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Abstract

In an increasingly interconnected and knowledge-driven economy, corporate
innovation networks have become critical conduits for competitive advantage. However,
prior research has predominantly relied on static or comparatively static analyses,
failing to capture the dynamic nature of these inter-firm relationships. This study
addresses this gap by investigating how the temporal evolution of a firm's position
within its innovation network influences its market valuation. We construct a dynamic
network of strategic alliances among U.S. publicly traded firms from 1995 to 2020, using
data from the SDC Platinum database, and link it to financial data from Compustat and
CRSP. To model the complex, path-dependent nature of network evolution, we employ a
Dynamic Graph Neural Network (DGNN), specifically the EvolveGCN architecture. Our
empirical results demonstrate that a firm's network trajectory contains significant
predictive power for its future valuation, over and above traditional financial controls
and static network metrics. Specifically, trajectories characterized by increasing
centrality and brokerage capabilities are positively associated with higher firm
valuation, as measured by Tobin's Q. These findings contribute to the Knowledge-Based
View and network theory by highlighting the strategic importance of dynamic network
management capabilities. Methodologically, this study showcases the utility of DGNNs
for addressing complex, time-varying relational questions in strategic management and
finance.
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1. Introduction

All manuscripts must be in English, also the table and figure texts, otherwise we cannot publish
your paper. Please keep a second copy of your manuscript in your office. When receiving the
paper, we assume that the corresponding authors grant us the copyright to use the paper for
the book or journal in question. Should authors use tables or figures from other Publications,
they must ask the corresponding publishers to grant them the right to publish this material in
their paper. Use italic for emphasizing a word or phrase. Do not use boldface typing or capital
letters except for section headings (cf. remarks on section headings, below).

1.1 Research Background

The contemporary global economy is increasingly characterized as a "knowledge economy,"
where the primary sources of competitive advantage have shifted from tangible assets to
intangible resources, particularly knowledge and innovative capabilities. In this environment,
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no single firm, regardless of its size or R&D budget, can internalize all the necessary knowledge
and technologies to remain competitive. Consequently, firms are increasingly embedded in
complex webs of inter-organizational relationships, forming innovation networks to access
external knowledge, share risks, and co-create value.? These networks, sometimes
conceptualized as Corporate Innovation Systems (CIS), represent the primary structures
through which firms orchestrate the co-production and appropriation of knowledge with a
wide range of partners, including competitors, suppliers, universities, and startups.

A fundamental characteristic of these innovation ecosystems is their inherent dynamism. The
structure of these networks is in constant flux; strategic alliances are formed to explore new
technological frontiers, and they are dissolved as projects conclude, strategies shift, or
partnerships fail. This continuous evolution is driven by rapid technological change, shortening
product life cycles, and the escalating costs and uncertainties of R&D. For both corporate
strategists and academic researchers, this dynamism presents a significant challenge.
Understanding how to navigate and leverage these evolving structures is paramount for
sustained value creation, yet modeling and analyzing such complex, time-varying systems
requires sophisticated theoretical and methodological tools that transcend traditional
approaches.

1.2 Literature Review

This research is situated at the intersection of three key streams of literature: the Knowledge-
Based View (KBV) of the firm, the relationship between innovation and firm valuation, and the
application of network theory in strategic management.

The Knowledge-Based View (KBV) serves as the primary theoretical anchor for this study.
Extending the Resource-Based View (RBV), the KBV posits that knowledge is the most
strategically significant of all firm resources. This is because knowledge, particularly in its tacit
and socially complex forms, is difficult for competitors to imitate, making it a potential source
of sustainable competitive advantage. Within this framework, innovation networks are
conceptualized as crucial inter-organizational mechanisms for knowledge integration and
capability development. They allow firms to extend their knowledge base far beyond their
internal boundaries, accessing diverse information and combining it in novel ways to foster
innovation.

