultaneously rather than 
processing them sequentially from first to last, overcoming limitations of recurrent models 
that may struggle to maintain memory across very long journey sequences [48]. This parallel 
processing capability not only improves computational efficiency for long customer journeys 
involving dozens of interactions but also allows the model to discover long-range 
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dependencies such as how an initial display advertisement exposure weeks before purchase 
interacts with a final retargeting advertisement to drive conversion. 

Graph neural networks (GNN) represent another innovative approach to attribution modeling 
that explicitly represents customer journeys as directed graphs where nodes correspond to 
touchpoints and edges represent transitions between them, with edge weights potentially 
encoding the time interval between touchpoints or the strength of engagement. Related 
graph-based learning advances in other transactional domains, such as multi-distance spatial-
temporal GNNs for anomaly detection in blockchain transactions, demonstrate how jointly 
modeling structural dependencies and temporal dynamics can significantly enhance detection 
accuracy—insights that are directly transferable to identifying anomalous or high-impact 
touchpoint patterns in complex customer journey graphs [49]. By applying message-passing 
algorithms on these journey graphs where information about conversion outcomes 
propagates backward through the network from the final conversion node to earlier 
touchpoints, GNN models can determine how much credit each touchpoint deserves based on 
its structural position and connectivity patterns within the overall journey topology [50]. This 
graph-based perspective naturally handles the varied structures of different customer 
journeys without requiring all journeys to have the same length or follow the same sequence 
of channel types, eliminating the need for padding short journeys or truncating long ones that 
would be necessary for fixed-length input representations. Research has shown that GNN 
attribution models excel at capturing synergistic effects between channels where the 
contribution of one touchpoint depends on which other touchpoints preceded or followed it 
[51]. 

 

Table 1: A comprehensive comparison table of attribution modeling approaches across 
computational complexity, data requirements, interpretability, modeling capabilities, and 
scalability. 

Table 1 presents a systematic comparison of nine attribution modeling approaches across 
seven evaluation dimensions. Rule-based methods exhibit a clear trade-off pattern: Last-Click 
and First-Click offer O(1) complexity with minimal data requirements and very high 
interpretability but cannot capture non-linear effects or sequential dependencies, making 
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them suitable only for simple tracking and awareness analysis respectively. Linear and Time-
Decay methods require O(n) complexity and moderate data while maintaining high 
interpretability, with Time-Decay offering limited sequential dependency modeling for 
recency-focused optimization. Shapley Value provides fair credit allocation with sequential 
dependency capture but suffers from O(2^n) complexity and poor scalability beyond 15 
touchpoints. Markov Chain models balance O(n^2) complexity with good scalability while 
capturing both non-linear effects and sequential dependencies, suited for path analysis. 
Machine Learning methods achieve O(n·m·log m) complexity with strong modeling 
capabilities but require over 100,000 journeys and sacrifice some interpretability. Deep 
Learning demands the highest data requirements (>1M journeys) with O(n·m·d) complexity 
and low interpretability but provides strong sequential dependency modeling for complex 
patterns. Graph Neural Networks uniquely combine excellent scalability to long journeys with 
strong sequential modeling and non-linear effects capture, making them optimal for journey 
topology and synergy effect analysis despite very high data requirements (>500k journeys). 

Reinforcement learning (RL) has been applied to attribution problems by framing the 
marketing optimization task as a sequential decision process where an agent learns to 
allocate budget across channels to maximize cumulative conversions over time. This 
framework integrates attribution measurement directly with optimization, learning both 
which touchpoints are effective (the attribution question) and how to optimally sequence 
marketing exposures (the optimization question) within a unified model [52]. Actor-critic 
algorithms maintain separate policy networks that decide which marketing actions to take 
and value networks that estimate expected future conversions, learning attribution weights 
implicitly through the value function that reflects each touchpoint's contribution to long-term 
outcomes rather than immediate conversions [53]. The exploration-exploitation tradeoff 
inherent in RL naturally addresses the cold-start problem for new marketing channels or 
creative variants by balancing the desire to exploit known effective strategies with the need to 
gather information about potentially superior alternatives, ensuring that attribution models 
remain adaptive rather than becoming locked into suboptimal strategies based on historical 
data [54]. 

