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Abstract 

The accurate and timely estimation of option Greeks remains a critical challenge in 
financial risk management, particularly during periods of extreme market volatility 
when traditional computational methods encounter severe limitations in both speed 
and reliability. This paper presents a novel application of Transformer-based deep 
learning architectures to the problem of real-time option Greeks estimation under 
extreme market conditions, addressing fundamental challenges that have constrained 
conventional approaches including computational bottlenecks, numerical instability, 
and inadequate handling of long-range temporal dependencies in volatility dynamics. 
We develop a specialized attention mechanism that exploits the structural properties 
of option surfaces while maintaining computational efficiency through strategic 
architectural design incorporating multi-head self-attention, gated neural network 
mechanisms that enforce economic rationality constraints, and positional encoding 
adapted for financial time series exhibiting non-stationary behavior. The empirical 
investigation employs comprehensive datasets spanning multiple market regimes 
including the 2008 financial crisis characterized by VIX levels exceeding 80 percent as 
documented in detailed intraday records, the August 2015 volatility spike reaching 53 
percent, and the March 2020 COVID-19 pandemic market disruption with VIX peaking 
at 89.53 percent, providing robust assessment across diverse stress scenarios that 
reveal the catastrophic failure modes of traditional methods. Our Transformer-based 
approach achieves Delta estimation accuracy with Mean Absolute Error below 0.001 for 
at-the-money options during normal market conditions and maintains stable 
performance with MAE below 0.002 during extreme volatility events where traditional 
finite difference methods exhibit errors exceeding 0.05, representing more than 
twentyfivefold improvement in accuracy under stress conditions. The architecture 
leverages a stratified training strategy that oversamples extreme volatility regimes by 
factors exceeding thirteen times their natural occurrence frequency, ensuring robust 
generalization to crisis scenarios despite their rarity in historical data comprising less 
than two percent of trading days. Furthermore, the architecture delivers inference 
latency below 100 microseconds per option contract on modern GPU hardware, 
enabling genuine real-time Greeks calculation for large portfolios containing 
thousands of positions that require continuous hedging adjustments as volatility 
surfaces shift rapidly during market stress. This research establishes Transformer 
models as a transformative methodology for derivatives risk management, offering 
practitioners a robust tool for maintaining accurate hedge ratios and risk metrics even 
during the most turbulent market periods when precise Greeks estimation proves most 
critical for portfolio survival. 
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1. Introduction 

The computation of option Greeks, representing the sensitivities of derivative prices to 
various underlying factors including asset price movements, volatility fluctuations, time d ecay, 
and interest rate changes, constitutes one of the most fundamental yet computationally 
demanding tasks in quantitative finance[1]. These sensitivities directly underpin portfolio 
hedging strategies that protect multi-billion dollar derivative books from adverse market 
movements, risk limit monitoring systems that prevent catastrophic losses by flagging 
excessive exposures before they materialize, and regulatory capital calculations that 
determine the financial resources institutions must hold against potential losses[2]. 
Traditional methodologies for Greeks estimation, including analytical differentiation of 
closed-form pricing formulas where available and numerical finite difference approximations 
for complex instruments lacking analytical solutions, have served the financial industry for 
decades as the backbone of risk management infrastructure[3]. However, these conventional 
approaches encounter increasing strain under modern market conditions characterized by 
unprecedented portfolio complexity with thousands of interdependent positions, algorithmic 
trading speed requirements demanding microsecond-level responsiveness, and episodic 
volatility spikes that stress computational frameworks beyond their design limits[4].  

The challenge intensifies dramatically during periods of extreme market stress, creating a 
cruel paradox where accurate Greeks become most critical for survival precisely when the 
methods relied upon for their computation exhibit catastrophic degradation in both accuracy 
and reliability. The 2008 financial crisis provided a stark demonstration of these limitations, 
as the Chicago Board Options Exchange Volatility Index (VIX), commonly known as the fear 
gauge measuring market expectations of 30-day volatility implied by S&P 500 index options, 
surged from typical levels around 20 percent during calm periods to a record closing value of 
80.74 percent on November 21, 2008[5]. This quadrupling of expected market volatility 
within months created unprecedented challenges for risk management systems as option 
portfolios experienced violent daily swings in value driven by rapidly changing Greeks, while 
the very numerical methods relied upon for risk calculation became unreliable due to multiple 
compounding factors including widening bid-ask spreads that corrupted input data quality, 
breakdown of continuous hedging assumptions as markets gapped discontinuously with 
trading halts and circuit breakers triggering, and computational resource exhaustion as 
systems struggled to revalue thousands of positions fast enough to maintain meaningful real-
time risk metrics[6]. 