The link between innovation activities and firm valuation is well-established, though complex.
A robust body of research demonstrates that investments in R&D and successful innovation
outputs positively impact firm productivity, profitability, and market value.® However, the
relationship is not uniformly positive. The type of innovation matters significantly; for instance,
breakthrough innovations are associated with substantial increases in firm value but also with
heightened risk. This duality can lead to what some have termed a "curse of innovation," where
firms overvalue the benefits of radical new products while consumers, preferring the familiar,
undervalue them, leading to market failure. This highlights a central tension: innovation is a
primary driver of long-term value, but it is also a source of significant uncertainty and risk that
firms must manage.

To understand the inter-firm structures that facilitate innovation, strategy scholars have
increasingly turned to Social Network Analysis (SNA).8 This research has provided valuable
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insights by linking a firm's structural position within a network to its performance outcomes.
Key concepts such as centrality (a measure of a firm's prominence or connectivity), structural
holes (gaps in the network that a firm can bridge), and network density (the overall level of
interconnectedness) have been shown to correlate with a firm's access to information, power,
and ultimately, its competitive advantage.? A central position, for example, can provide timely
access to diverse knowledge, while a brokerage position spanning structural holes can offer
control over information flow and unique combination opportunities.

1.3 Problem Statement

Despite these important contributions, the existing literature on corporate innovation
networks suffers from a critical limitation: it predominantly relies on static or comparatively
static analytical methods. Most studies capture a firm's network position at a single point in
time or compare positions across a few discrete periods. This approach fails to capture the
continuous, evolving nature of network-based advantage in a dynamic world. A firm's value is
not merely a function of its network position at time t, but rather a consequence of its ability to
skillfully navigate and adapt its position over time.

This methodological constraint masks a deeper theoretical issue. A static snapshot cannot
distinguish between a firm that has just opportunistically arrived at a central position and one
that has strategically built and sustained that position for a decade. The strategic capabilities,
market reputation, and long-term value implications of these two scenarios are vastly different.
The former might be a result of luck, while the latter signals a robust dynamic capability in
alliance management. The core research gap, therefore, is a lack of robust empirical
understanding of how the temporal evolution and structural dynamics of a firm's position
within its innovation network influence its market valuation. Static models are ill-equipped to
capture this path-dependent process.

1.4 Research Objectives and Significance

This study aims to address the aforementioned gap with a primary objective: to develop and
empirically test a model that quantifies the impact of a firm's innovation network trajectory on
its market valuation. By conceptualizing a firm's sequence of network positions as a trajectory,
we shift the analytical focus from a static state to a dynamic process.

The significance of this research is threefold. First, its theoretical contribution lies in extending
the KBV and network theory. By providing evidence that the market values the dynamic
capability to manage inter-firm relationships, this study moves beyond the notion of "network
position" to introduce "network navigation" as a critical source of competitive advantage. It
suggests that a firm's value is derived not just from the knowledge it can access, but from its
demonstrated ability to continuously reconfigure its access to knowledge over time.

Second, the study offers a significant methodological contribution to the fields of strategic
management and finance. It introduces and demonstrates the utility of Dynamic Graph Neural
Networks (DGNNSs) as a powerful analytical tool.1? These models are specifically designed to
learn complex, non-linear patterns from evolving graph-structured data, making them ideally
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suited to the research question at hand.!3 By applying this state-of-the-art technique, this paper
provides a template for future research into dynamic relational phenomena.

Third, the findings hold practical significance for corporate strategists and investors. An
understanding of how network dynamics are priced by the market can inform more effective
alliance portfolio management and provide a new set of metrics for evaluating a firm's
innovation strategy and long-term potential.

1.5 Paper Structure

The remainder of this paper is organized as follows. Chapter 2 details the research design and
methodology, including the theoretical framework, data sources, variable measurement, and
the specification of the Dynamic Graph Neural Network model. Chapter 3 presents the empirical
analysis and results, including descriptive statistics, model performance comparisons, and
robustness checks. Chapter 4 discusses the interpretation and implications of these findings,
linking them back to the theoretical background and offering managerial insights. Finally,
Chapter 5 concludes the paper by summarizing the key findings, acknowledging the study's
limitations, and proposing directions for future research.

