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Abstract

This paper develops a simple hybrid model that combines Graph Neural Networks (GNN)
with Light Gradient Boosting Machine (LightGBM) to improve stock market volatility
prediction by using links between industries. The model builds an industry correlation
graph to extract relationship features through GNN, and these features are then used by
LightGBM for volatility forecasting. Based on data from major U.S. market sectors, the
proposed model increases R2ZR*2R2 by 6.5% compared with the baseline LightGBM
model and shows lower prediction error during highly volatile periods. The findings
show that using industry connections helps capture cross-sector risk transmission and
improves both accuracy and stability. This approach can be applied to market
monitoring and investment risk control. However, the current version uses a fixed
correlation graph and daily data, which limits its ability to adapt to fast market changes.
Future studies should focus on building adaptive graphs and combining real-time data
sources for better short-term prediction.
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Introduction

Volatility in financial markets is driven not only by firm-specific news or macroeconomic policy
but also by the interconnected structure across industries [1]. Empirical studies show that price
disturbances in one sector may propagate to others through supply-chain linkages, financial
exposures, or synchronized investor behavior [2]. Traditional models such as GARCH or factor-
based frameworks often assume cross-industry independence once common factors are
removed, making them insufficient to capture real spillover effects [3]. With increasing
integration in technology, renewable energy, and financial services, ignoring inter-sector
linkages can lead to systematic underestimation of risk, particularly during market turmoil [4].
Recent works have used network structures to model relationships among sectors. Correlation-
or partial-correlation-based networks have been used to identify central or influential sectors
[5], whereas Granger-causality and volatility-spillover structures help characterize how shocks
diffuse across industries over time [6]. These studies indicate that critical sectors such as
finance and energy often serve as hubs in transmitting volatility. Despite these advances, most
existing network models are static, often estimated within fixed rolling windows, and therefore
unable to reflect evolving relationships under different market regimes. Moreover, many
network representations rely on manually specified structures rather than data-driven
learning, limiting their integration with predictive models. Graph neural networks (GNNs)
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provide a promising direction for learning dynamic network information. By processing node-
level inputs such as sector volatility alongside an adjacency matrix that encodes sector
relationships, GNNs can uncover both local and global dependencies through message-passing
operations [7]. Applications in finance include stock movement prediction, systemic risk
evaluation, and contagion modeling [8]. However, many of these works generate either
classification outputs or embeddings without translating such representations into more
accurate volatility forecasts. Furthermore, most studies assume relatively stable graphs, while
real-world market relationships shift with macroeconomic cycles, policy shocks, and structural
change. Thus, there is still a need for a predictive framework that simultaneously accounts for
dynamic network connectivity and nonlinear mapping to volatility outcomes.

LightGBM offers an efficient complement to GNNs. It can accommodate heterogeneous feature
scales, nonlinear interactions, and moderate sample sizes without extensive hyperparameter
tuning [9]. Prior work has demonstrated that boosting-based volatility models achieve notable
gains over statistical baselines when informative features are available [10]. In particular,
recent research has shown that LightGBM-driven volatility prediction can outperform
traditional econometric methods, highlighting its suitability for capturing structured signals
beyond handcrafted factors [11]. This suggests a natural hybrid design in which network-
enhanced embeddings from GNNs serve as high-level representations, while LightGBM
provides nonlinear regression with interpretable feature importance [12]. However, few
studies have jointly leveraged dynamic network information and boosting-based forecasting to
quantify sector-level volatility transmission [13]. Existing frameworks often remain limited to
static network estimation or isolated embedding learning, leaving open questions about
whether graph-augmented features materially improve volatility prediction, especially in
sectors where linkages are stronger [14]. Moreover, dynamic sector dependencies under
evolving market conditions—macroeconomic cycles, policy interventions, or liquidity shocks—
remain insufficiently investigated.

This study introduces a hybrid GNN-LightGBM model for sector-level volatility transmission
forecasting. A rolling similarity matrix combining pairwise correlations and sector
classifications is constructed to reflect both statistical and economic proximity, after which the
GNN learns latent representations describing how shocks propagate across industries. These
graph-enhanced features are subsequently fed into LightGBM to generate sector-volatility
predictions. Empirical results show that the proposed model improves R? by 6.5% relative to
LightGBM without graph features, with particularly strong gains in finance and energy sectors
where interdependencies are more pronounced. The study contributes by developing a
dynamic, data-driven graph structure to capture evolving sectoral relationships, integrating
GNN-based representation learning with boosting-based nonlinear prediction, and providing
empirical evidence that network information significantly enhances volatility forecasting under
heterogeneous market regimes. Overall, the findings demonstrate that incorporating dynamic
network structure improves sector-volatility prediction and offers practical value for risk
monitoring, capital allocation, and early detection of cross-sector contagion in financial markets

2. Materials and Methods

2.1 Data Description and Sector Classification

This study used daily data from 28 industry sectors included in the CSI 300 Index between
January 2015 and December 2023. The dataset covered daily returns, trading volumes, and
volatility indices collected from the Wind Financial Terminal. Missing values due to holidays or
trading pauses were filled using simple linear interpolation. Sector definitions followed the
official China Securities Regulatory Commission (CSRC) classification, including finance,
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energy, manufacturing, healthcare, information technology, and consumer sectors. To remove
short-term bias, all series were standardized with a 60-day rolling z-score before model
training.