The pattern repeats with each subsequent market dislocation, confirming that extreme 
volatility represents not a rare aberration but a recurring feature of financial markets that 
risk management systems must reliably handle. The August 2015 volatility spike saw the VIX 
briefly touch 53.29 percent following Chinese equity market turmoil and concerns about 
economic slowdown, creating another period where traditional Greeks computation methods 
struggled to maintain accuracy as implied volatility surfaces exhibited dramatic shifts in skew 
and term structure that violated the smooth variation assumptions underlying finite 
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difference approximations[7]. The March 2020 COVID-19 pandemic onset witnessed even 
more extreme conditions as global uncertainty about the virus's economic impact drove the 
VIX to an all-time intraday high of 89.53 percent on March 16, 2020, exceeding even the 2008 
crisis peak and creating the most challenging Greeks estimation environment in modern 
financial history where bid-ask spreads widened to levels making market data nearly 
unusable for precise calculations[8]. 

Traditional finite difference methods for Greeks computation, the industry workhorse 
approach for instruments lacking closed-form solutions, evaluate option pricing functions at 
perturbed input values and approximate derivatives through ratios of price changes to input 
perturbations[9]. For Delta, measuring sensitivity to underlying asset price changes, a 
standard two-point centered difference formula evaluates prices at the current spot price plus 
and minus a small increment, differences these prices, and divides by twice the increment to 
obtain an approximation to the first derivative. While conceptually straightforward and 
applicable to arbitrary pricing models implementable as computable functions, this approach 
suffers from multiple fundamental weaknesses that become acute under stress conditions[10]. 
The method requires multiple expensive pricing evaluations per Greek, with second-order 
sensitivities like Gamma requiring four or more pricing function calls creating severe 
computational burdens for portfolios containing thousands of options requiring simultaneous 
Greeks calculation multiple times daily[11]. The perturbation size selection presents an 
intractable tradeoff, with large perturbations introducing truncation error as the finite 
difference deviates from the true derivative due to the nonlinear curvature of option value 
functions, while small perturbations amplify catastrophic cancellation errors as the price 
difference becomes comparable to floating point precision limits, a dilemma lacking 
satisfactory universal resolution particularly for options exhibiting discontinuous behavior 
near barriers or kinks in payoff functions[12]. 

The emergence of deep learning as a transformative force across pattern recognition domains, 
achieving superhuman performance in tasks ranging from image classification and object 
detection to natural language understanding and machine translation, naturally suggests its 
application to financial computation problems that exhibit complex nonlinear patterns 
amenable to data-driven learning rather than requiring explicit algorithmic specification[13]. 
Early applications of neural networks to option pricing date to the 1990s, with pioneering 
work by Hutchinson, Lo, and Poggio demonstrating feasibility of learning pricing functions 
from simulated data, but these efforts primarily targeted pricing rather than Greeks 
estimation and employed relatively simple feedforward architectures lacking sophisticated 
mechanisms for capturing the rich structural relationships characterizing option surfaces 
across strikes and maturities[14]. The introduction of the Transformer architecture by 
Vaswani and colleagues in 2017, originally motivated by machine translation tasks requiring 
attention to long-range dependencies between words in sentences separated by many tokens, 
marked a fundamental paradigm shift enabling models to dynamically weight the relevance of 
different input elements through learned attention mechanisms rather than processing 
information sequentially as recurrent networks do or with fixed local receptive fields as 
convolutional architectures employ[15]. 

This paper investigates the application of Transformer-based architectures specifically 
designed for the problem of real-time option Greeks estimation under extreme market 
conditions, addressing simultaneously the computational efficiency requirements of 
production trading systems demanding sub-millisecond latency and the accuracy challenges 
posed by volatile markets where traditional numerical methods experience catastrophic 
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failure precisely when reliability matters most. We develop specialized network designs that 
incorporate financial domain knowledge through architectural constraints encoding no -
arbitrage principles, adapted attention mechanisms that efficiently process option surface 
structure by identifying relevant cross-strike and cross-maturity relationships, and training 
strategies that ensure robust generalization across diverse market regimes including rare 
stress events dramatically underrepresented in historical data. The investigation employs 
comprehensive datasets spanning normal market conditions for baseline assessment 
establishing competitive performance against traditional methods under benign conditions, 
alongside detailed crisis period data including minute-by-minute records from October-
November 2008, August 2015, and March 2020 volatility spikes enabling rigorous stress 
testing of model behavior precisely when accuracy matters most for preventing catastrophic 
portfolio losses. 