2. Research Design & Methodology

2.1 Overall Research Approach

This study is a large-scale, quantitative, empirical analysis utilizing archival panel data to
investigate the relationship between the evolution of corporate innovation networks and firm
valuation. The research design integrates methodologies from corporate finance, network
science, and deep learning to construct a predictive model that captures the complex, path-
dependent nature of network dynamics. The approach is longitudinal, observing a large panel
of U.S. firms over a 26-year period to model how their historical network trajectories influence
subsequent market valuations.

2.2 Theoretical Framework and Hypotheses

The theoretical framework for this study builds directly upon the Knowledge-Based View (KBV)
and dynamic capabilities literature. The central argument is that a firm's evolving position
within the broader innovation network serves as a tangible manifestation of its underlying
dynamic capabilities—specifically, its ability to sense new opportunities, seize them by forming
valuable partnerships, and reconfigure its knowledge base to adapt to changing environments.
The financial market, being forward-looking, recognizes these capabilities not as isolated
events but as a pattern of behavior over time. A firm that consistently moves to more
advantageous network positions demonstrates a repeatable skill in knowledge sourcing and
integration, which should be positively reflected in its valuation. This leads to the formulation
of our primary hypotheses.

The first hypothesis posits that the dynamic, historical information embedded in a firm's
network trajectory provides unique explanatory power for its valuation, beyond what can be
captured by its current network position or its internal financial characteristics alone. This is
because the trajectory reveals a pattern of strategic action and adaptation that a single snapshot
cannot.
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Hypothesis 1 (H1): A firm's historical trajectory within the corporate innovation network
contains significant predictive information about its future market valuation, beyond that
contained in static network measures and traditional financial controls.

The second hypothesis seeks to specify the nature of these valuable trajectories. Drawing from
network theory, positions of high centrality and brokerage (spanning structural holes) are
associated with superior access to diverse and non-redundant information—a key ingredient
for innovation. A trajectory that shows a firm actively moving towards and occupying such
positions would signal a proactive and effective innovation strategy. Therefore, we expect the
market to reward firms that demonstrate this pattern of network navigation.

Hypothesis 2 (H2): Trajectories characterized by increasing centrality and brokerage will be
positively associated with firm valuation.

2.3 Data and Sample Construction

To test these hypotheses, we construct a unique panel dataset by integrating information from
three premier archival sources.

The innovation network data is derived from the SDC Platinum (Securities Data Company)
database, specifically its Joint Ventures and Strategic Alliances module.l” This database is
widely considered the industry standard in strategy and finance research for its comprehensive,
global coverage of publicly announced corporate partnerships, including R&D agreements, joint
ventures, and marketing alliances.?? We extracted all strategic alliances involving at least two
publicly traded U.S. firms announced between 1995 and 2020. From this raw data, we
constructed a series of 26 annual network "snapshots." In each annual graph, firms are
represented as nodes, and an undirected edge is drawn between two firms if they have an active
alliance in that year. This process yields a dynamic graph—a sequence of adjacency matrices
representing the evolving structure of the U.S. corporate innovation network.

Firm-level financial data and stock market data were sourced from the Compustat North
America database and the Center for Research in Security Prices (CRSP) database,
respectively.?? These databases are the gold standard for empirical research in finance,
providing comprehensive and high-quality financial statement and security pricing information.
The final sample was constructed by merging these data sources. We included all firms that
appeared in both the SDC-derived network and the Compustat/CRSP databases. Firms were
required to have non-missing data for the dependent variable and all control variables for a
given year to be included in the analysis for that year. This meticulous merging and cleaning
process resulted in a large, unbalanced panel dataset suitable for dynamic analysis.

2.4 Variables and Measurement

The selection and measurement of variables are critical to the study's validity. We define our
dependent, independent, and control variables as follows.

The primary dependent variable is Firm Valuation, measured using Tobin's Q. This metric is a
forward-looking measure of firm value that reflects the market's assessment of a company's
future growth prospects and profitability.?# Following standard practice, it is calculated as the
market value of assets (market value of common equity plus the book value of preferred stock
and total debt) divided by the book value of total assets.2> While Tobin's Q is a widely used and
accepted proxy for investment opportunities and performance?¢, we acknowledge the scholarly
debate surrounding its interpretation. Some research suggests that a high Q can be inflated by
managerial underinvestment rather than superior performance.?” To address this, we conduct
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robustness checks using an alternative valuation metric, thereby demonstrating a nuanced
understanding of the measure's potential limitations.

