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Abstract 

This paper develops a simple hybrid model that combines Graph Neural Networks (GNN) 
with Light Gradient Boosting Machine (LightGBM) to improve stock market volatility 
prediction by using links between industries. The model builds an industry correlation 
graph to extract relationship features through GNN, and these features are then used by 
LightGBM for volatility forecasting. Based on data from major U.S. market sectors, the 
proposed model increases R2R^2R2 by 6.5% compared with the baseline LightGBM 
model and shows lower prediction error during highly volatile periods. The findings 
show that using industry connections helps capture cross-sector risk transmission and 
improves both accuracy and stability. This approach can be applied to market 
monitoring and investment risk control. However, the current version uses a fixed 
correlation graph and daily data, which limits its ability to adapt to fast market changes. 
Future studies should focus on building adaptive graphs and combining real-time data 
sources for better short-term prediction. 
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Introduction 

Volatility in financial markets is driven not only by firm-specific news or macroeconomic policy 
but also by the interconnected structure across industries [1]. Empirical studies show that price 
disturbances in one sector may propagate to others through supply-chain linkages, financial 
exposures, or synchronized investor behavior [2]. Traditional models such as GARCH or factor-
based frameworks often assume cross-industry independence once common factors are 
removed, making them insufficient to capture real spillover effects [3]. With increasing 
integration in technology, renewable energy, and financial services, ignoring inter-sector 
linkages can lead to systematic underestimation of risk, particularly during market turmoil [4]. 
Recent works have used network structures to model relationships among sectors. Correlation- 
or partial-correlation-based networks have been used to identify central or influential sectors 
[5], whereas Granger-causality and volatility-spillover structures help characterize how shocks 
diffuse across industries over time [6]. These studies indicate that critical sectors such as 
finance and energy often serve as hubs in transmitting volatility. Despite these advances, most 
existing network models are static, often estimated within fixed rolling windows, and therefore 
unable to reflect evolving relationships under different market regimes. Moreover, many 
network representations rely on manually specified structures rather than data-driven 
learning, limiting their integration with predictive models. Graph neural networks (GNNs) 
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provide a promising direction for learning dynamic network information. By processing node-
level inputs such as sector volatility alongside an adjacency matrix that encodes sector 
relationships, GNNs can uncover both local and global dependencies through message-passing 
operations [7]. Applications in finance include stock movement prediction, systemic risk 
evaluation, and contagion modeling [8]. However, many of these works generate either 
classification outputs or embeddings without translating such representations into more 
accurate volatility forecasts. Furthermore, most studies assume relatively stable graphs, while 
real-world market relationships shift with macroeconomic cycles, policy shocks, and structural 
change. Thus, there is still a need for a predictive framework that simultaneously accounts for 
dynamic network connectivity and nonlinear mapping to volatility outcomes. 

LightGBM offers an efficient complement to GNNs. It can accommodate heterogeneous feature 
scales, nonlinear interactions, and moderate sample sizes without extensive hyperparameter 
tuning [9]. Prior work has demonstrated that boosting-based volatility models achieve notable 
gains over statistical baselines when informative features are available [10]. In particular, 
recent research has shown that LightGBM-driven volatility prediction can outperform 
traditional econometric methods, highlighting its suitability for capturing structured signals 
beyond handcrafted factors [11]. This suggests a natural hybrid design in which network-
enhanced embeddings from GNNs serve as high-level representations, while LightGBM 
provides nonlinear regression with interpretable feature importance [12]. However, few 
studies have jointly leveraged dynamic network information and boosting-based forecasting to 
quantify sector-level volatility transmission [13]. Existing frameworks often remain limited to 
static network estimation or isolated embedding learning, leaving open questions about 
whether graph-augmented features materially improve volatility prediction, especially in 
sectors where linkages are stronger [14]. Moreover, dynamic sector dependencies under 
evolving market conditions—macroeconomic cycles, policy interventions, or liquidity shocks—
remain insufficiently investigated. 

This study introduces a hybrid GNN–LightGBM model for sector-level volatility transmission 
forecasting. A rolling similarity matrix combining pairwise correlations and sector 
classifications is constructed to reflect both statistical and economic proximity, after which the 
GNN learns latent representations describing how shocks propagate across industries. These 
graph-enhanced features are subsequently fed into LightGBM to generate sector-volatility 
predictions. Empirical results show that the proposed model improves R2 by 6.5% relative to 
LightGBM without graph features, with particularly strong gains in finance and energy sectors 
where interdependencies are more pronounced. The study contributes by developing a 
dynamic, data-driven graph structure to capture evolving sectoral relationships, integrating 
GNN-based representation learning with boosting-based nonlinear prediction, and providing 
empirical evidence that network information significantly enhances volatility forecasting under 
heterogeneous market regimes. Overall, the findings demonstrate that incorporating dynamic 
network structure improves sector-volatility prediction and offers practical value for risk 
monitoring, capital allocation, and early detection of cross-sector contagion in financial markets 

2. Materials and Methods 

2.1 Data Description and Sector Classification 

This study used daily data from 28 industry sectors included in the CSI 300 Index between 
January 2015 and December 2023. The dataset covered daily returns, trading volumes, and 
volatility indices collected from the Wind Financial Terminal. Missing values due to holidays or 
trading pauses were filled using simple linear interpolation. Sector definitions followed the 
official China Securities Regulatory Commission (CSRC) classification, including finance, 
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energy, manufacturing, healthcare, information technology, and consumer sectors. To remove 
short-term bias, all series were standardized with a 60-day rolling z-score before model 
training. 