The motivation for this research stems from pressing practical needs facing risk management 
infrastructure at financial institutions where derivative portfolio values measured in billions 
of dollars demand continuous monitoring through Greeks that must be calculated thousands 
of times daily as markets move and volatility surfaces shift, with even minor inaccuracies  in 
Greeks potentially translating to tens of millions in hedging errors or undetected risk 
exposures. While traditional methods remain viable under benign market conditions with 
stable volatility and liquid markets providing reliable pricing data, their systematic failure 
modes during stress create unacceptable operational risks as precisely the moments 
requiring most careful risk management and accurate hedging coincide with computational 
framework breakdown. Deep learning approaches offering robust perfo rmance across all 
market conditions from calm to crisis while delivering evaluation speeds enabling genuine 
real-time Greeks calculation represent transformative advances with clear practical value for 
institutions whose survival during the next crisis may depend on maintaining accurate risk 
metrics when others cannot. From theoretical perspectives, exploring how Transformer 
attention mechanisms naturally capture option surface structure, whether financial time 
series exhibit long-range dependencies amenable to this architecture, and how economic 
constraints can be embedded into neural designs provides insights relevant to broader 
questions about appropriate machine learning methodologies for financial applications where 
reliability, interpretability, and handling of rare extreme events prove as important as 
average-case accuracy. 

2. Literature Review 

The literature on option Greeks computation has evolved over several decades from early 
analytical formulas applicable to simple instruments through increasingly sophisticated 
numerical methods addressing complex derivatives, with recent years witnessing accelerating 
interest in machine learning approaches offering potential advantages in both computational 
speed and accuracy under challenging conditions[16]. The foundational Black-Scholes-Merton 
framework published in 1973 provided not only closed-form option pricing formulas 
revolutionizing derivatives markets by enabling systematic valuation, but also analytical 
expressions for Greeks including Delta, Gamma, Vega, Theta, and Rho computed through 
straightforward differentiation of the pricing formula with respect to relevant parameters[17]. 
For vanilla European options on non-dividend-paying stocks satisfying the model's 
assumptions of constant volatility and continuous trading, these formulas enable exact Greeks 
computation requiring only evaluation of the cumulative standard normal distribution 
function and elementary algebraic operations, offering computational efficiency measured in 
microseconds and numerical precision limited only by floating-point arithmetic that 
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established a gold standard against which alternative methods must be measured for both 
speed and accuracy[18]. 

However, the applicability of analytical Greeks remains severely constrained, limited to the 
narrow class of instrument types and market assumptions for which closed-form formulas 
have been derived through mathematical analysis[19]. American options exercisable at any 
time prior to maturity lack closed-form solutions except in special cases, exotic derivatives 
with path-dependent payoffs or barrier features generally require numerical methods, and 
realistic models incorporating stochastic volatility to capture observed volatility smiles or 
jump processes to model discontinuous price movements typically necessitate Monte Carlo 
simulation or partial differential equation solution techniques for which Greeks computation 
presents additional challenges[20]. Finite difference methods emerged as the workhorse 
computational approach, numerically approximating derivatives by evaluating pricing 
functions at perturbed input values and computing difference quotients that converge to true 
derivatives as perturbation sizes shrink. While conceptually simple, universally applicable to 
any pricing model implementable as a computable function, and straightforward to 
implement requiring only multiple calls to existing pricing routines, finite difference methods 
face well-documented challenges that become acute in practice including computational cost 
scaling linearly with the number of Greeks required as each sensitivity demands separate 
perturbations, numerical instability particularly for higher-order derivatives where errors 
compound through multiple differencing operations, and fundamental difficulty selecting 
appropriate perturbation sizes that balance competing concerns of truncation error from 
finite difference approximations versus roundoff error amplification as price differences 
approach machine precision[21]. 

Alternative Greeks computation approaches have been developed addressing some finite 
difference limitations while introducing their own constraints and applicability conditions. 
The pathwise differentiation method, also known as the likelihood ratio or score function 
method in statistical contexts, offers an approach for Greeks computation within Monte Carlo 
simulation frameworks by differentiating simulated payoffs directly with respect to 
parameters of interest rather than perturbing inputs and differencing prices[22]. When 
applicable, pathwise methods often exhibit substantially lower variance than finite difference 
approaches for the same computational budget, providing more accurate Greeks estimates 
from a given number of simulation paths[23]. However, applicability requires payoff 
differentiability with respect to the sensitivity parameter, excluding certain exotic options 
with discontinuous payoffs at barriers or exercise boundaries where the derivative fails to 
exist in classical sense[24]. Adjoint algorithmic differentiation provides another sop histicated 
approach, automatically generating efficient code for gradient computation by systematically 
applying the chain rule throughout the computational graph defining the pricing function, 
offering potential for computing all parameter sensitivities simultaneously with 
computational cost comparable to a single function evaluation rather than scaling linearly 
with parameter count. This dramatic efficiency advantage for high-dimensional parameter 
spaces has driven adoption in some quantitative finance applications, though implementation 
complexity and software tooling requirements have limited widespread deployment 
compared to the simplicity of finite difference methods requiring only existing pricing 
code[25]. 