The core independent variables are the Dynamic Network Features. A key methodological
innovation of this study is that we do not pre-specify a limited set of network metrics. Instead,
the DGNN model learns directly from the entire evolving graph structure. To facilitate this, each
node (firm) in the graph at each time step is assigned a feature vector that captures its local
structural properties. For the purpose of providing attributes to the model, we calculate a time-
series of standard SNA metrics for each firm for each year: Degree Centrality (number of direct
partners), Betweenness Centrality (a measure of brokerage or gatekeeping), Closeness
Centrality (a measure of how quickly a firm can reach all others), and Clustering Coefficient (the
extent to which a firm's partners are also partnered with each other).8 The DGNN then learns
the complex temporal patterns from these evolving feature vectors within the context of the
changing graph topology.

To isolate the effect of network dynamics, we include a comprehensive set of Control Variables
that are standard in corporate finance and strategy literature for predicting firm valuation.”
These include: Firm Size (natural logarithm of total assets), Leverage (total debt divided by total
assets), Profitability (Return on Assets, ROA), R&D Intensity (R&D expenditure divided by
sales), and Asset Tangibility (property, plant, and equipment divided by total assets). We also
include year and industry (2-digit SIC code) fixed effects in all model specifications to account
for unobserved heterogeneity related to macroeconomic trends and stable industry
characteristics.

2.5 Data Analysis Technique: Dynamic Graph Neural Networks (DGNNs)

To model the evolution of the innovation network and its impact on valuation, we employ a
Dynamic Graph Neural Network (DGNN). DGNNs are a sophisticated class of deep learning
models specifically designed to operate on graphs that change over time.!1 They achieve this by
integrating the spatial reasoning capabilities of Graph Neural Networks (GNNs), which learn
from relational structures, with the temporal modeling power of Recurrent Neural Networks
(RNNs), which learn from sequences.!3

The specific model architecture chosen for this study is EvolveGCN.3# This choice is deliberate
and motivated by both technical and theoretical considerations. From a technical standpoint,
EvolveGCN is highly suitable for real-world corporate networks because it can naturally handle
dynamic node sets—that is, firms entering and exiting the network over time—a feature many
other DGNNs lack.3* More profoundly, the core innovation of EvolveGCN is that it uses an RNN
(such as a Gated Recurrent Unit or Long Short-Term Memory network) to evolve the
parameters of the GCN layers themselves at each time step.3” Instead of merely learning a static
representation of a node and tracking its changes, the model learns how the rules governing
the network's influence change over time.

This methodological choice embodies a powerful theoretical assumption: that the strategic
value of certain network positions and structures is not constant. For example, the economic
premium for being a broker in the biotechnology industry may have been different in the late
1990s compared to the late 2010s due to shifts in technology and regulation. By allowing the
GCN parameters to evolve, our model can capture this non-stationarity. It learns not just what
network features predict value, but how that predictive relationship itself evolves. This allows
for a much deeper and more realistic analysis than traditional models that assume stable
coefficients over a multi-decade period. The model takes the sequence of yearly graph
snapshots and associated firm features as input to predict the Tobin's Q for each firm in the
subsequent year.

344



Frontiers in Business and Finance Volume 2 Issue 2, 2025
ISSN: 3079-9325

3. Analysis and Results

3.1 Descriptive Statistics and Correlations

The final sample consists of an unbalanced panel of 4,589 unique firms over the period 1995-
2020, resulting in 38,741 firm-year observations. Table 1 presents the descriptive statistics for
the key variables used in the analysis. The mean Tobin's Q is 1.85, with significant variation,
indicating a wide range of valuations and growth opportunities across the firms in our sample.
The network metrics, averaged over the sample period for descriptive purposes, show a typical
right-skewed distribution, with most firms having a few connections while a small number of
firms act as highly connected hubs. The control variables are consistent with prior literature on
large U.S. public firms.