2.2 Experimental Design and Baseline Comparison 

The GNN–LightGBM model was designed to predict the next day’s sector volatility by 
considering both time-series and cross-industry relationships. The industry network was built 
using rolling correlations between sector returns. Each sector was treated as a node, and the 
correlation between two sectors formed the edge weight. The model combined short-term 
historical indicators (such as lagged volatility and turnover) with network-based features. Two 
benchmark models were built for comparison: (1) LightGBM without graph inputs, and (2) a 
standalone GCN without boosting. This design allowed a direct test of how adding structural 
information improves forecasting accuracy. 

2.3 Measurement and Quality Control 

The dependent variable, realized volatility ( RVt ), was estimated using 5-minute intraday 
returns according to [15]: 

RVt=∑ rt,i
2

M

i=1

 

 

where rt,i is the intraday return at interval i, and M is the total number of intervals in one day. 

All RVt values were log-transformed to reduce skewness. Outliers greater than three standard 
deviations from the mean were removed. The stationarity of each time series was checked using 
the Augmented Dickey–Fuller (ADF) test. All variables became stationary at the 1% level after 
first differencing, ensuring consistent input quality. 

2.4 Data Processing and Model Equations 

The GNN was used to extract features that describe how information spreads between 
industries. Each node feature xi was updated by aggregating information from connected nodes 
as follows [16]: 

hi
(l+1)

=σ(∑ wij

j∈N(i)

hj
(l)

W(l)) 

 

where hi
(l)

 is the hidden representation of node i at layer l, wij  is the correlation-based edge 

weight, and W(l) is a trainable parameter matrix. The GNN embeddings were then passed into 
the LightGBM regressor [17]: 

ŷ
t
=∑ fk

K

k=1

(xt), fk∈ℱ 

 

where fk  is the k-th regression tree, and ℱ represents the set of all trees optimized through 
gradient boosting. The objective function minimized mean squared error with L2 regularization 
to prevent overfitting. 
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2.5 Statistical Evaluation and Model Validation 

Model performance was measured by R2, root mean square error (RMSE), and mean absolute 
error (MAE). Rolling-window cross-validation was used to test model stability over time. The 
relative improvement was calculated as [18]: 

 

Improvement (%)
Rmodel

2 −Rbaseline
2

Rbaseline
2 ×100 

 

The proposed model achieved a 6.5% gain in R2  over the baseline. All computations were 
performed in Python 3.11 using PyTorch Geometric and LightGBM on a workstation with an 
NVIDIA RTX A6000 GPU. 

3. Results and Discussion 

3.1 Model Performance with Graph Features 

The proposed GNN–LightGBM model showed better prediction accuracy than the baseline 
LightGBM. When graph-based features were added, the out-of-sample R2R^2R2 rose by 6.5%, 
and the root mean square error decreased by 5.8%. This result suggests that network structure 
among industries carries useful information for volatility forecasting. The observation agrees 
with findings, which the use of graph-based learning improved financial time-series prediction 
stability [19]. 

 
Fig. 1. Forecast accuracy of sector volatility using the baseline LightGBM and the GNN–
LightGBM model. 

3.2 Comparison with Other Prediction Frameworks 

Compared with LSTM-based and transformer-based architectures, the GNN–LightGBM model 
achieved similar accuracy with shorter training time. The hybrid structure required fewer 
parameters and avoided overfitting when market data were limited. This balance of accuracy 
and efficiency matches the results reported by Information, where graph-attention 
mechanisms improved risk prediction with less computation [20,21]. The results confirm that 
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combining graph embeddings with boosting models offers an efficient solution for real-world 
financial forecasting. 

3.3 Robustness under Market Volatility 

During the 2018 market correction and the 2020 pandemic shock, the proposed model 
maintained stable performance, while baseline models showed large prediction errors. 
Financial and energy sectors benefited the most from the graph features because their inter-
sector dependencies were strong. This pattern supports the conclusion that incorporating 
relational information helps detect volatility spillovers across correlated sectors. 

 
Fig. 2. Rolling-window prediction error for financial and energy sectors during various market 
periods. 

3.4 Discussion and Limitations 

The LightGBM component provides clear feature importance, which improves model 
interpretation, while the GNN captures hidden dependencies between sectors. However, the 
present work relies on correlation-based static graphs and daily data frequency. Future work 
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should explore dynamic graphs built from higher-frequency information and cross-market 
links to better describe short-term volatility transmission. 

4. Conclusion 

This study introduced a GNN–LightGBM model that joins graph learning with boosting 
regression to improve volatility prediction across industry sectors. By adding graph-based links 

between industries, the model raised R2  by 6.5% and kept stable accuracy during volatile 
periods, especially in finance and energy sectors. These findings suggest that including sector 
connections helps capture hidden risk paths that common time-series models often miss. The 
model also gives clear feature importance, which is useful for daily market tracking and risk 
control. Still, the current version relies on a fixed correlation graph and daily data, which limits 
its ability to follow quick market changes. Future work should build dynamic graphs that use 
more data sources such as news, ownership ties, and macro indicators to improve short-term 
forecasts and real-time response. 
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