Bayesian neural networks combine the representational flexibility of DL with probabilistic 
reasoning, producing attribution estimates accompanied by uncertainty quantification that 
explicitly represents both epistemic uncertainty about the true model structure and aleatoric 
uncertainty arising from inherent randomness in customer behavior [55]. These models 
output full probability distributions over attribution weights rather than point estimates, 
enabling risk-aware decision making where marketers can evaluate not just expected channel 
performance but also the reliability of those expectations when allocating budgets. For 
channels or customer journey patterns with sparse data, the model appropriately expresses 
high uncertainty, while frequently observed patterns receive confident predictions, providing 
transparency about where measurement insights are most and least reliable [56]. Variational 
inference techniques enable scalable training of Bayesian neural networks on large-scale 
clickstream datasets by approximating intractable posterior distributions over network 
weights with simpler parametric distributions optimized through gradient-based methods, 
making probabilistic DL computationally feasible for enterprise attribution applications 
processing millions of customer journeys [57]. 

Media mix modeling has similarly benefited from algorithmic innovations that enhance its 
ability to capture complex, dynamic marketing response patterns. Regularized regression 
techniques including ridge regression that shrinks coefficients toward zero proportionally, 
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lasso regression that drives some coefficients exactly to zero for automatic variable selection, 
and elastic net that combines both penalties have been widely adopted to address 
multicollinearity issues that arise when multiple marketing channels are correlated in their 
spending patterns across time periods [58]. Multicollinearity inflates coefficient standard 
errors and produces unstable estimates where small changes in data lead to large changes in 
fitted parameters, making it difficult to reliably assess individual channel contributions. 
Regularization methods improve estimate stability by constraining coefficient magnitudes, 
with cross-validation across time periods used to select optimal regularization strength that 
balances model fit on training data with generalization to held-out test periods [59]. 

Bayesian structural time series models provide a flexible framework for MMM that 
decomposes sales outcomes into multiple additive components including a trend component 
capturing long-term growth or decline, seasonal components at multiple time scales including 
day-of-week and month-of-year effects, holiday effects for major shopping events including 
Black Friday and Cyber Monday, and marketing-driven components representing the causal 
impact of advertising spending [60]. This decomposition enables practitioners to isolate 
marketing effects from organic baseline sales and environmental factors, providing clearer 
attribution of outcomes to marketing activities versus external drivers. The Bayesian 
approach facilitates incorporation of prior knowledge about reasonable parameter values 
based on previous analyses or industry benchmarks, regularizing estimates toward sensible 
ranges while allowing data to override priors when evidence is sufficiently strong [61]. State-
space representations enable efficient recursive estimation algorithms that update model fits 
incrementally as new data arrives rather than refitting from scratch, supporting the move 
toward real-time MMM that provides continuously updated insights rather than quarterly 
retrospective analyses [62]. 
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Figure 2: A decomposition plot showing the Bayesian structural time series model components 
for a representative e-commerce company over a one-year period.  

Figure 2 demonstrates Bayesian structural time series decomposition applied to e-commerce 
revenue data over a one-year period. The top panel displays observed weekly revenue 
alongside the model fit, with shaded regions indicating 90% credible intervals that quantify 
estimation uncertainty. The trend component in the second panel reveals gradual growth 
trajectory after controlling for seasonal and marketing effects, providing insight into 
underlying business momentum. The seasonal panel captures recurring patterns including 
elevated weekend activity and month-end spikes associated with payroll cycles, which must 
be isolated to accurately attribute remaining variation to marketing activities. The bottom 
panel decomposes marketing contributions by channel, showing paid search as the largest 
contributor, display advertising providing moderate incremental revenue, social media 
advertising with growing contribution over time suggesting increasing effectiveness or 
investment, and email marketing delivering consistent baseline returns. The credible intervals 
widen for channels with smaller contributions, appropriately reflecting greater uncertainty 
when signal-to-noise ratios are lower, enabling marketers to distinguish reliably measured 
effects from estimates requiring additional data or validation. 