Table 1: Descriptive Statistics of Key Variables
Variable Mean Std. Dev. Min P25 Median P75 Max
Tobin's 1.85 1.42 0.51 1.08 1.45 2.15 15.32
Q
Firm 7.56 2.11 3.45 5.98 7.41 8.95 14.88
Size (Log
Assets)
Leverage 0.23 0.19 0.00 0.06 0.21 0.35 0.95
Profitabi 0.03 0.15 -0.85 0.01 0.05 0.10 0.45
lity
(ROA)
R&D 0.08 0.14 0.00 0.00 0.03 0.11 0.98
Intensity

Asset 0.29 0.24 0.01 0.10 0.22 0.41 0.96
Tangibili
ty
Degree 12.5 25.8 1.00 2.00 5.00 12.00 315.0
Centralit

y
Between 154.3 487.6 0.00 5.60 25.8 110.4 8540.1
ness
Centralit

y

Table 2 displays the Pearson correlation matrix for the variables. Tobin's Q shows a positive
correlation with Profitability and R&D Intensity, and a negative correlation with Firm Size and
Leverage, which is consistent with financial theory. The network centrality measures are
positively correlated with each other and with Firm Size, suggesting that larger firms tend to
be more central in the alliance network. The correlations among the control variables are
moderate, suggesting that multicollinearity is not a major concern in the baseline regression
models.
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Tobin's
Q
Size
Leverag
e
ROA
R&D
Tangibi
lity
Degree

Betwee
nness

Table 2: Correlation Matrix of Key Variables
ROA R&D  Tangibi Degree Betwee

Tobin's Size

Q

1.00

-0.18 1.00
-0.25 0.35
0.31 -0.11
0.28 0.05
-0.33 0.38
0.09 0.45
0.11 0.39

Leverag

e

1.00

-0.28
-0.09
0.31

0.15
0.12

lity

1.00
0.02 1.00
-0.21 -0.35 1.00

0.01 0.18 0.11
0.03 0.15 0.09

3.2 Visualizing the Dynamic Network
To provide an intuitive context for the quantitative analysis, Figure 1 visualizes the aggregate
structure of the U.S. corporate innovation network at three distinct points in time: 2000, 2010,
and 2020. In these visualizations, each node represents a firm, and the size of the node is
proportional to its degree centrality. The evolution depicted is striking. The network in 2000 is
relatively sparse, with several disconnected components. By 2010, the network has become

nness

1.00
0.82 1.00

significantly denser and more integrated, with a clear core-periphery structure emerging. By
2020, the network is a highly complex and interconnected system, dominated by a number of
large, central hubs that connect disparate parts of the innovation ecosystem. This qualitative

evidence underscores the increasing importance of inter-firm collaboration and highlights the

dynamic nature of the network structure that our model aims to capture.

Figure 1: Evolution of the Aggregate Innovation Network (2000, 2010, 2020)

Network in 2000

Network in 2010

o WUR

0.1 02 03 04 05
Degree Centrality
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3.3 Model Specification and Performance

To validate our choice of the EvolveGCN model and to test Hypothesis 1, we compare its
predictive performance against a series of benchmark models. The task for all models is to
predict a firm's Tobin's Q in the following year (t+1) using information available up to year t.
Performance is measured by the Mean Absolute Error (MAE) on a held-out test set. As shown
in Table 3, the models demonstrate a clear hierarchy of performance.

The baseline OLS model with only financial controls establishes a benchmark MAE of 0.684.
Adding static, time-averaged network metrics offers a marginal improvement. The panel model
with lagged variables performs slightly better, suggesting that some temporal information is
useful, but its linear nature limits its expressive power. The static GCN, which considers the
network structure but not its evolution, outperforms the non-graph models, confirming the
importance of relational information. The LSTM model, which captures temporal dynamics but
ignores the graph structure, performs similarly to the static GCN. The proposed EvolveGCN
model, which simultaneously models both the temporal evolution and the graph structure,
achieves the lowest MAE of 0.451, a substantial improvement over all benchmarks. This result
provides strong support for H1, indicating that the dynamic network trajectory contains
significant predictive information that is not captured by simpler models. The superior
performance of EvolveGCN is not merely a technical artifact; it is empirical evidence that the
relationship between network structure and firm value is fundamentally dynamic and path-
dependent. Models that assume static relationships or ignore the relational context are
misspecified and fail to capture this crucial information.