2.2 Experimental Design and Baseline Comparison

The GNN-LightGBM model was designed to predict the next day’s sector volatility by
considering both time-series and cross-industry relationships. The industry network was built
using rolling correlations between sector returns. Each sector was treated as a node, and the
correlation between two sectors formed the edge weight. The model combined short-term
historical indicators (such as lagged volatility and turnover) with network-based features. Two
benchmark models were built for comparison: (1) LightGBM without graph inputs, and (2) a
standalone GCN without boosting. This design allowed a direct test of how adding structural
information improves forecasting accuracy.

2.3 Measurement and Quality Control

The dependent variable, realized volatility (RV,), was estimated using 5-minute intraday

returns according to [15]:
M

RV,= z ré;

i=1

where ry; is the intraday return at interval i, and M is the total number of intervals in one day.
All RV, values were log-transformed to reduce skewness. Outliers greater than three standard
deviations from the mean were removed. The stationarity of each time series was checked using
the Augmented Dickey-Fuller (ADF) test. All variables became stationary at the 1% level after
first differencing, ensuring consistent input quality.

2.4 Data Processing and Model Equations

The GNN was used to extract features that describe how information spreads between
industries. Each node feature x; was updated by aggregating information from connected nodes
as follows [16]:

W =0 S wynwO
JEN()

where him is the hidden representation of node i at layer I, wj; is the correlation-based edge

weight, and WU is a trainable parameter matrix. The GNN embeddings were then passed into
the LightGBM regressor [17]:

K
9= ) 0w, feF
k=1

where f} is the k-th regression tree, and F represents the set of all trees optimized through
gradient boosting. The objective function minimized mean squared error with L2 regularization
to prevent overfitting.
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2.5 Statistical Evaluation and Model Validation

Model performance was measured by R%, root mean square error (RMSE), and mean absolute
error (MAE). Rolling-window cross-validation was used to test model stability over time. The
relative improvement was calculated as [18]:

2 odel~ Reaseli
mode aseline
x100

2
baseline

R
Improvement (%)

The proposed model achieved a 6.5% gain in R? over the baseline. All computations were
performed in Python 3.11 using PyTorch Geometric and LightGBM on a workstation with an
NVIDIA RTX A6000 GPU.

3. Results and Discussion

3.1 Model Performance with Graph Features

The proposed GNN-LightGBM model showed better prediction accuracy than the baseline
LightGBM. When graph-based features were added, the out-of-sample RZR*2R2 rose by 6.5%,
and the root mean square error decreased by 5.8%. This result suggests that network structure
among industries carries useful information for volatility forecasting. The observation agrees
with findings, which the use of graph-based learning improved financial time-series prediction
stability [19].

Solve MIP model

Be)-n(e')

Solve MINLP model

Fig. 1. Forecast accuracy of sector volatility using the baseline LightGBM and the GNN-
LightGBM model.

3.2 Comparison with Other Prediction Frameworks

Compared with LSTM-based and transformer-based architectures, the GNN-LightGBM model
achieved similar accuracy with shorter training time. The hybrid structure required fewer
parameters and avoided overfitting when market data were limited. This balance of accuracy
and efficiency matches the results reported by Information, where graph-attention
mechanisms improved risk prediction with less computation [20,21]. The results confirm that
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combining graph embeddings with boosting models offers an efficient solution for real-world
financial forecasting.

3.3 Robustness under Market Volatility

During the 2018 market correction and the 2020 pandemic shock, the proposed model
maintained stable performance, while baseline models showed large prediction errors.
Financial and energy sectors benefited the most from the graph features because their inter-
sector dependencies were strong. This pattern supports the conclusion that incorporating
relational information helps detect volatility spillovers across correlated sectors.
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Fig. 2. Rolling-window prediction error for financial and energy sectors during various market
periods.

3.4 Discussion and Limitations

The LightGBM component provides clear feature importance, which improves model
interpretation, while the GNN captures hidden dependencies between sectors. However, the
present work relies on correlation-based static graphs and daily data frequency. Future work
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should explore dynamic graphs built from higher-frequency information and cross-market
links to better describe short-term volatility transmission.

4. Conclusion

This study introduced a GNN-LightGBM model that joins graph learning with boosting
regression to improve volatility prediction across industry sectors. By adding graph-based links
between industries, the model raised R* by 6.5% and kept stable accuracy during volatile
periods, especially in finance and energy sectors. These findings suggest that including sector
connections helps capture hidden risk paths that common time-series models often miss. The
model also gives clear feature importance, which is useful for daily market tracking and risk
control. Still, the current version relies on a fixed correlation graph and daily data, which limits
its ability to follow quick market changes. Future work should build dynamic graphs that use
more data sources such as news, ownership ties, and macro indicators to improve short-term
forecasts and real-time response.
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