Hierarchical Bayesian modeling extends MMM to scenarios involving multiple products, 
geographic markets, or customer segments by allowing marketing response parameters to 
vary across groups while sharing information through hierarchical priors that encode the 
assumption that different groups have related but not identical response patterns [63]. This 
partial pooling approach produces more stable estimates for groups with limited data by 
borrowing strength from other similar groups, while still allowing for group-specific effects 
when data support divergence from the overall pattern. For example, a national retailer 
operating in dozens of markets might find that some markets exhibit stronger price sensitivity 
while others respond more to advertising, with hierarchical modeling enabling reliable 
market-specific parameter estimates even when individual market samples are modest by 
leveraging cross-market patterns [64]. Hierarchical structures also naturally represent 
organizational realities where marketing effectiveness often exhibits both systematic 
differences across business units and common patterns that apply broadly, aligning model 
structure with business structure to produce actionable insights at multiple organizational 
levels [65]. 

4. Implementation Strategies and Practical Challenges 

The practical implementation of MTA and MMM systems in e-commerce platforms extends far 
beyond selecting appropriate algorithms, encompassing data infrastructure development, 
organizational change management, continuous validation processes, and strategic alignment 
of measurement frameworks with business objectives. Data integration represents a 
fundamental challenge as customer journey information typically resides in fragmented 
systems across advertising platforms that log impression and click data, web analytics tools 
that capture on-site behavior, customer relationship management systems that maintain 
purchase history and customer attributes, email service providers that track message delivery 
and engagement, and mobile app analytics that record in-app interactions. Establishing robust 
data pipelines that can reliably collect, normalize, transform, and integrate these disparate 
data sources requires significant engineering investment in both initial development and 
ongoing maintenance to accommodate frequent platform API changes, evolving data schemas, 
and scaling challenges as transaction volumes grow. Related advances in adaptive 



Frontiers in Business and Finance Volume 2 Issue 2, 2025 

ISSN: 3079-9325  

 

391 

reinforcement learning for automated cybersecurity incident response illustrate how policy-
learning agents can optimize sequential decision-making under uncertainty and dynamic 
operational conditions, offering transferable insights for implementing robust, real-time 
optimization strategies in large-scale marketing attribution and budget allocation systems 
[66]. 

The challenge is compounded by pervasive data quality issues including missing touchpoints 
due to tracking implementation errors or ad blocker usage that prevents pixel fires, duplicate 
events generated by instrumentation bugs that fire the same tracking code multiple times, bot 
traffic from scrapers and fraudulent click generators that must be filtered to avoid distorting 
attribution models with non-human interactions, and identifier fragmentation where the 
same customer appears as multiple distinct users due to cookie deletion or switching between 
authenticated and anonymous browsing [67]. Implementing comprehensive data quality 
monitoring with automated alerts for anomalies such as sudden drops in tracking coverage or 
unusual spikes in certain event types, along with regular audits comparing different data 
sources to identify discrepancies, becomes essential for maintaining attribution system 
accuracy [68]. Privacy regulations including consent requirements under the General Data 
Protection Regulation and California Consumer Privacy Act impose additional constraints on 
data collection practices, necessitating consent management systems that track user 
preferences and ensure data pipelines respect opt-out choices, while data retention policies 
require automated deletion of historical journey data after specified periods [69]. 

Organizational resistance to new attribution methodologies frequently emerges when 
sophisticated data-driven models produce results that differ substantially from familiar last-
click attribution, particularly when channels that previously appeared highly effective receive 
reduced credit under more nuanced approaches that account for upper-funnel contribution. 
Marketing managers whose performance is evaluated based on channel-specific metrics may 
perceive attribution changes as threatening to their team's resources or reputation, creating 
political dynamics that impede adoption regardless of analytical merit [70]. Effective change 
management strategies must address these concerns through transparent communication 
about model logic using concrete journey examples that illustrate how credit allocation works, 
rigorous validation of results against experimental ground truth from randomized holdout 
tests or geo-experiments that provide unbiased lift estimates, phased rollouts that begin with 
pilot channels or business units to build confidence before enterprise-wide deployment, and 
stakeholder involvement in model development to create buy-in and ensure the final system 
addresses real business questions rather than being technically sophisticated but practically 
irrelevant [71]. 