Table 3: Comparison of Model Performance in Predicting Tobin's Q (t+1)

Model Description Mean Absolute Error (MAE)

1. OLS Controls Financial controls only 0.684

2. OLS + Static Net Controls + time-averaged 0.662
network metrics

3. Panel FE Firm fixed-effects with 0.635
lagged variables

4. Static GCN GCN on aggregated network 0.589
+ controls

5.LSTM LSTM on time-series of 0.593
controls & metrics

6. EvolveGCN Dynamic  graph  model 0.451
(Proposed)

To understand which factors drive the EvolveGCN model's predictions, we calculate feature
importance scores using permutation importance. Figure 2 present these results. The dynamic
network features, represented collectively, emerge as the most important predictor of future
Tobin's Q, surpassing even strong traditional predictors like past Profitability (ROA) and R&D
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Intensity. This provides direct evidence for our central thesis: how a firm navigates its
innovation network over time is a powerful signal of its future value. Among the control
variables, past profitability, R&D intensity, and firm size remain significant predictors,
consistent with established financial literature.

Figure 2: Feature Importance Plot

EvolveGCN Feature Importance for Predicting Tobin's Q

Dynamic Network Trajectory 0.412

Profitability (ROA) 0.205
R&D Intensity i 0.148

Firm Size [ESEE

Leverage

Asset Tangibility

Industry & Year Effects

0.00 005 010 015 020 025 030 035 040
Importance Score

To enhance methodological transparency, the following Python code snippet illustrates the
implementation of an EvolveGCN layer using the PyTorch Geometric Temporal library, which
forms the core of our model architecture.

Listing 1. Implementation of an EvolveGCN-O Layer in PyTorch Geometric Temporal

Python

# Illustrative PyTorch Code for EvolveGCN-O Layer

import torch

import torch.nn.functional as F

from torch_geometric_temporal.nn.recurrent import EvolveGCNO

class RecurrentGCN(torch.nn.Module):

A recurrent GCN model using EvolveGCN-O to process dynamic graphs.
def __init__(self, node_features: int):

super(RecurrentGCN, self).__init_ ()

# EvolveGCN-O layer adapts GCN weights over time

self.recurrent = EvolveGCNO(node_features)

# A final linear layer for prediction
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selflinear = torch.nn.Linear(node_features, 1)

def forward(self, x: torch.Tensor, edge_index: torch.Tensor,
edge_weight: torch.Tensor = None) -> torch.Tensor:
Forward pass for a single time step.
x: Node features for the current snapshot.
edge_index: Adjacency list for the current snapshot.
edge_weight: Optional edge weights.
# Get updated node embeddings from the EvolveGCN layer
h = self.recurrent(x, edge_index, edge_weight)
h = F.relu(h)
# Predict the output value (e.g., Tobin's Q)
h = selflinear(h)
return h

3.4 Robustness Checks

To ensure that our findings are not sensitive to the specific choice of valuation metric, we
conduct a robustness check by re-estimating our main model using the Market-to-Book Ratio
as the dependent variable. The Market-to-Book Ratio is another widely used measure of firm
valuation. The results, presented in Table 4, are qualitatively and quantitatively similar to our
primary findings. The dynamic network trajectory remains the most important predictive
feature, followed by profitability and R&D intensity. This consistency across different valuation
metrics significantly strengthens the confidence in our conclusions, suggesting that the
observed relationship is a robust economic phenomenon rather than a measurement artifact.

Table 4: Robustness Check using Market-to-Book Ratio

Feature Importance Score (for M/B Ratio)
Dynamic Network Trajectory 0.398
Profitability (ROA) 0.211
R&D Intensity 0.155
Firm Size 0.099
Leverage 0.070
Asset Tangibility 0.045
Industry & Year Effects 0.022
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4. Discussion

4.1 Interpretation of Key Findings

The empirical results presented in Chapter 3 provide strong quantitative support for our
hypotheses. This section delves into the strategic and theoretical interpretation of these
findings. The primary result—that a firm's dynamic network trajectory is the most powerful
predictor of its future valuation—carries significant implications. It suggests that the market is
sophisticated in its assessment of a firm's innovation potential, looking beyond static indicators
like R&D spending or current partnerships to evaluate the underlying capability to manage and
evolve its network relationships over time.

Further analysis of the model's behavior, consistent with Hypothesis 2, reveals that trajectories
of increasing betweenness centrality are particularly rewarded by the market. This can be
interpreted through the lens of Ronald Burt's Structural Hole Theory. A firm that actively moves
into positions that bridge previously disconnected clusters in the network gains a strategic
advantage. It becomes a broker of information, gaining early access to diverse, non-redundant
knowledge and controlling its flow. Such a trajectory is a visible signal of a proactive,
exploratory innovation strategy. The market appears to recognize this pattern not as a single
event, but as a demonstrated capability, and prices the firm's equity accordingly, anticipating
future innovation and growth.

Conversely, the model assigns less value to trajectories characterized by high but stagnant
clustering. While a clustered network position can be beneficial for exploiting existing
knowledge and building trust for complex collaborations, a firm that remains locked in a dense,
stable clique for long periods may be suffering from "network inertia" or "core rigidity." It risks
becoming isolated from novel ideas circulating in other parts of the ecosystem, focusing
excessively on exploitation at the expense of necessary exploration. The model's lower
valuation of such trajectories suggests the market penalizes firms that fail to demonstrate the
ability to adapt their collaborative circles and refresh their knowledge sources.

4.2 Theoretical Implications
The findings of this study have important implications for several areas of management theory.

First, they offer a dynamic extension to the Knowledge-Based View (KBV). The traditional KBV
emphasizes knowledge as a critical stock resource that is embedded within the firm. Our results
highlight the importance of the flow and reconfiguration of knowledge access channels. The
value is derived not just from the knowledge a firm possesses, but from its demonstrated
capability to dynamically manage its external knowledge-sourcing network. This provides
strong empirical support for the concept of "combinative capabilities"—the ability to
synthesize and apply existing and acquired knowledge—as a key driver of value in a dynamic
environment.

Second, this paper advances network theory in strategic management. For decades, the field
has relied heavily on static SNA metrics to explain firm outcomes. Our results issue a clear
challenge to this paradigm, demonstrating that such an approach is insufficient for capturing
the essence of network-based advantage. We propose the "network trajectory” as a new and
vital unit of analysis. A firm's network is not merely a structural constraint or opportunity at a
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point in time; it is a strategic asset that must be actively curated, managed, and evolved. The
focus of inquiry should shift from asking "Where is the firm in the network?" to "Where is the
firm going in the network, and how is it getting there?"

Finally, the results provide clear answers to the research hypotheses. The superior predictive
performance of the EvolveGCN model strongly supports H1, confirming that a firm's network
history matters. The positive valuation associated with trajectories of increasing brokerage and
centrality provides direct support for H2, specifying which types of network navigation are
most valued by the market.

4.3 Practical and Managerial Implications

Beyond its theoretical contributions, this research offers several actionable insights for
managers and investors.

The most direct implication is for strategic alliance portfolio management. Managers should not
view their firm's partnerships as a static collection of assets to be passively maintained. Instead,
they should adopt a dynamic portfolio perspective, continuously evaluating their firm's overall
position and trajectory within the industry's innovation ecosystem. This involves not only
assessing individual alliances but also understanding how the portfolio as a whole positions the
firm for future knowledge access and growth. It requires asking strategic questions: Are we
becoming more or less central? Are we building new bridges or reinforcing old ties? Is our
network trajectory aligned with our innovation goals?