The technical skills required to develop, deploy, and maintain advanced attribution and 
modeling systems create talent acquisition and retention challenges, as data scientists 
possessing both deep technical expertise in ML and domain knowledge of marketing 
dynamics remain scarce relative to demand across industries. Organizations must decide 
whether to build internal capabilities through hiring and training, partner with specialized 
analytics vendors who provide measurement platforms and managed services, or adopt 
hybrid approaches that combine internal strategic oversight with external technical execution 
[72]. Each approach involves tradeoffs between control and flexibility favoring in-house 
development, speed to deployment and access to best practices favoring vendor solutions, 
and cost considerations that vary depending on organizational scale and analytical maturity. 
Building effective analytics teams requires not only individual technical skills but also cross-
functional collaboration capabilities as attribution systems succeed only when data scientists 
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work closely with marketing practitioners who provide domain expertise and business 
context [73]. 

Real-time optimization based on attribution insights requires low-latency data processing and 
model inference capabilities that can update marketing tactics within operational timeframes 
measured in hours rather than days or weeks, often necessitating investment in streaming 
data infrastructure using technologies including Apache Kafka for message queuing and 
Apache Flink for real-time computation, along with model serving platforms that expose 
trained attribution models through low-latency APIs [74]. The engineering complexity of 
production ML systems extends beyond model training to encompass feature engineering 
pipelines that compute derived attributes from raw clickstream data, model monitoring 
systems that detect performance degradation through metrics including prediction accuracy 
and feature distribution shifts, and automated retraining workflows that periodically update 
models as customer behavior evolves, requiring ML operations capabilities that many 
marketing organizations initially lack [75]. 

Model interpretability demands from business stakeholders who must trust and act on model 
outputs have driven adoption of explainable AI techniques that articulate why specific 
attribution weights emerged from complex algorithms even when underlying models involve 
non-linear transformations difficult to intuit directly. Techniques including SHAP values 
derived from game theory provide locally faithful explanations showing how each feature 
contributed to individual journey predictions, attention weight visualization reveals which 
touchpoints the model focused on when making attribution decisions, and counterfactual 
explanations demonstrate how attribution would change if certain touchpoints were removed 
[76]. Providing these interpretability tools alongside attribution estimates helps build 
stakeholder confidence and enables productive conversations about model behavior, 
facilitating identification of potential issues where models may have learned spurious 
correlations from biased training data or where business logic suggests model outputs require 
adjustment [77]. 

Validation and performance monitoring of attribution models presents unique challenges 
because true attribution weights are fundamentally unobservable, unlike supervised learning 
tasks where ground truth labels enable straightforward accuracy measurement. Practitioners 
must rely on indirect validation approaches including internal consistency checks where 
different attribution methodologies are compared and substantial divergence investigated, 
experimental validation where randomized holdout tests or geo-experiments provide 
unbiased estimates of channel lift that serve as benchmarks for model calibration, and out-of-
sample prediction accuracy where models are evaluated on their ability to forecast future 
conversions based on journey prefixes [78]. Establishing rigorous validation frameworks 
requires investment in experimentation infrastructure including the ability to randomly 
assign users or geographic markets to treatment and control conditions, along with statistical 
methods for analyzing experiment results accounting for factors including spillover effects 
where marketing in treatment markets affects control markets, and interference where 
treating some users within a market affects untreated users through word-of-mouth or 
marketplace dynamics [79]. 

The cost-benefit analysis of implementing sophisticated measurement systems must carefully 
weigh development and maintenance costs against incremental value from improved 
marketing decisions, recognizing that smaller e-commerce operations with limited marketing 
budgets may find that simpler heuristic models provide sufficient guidance relative to their 
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decision complexity, while larger enterprises spending millions annually on customer 
acquisition can justify substantial investment in advanced analytics infrastructure that 
produces even modest percentage improvements in efficiency [80]. Beyond direct system 
costs, organizations must consider opportunity costs of data science resources devoted to 
attribution versus alternative applications including demand forecasting, personalization, or 
inventory optimization, ensuring measurement investments align with strategic priorities and 
capability gaps [81]. Demonstrating attribution system value requires establishing clear links 
between measurement insights and business actions taken in response, along with 
quantification of outcome improvements attributable to those actions, creating accountability 
for analytics investments and building institutional support for continued development [82]. 