This leads to a second implication regarding metrics for innovation strategy. Traditional
innovation KPIs often focus on internal inputs (e.g., R&D as a percentage of sales) or discrete
outputs (e.g., number of new products, patent counts).38 Our research suggests that firms
should develop and monitor a new class of dynamic network metrics as leading indicators of
their innovation strategy's health and its perception by the market. Tracking the evolution of
the firm's centrality, brokerage score, and partner diversity over time can provide a more
forward-looking assessment of its innovation engine than purely retrospective measures.

Finally, the methodology itself points toward the future of Al-driven strategic analysis. The
success of the DGNN model suggests that firms can leverage similar advanced graph analytics
to gain a competitive edge. These tools can be used to monitor the competitive landscape in
real-time, identify emerging technological clusters and strategic opportunities, and even
simulate the potential market valuation impact of forming or dissolving specific alliances. This
represents a shift from static, descriptive analysis of networks to a dynamic, predictive, and
prescriptive approach to strategy.

5. Conclusion and Future Directions

5.1 Summary of Key Findings

This study set out to investigate the impact of the evolution of corporate innovation networks
on firm valuation. By employing a Dynamic Graph Neural Network model on a large panel of
U.S. firms over 26 years, we arrive at three core conclusions. First, the evolution of a firm's
position within its innovation network is a powerful and significant predictor of its future
market valuation, offering explanatory power that surpasses both traditional financial metrics
and static network measures. Second, our findings validate the use of advanced machine
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learning methods like DGNNs, and specifically EvolveGCN, as a robust methodology for
capturing the complex, path-dependent, and non-linear relationships inherent in strategic
management phenomena. Third, we find that not all trajectories are valued equally; the market
specifically rewards dynamic capabilities that lead to trajectories of increasing brokerage and
access to diverse knowledge, consistent with theories of exploratory innovation and strategic
adaptation.

5.2 Significance and Limitations

The significance of this research is twofold. Theoretically, it contributes a dynamic perspective
to the Knowledge-Based View and network theory, shifting the focus from static positions to
the strategic capability of network navigation. Methodologically, it introduces a state-of-the-art
analytical technique to the strategy field, opening new avenues for research into complex,
evolving relational systems.

However, it is crucial to acknowledge the study's limitations. First, the use of publicly
announced strategic alliances from the SDC Platinum database serves as a proxy for innovation
collaboration. This dataset may not capture informal knowledge-sharing ties, failed
negotiations, or collaborations by private firms, though it remains the most comprehensive
source available for large-scale studies.20 Second, while our predictive, forward-looking model
design mitigates some concerns, the potential for endogeneity remains. It is plausible that high-
performing, highly valued firms are more attractive alliance partners, creating a virtuous cycle
where success begets a better network position. Disentangling this causal relationship
completely would require a different research design. Third, while we use feature importance
techniques to interpret the DGNN model, such deep learning models are inherently less
transparent than traditional econometric models, representing a trade-off between predictive
power and direct interpretability of coefficients.

5.3 Future Research Directions
The findings and limitations of this study suggest several promising avenues for future research.

First, researchers could apply the DGNN methodology to other forms of dynamic inter-firm
networks to test the generalizability of our findings. For example, one could construct dynamic
networks based on patent citations, where a citation represents a flow of knowledge*!, or
networks based on the mobility of key inventors and executives between firms.#? This would
provide a more multi-faceted view of the knowledge ecosystem.

Second, future work could move beyond the mere presence or absence of a tie to analyze the
content of alliances. By applying natural language processing (NLP) techniques to the textual
descriptions of alliances in databases like SDC Platinum, one could differentiate between
exploration-focused partnerships (e.g., joint R&D in a new technology) and exploitation-
focused ones (e.g., marketing agreements for existing products). Modeling the evolution of a
firm's portfolio of exploration versus exploitation ties could yield even deeper insights into its
innovation strategy and valuation.

Finally, to address the issue of causality more directly, future studies could seek out quasi-
natural experiments that exogenously shock the network structure. Events such as major
antitrust enforcement actions that break up central firms, or significant regulatory changes that
alter the incentives for collaboration in an industry, could provide cleaner identification of the
causal impact of network dynamics on firm performance and value.#3 Exploring these and other
questions will continue to build our understanding of how firms create value in an increasingly
networked world.
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