The dynamic nature of digital marketing ecosystems means that attribution models inevitably 
deteriorate over time as customer behavior shifts in response to technological change 
including mobile adoption and voice search, as new marketing channels emerge including 
connected television and streaming audio that create novel touchpoint types, and as 
competitive dynamics evolve with entry of new rivals or shifts in incumbent strategies. 
Continuous model monitoring tracks leading indicators of degradation including declining 
prediction accuracy on recent data compared to historical performance, increasing frequency 
of rare journey patterns not well represented in training data, and divergence between 
model-based attribution and experimental lift measurements [83]. Automated retraining 
pipelines that periodically update models on rolling windows of recent data help maintain 
accuracy, though practitioners must balance model freshness against stability concerns where 
overly frequent updates create volatility in attribution weights that complicates longitudinal 
analysis and performance evaluation [84]. 

5. Conclusion 

The landscape of marketing measurement in e-commerce platforms has undergone 
remarkable transformation through the maturation of multi-touch attribution and media mix 
modeling methodologies enhanced by advances in ML and AI technologies. The 
complementary nature of MTA, which provides granular customer journey insights, and MMM, 
which offers comprehensive cross-channel perspective including unmeasurable touchpoints, 
creates opportunities for integrated measurement frameworks that deliver more complete 
understanding of marketing effectiveness than either approach alone. As customer journeys 
grow increasingly complex with proliferating touchpoints across expanding device 
ecosystems and channel options, sophisticated analytical approaches become essential for 
navigating this complexity and extracting actionable insights that drive marketing ROI 
optimization. 

The algorithmic innovations spanning DL architectures that process sequential journey data 
through attention mechanisms and recurrent networks, graph neural networks that explicitly 
model journey topology and touchpoint relationships, RL frameworks that integrate 
measurement and optimization, Bayesian hierarchical models that enable information sharing 
across markets while accounting for local variation, and causal inference techniques that 
strengthen credibility of derived insights represent substantial progress in technical 
capabilities available to marketing analysts. However, successful implementation requires 
addressing numerous practical challenges including data integration across fragmented 
systems, organizational change management to build stakeholder buy-in for sophisticated 
approaches, continuous validation against experimental benchmarks, and significant 
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investment in both technical infrastructure and human capabilities spanning data engineering, 
ML operations, and cross-functional collaboration. 

Privacy considerations have emerged as defining constraints shaping the evolution of 
attribution practices as third-party cookie deprecation and tightening regulatory 
requirements limit granular user tracking. MMM gains renewed relevance as a privacy-
compliant approach operating on aggregate data, while emerging techniques including 
differential privacy and federated learning offer paths toward preserving measurement 
capabilities with reduced privacy risk. The ability to validate models through rigorous 
experimentation and maintain multiple complementary measurement perspectives becomes 
increasingly critical as marketers navigate tradeoffs between comprehensive tracking and 
privacy respect. Organizations must develop flexible measurement strategies that can adapt 
to evolving privacy landscape while maintaining sufficient insight for effective decision 
making. 

Looking forward, several critical challenges demand continued research and innovation. 
Cross-device attribution remains imperfectly solved absent deterministic identifiers, 
requiring advances in probabilistic identity resolution. Integration of offline touchpoints 
including store visits and traditional media exposures into unified journey views necessitates 
new measurement technologies and methodologies. Real-time optimization capabilities must 
continue evolving to reduce latency between execution and feedback. The field will benefit 
from ongoing collaboration between academic researchers developing novel methods and 
industry practitioners testing approaches in operational environments, creating virtuous 
cycles where practical challenges motivate theoretical advances that subsequently transform 
practice. As e-commerce continues capturing increasing share of retail activity and marketing 
budgets expand to address intensifying competition, accurate measurement and optimization 
capabilities will become even more critical competitive differentiators rewarding 
organizations that successfully navigate the complex landscape of modern marketing 
analytics. 
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