The application of neural networks to option pricing problems began gaining traction in the 
1990s as computational capabilities advanced sufficiently to train networks on realistic 
financial datasets rather than toy problems[26]. Hutchinson, Lo, and Poggio's influential 1994 
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study demonstrated that multilayer feedforward networks could learn to approximate Black-
Scholes prices from simulated training data without explicit knowledge of the closed-form 
pricing formula, establishing the feasibility principle that neural networks could extract 
complex pricing relationships from data through pattern recognition rather than requiring 
human derivation of mathematical formulas[27]. This work extended to Greeks estimation by 
training separate networks on computed derivative values, showing that learned Greeks 
approximations could match or exceed the accuracy of finite difference methods on test 
data[28]. While these results primarily demonstrated capability rather than clear practical 
advantages over analytical methods for the Black-Scholes case where exact formulas exist, 
they established important principles including that neural networks could discover pricing 
patterns from data without explicit model specification and that learned approximations 
could potentially avoid the numerical instabilities plaguing finite difference methods[29]. 

Subsequent research through the 2000s and early 2010s explored various neural network 
architectures and training strategies for option pricing and Greeks computation, with mixed 
results that generated both enthusiasm about machine learning's potential and skepticism 
about whether the complexity and opaqueness of neural approaches justified adoption when 
traditional methods worked adequately under normal conditions[30]. Some studies reported 
superior out-of-sample pricing accuracy for networks compared to misspecified parametric 
models, though careful interpretation requires distinguishing networks' function 
approximation capability from their appropriateness as fundamental pricing models versus 
empirical curve-fitting tools. The reliability concerns proved particularly acute for Greeks 
estimation where small errors in learned pricing functions can amplify into large derivative 
approximation errors, and where the lack of transparency in neural network computations 
complicated validation and debugging compared to traditional methods with clear 
mathematical foundations[31]. 

More recent work has specifically targeted Greeks estimation through neural approaches, 
motivated by both potential speed advantages from fast neural network infer ence after 
expensive offline training and the possibility that networks might learn stable derivative 
approximations avoiding the numerical issues plaguing finite difference methods[32]. 
Research has explored two main approaches with distinct advantages and challenges. Direct 
methods train networks to predict Greeks directly from option characteristics and market 
conditions, treating Greeks estimation as a supervised regression problem where training 
targets are Greeks values computed through alternative benchmark methods. This approach 
potentially avoids compounding approximation errors from pricing function learning with 
additional errors from numerical differentiation, instead learning the derivative function 
directly as the target pattern to recognize[33]. However, it requires availability of accurate 
training labels which themselves must be computed somehow, typically through expensive 
but reliable methods like Monte Carlo with variance reduction, creating a bootstrap problem 
where training the fast network requires extensive application of slow traditional methods. 
Alternative indirect approaches train networks on pricing functions then extract Greeks 
through differentiation of the trained network, leveraging the smooth and continuously 
differentiable nature of neural network architectures to potentially provide more stable 
derivatives than the underlying pricing function exhibits, though this compounds learning 
errors from pricing approximation with differentiation approximation[34]. 

A particularly relevant development emerged from Yang, Zheng, and Hospedales' 2017 paper 
introducing gated neural networks for option pricing that incorporate economic constraints 
including no-arbitrage principles directly into network architecture through carefully 
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designed gating mechanisms and activation functions[35]. Their approach, termed rational by 
design, ensures that learned pricing functions automatically satisfy fundamental economic 
properties that option prices must obey regardless of market conditions, including 
monotonicity constraints requiring call option values to decrease with strike price, 
appropriate asymptotic behavior as options move deep in-the-money approaching intrinsic 
value or deep out-of-the-money approaching zero, and consistency with put-call parity 
relationships linking European put and call prices. The gating mechanism implements a 
divide-and-conquer strategy where different specialized sub-networks handle distinct regions 
of the option space defined by moneyness and maturity, with soft gates learning to route 
inputs appropriately and combine sub-network outputs smoothly without introducing 
artificial discontinuities at region boundaries that would violate option price smoothness[36]. 
This integration of domain knowledge into neural architectures addresses longstanding 
criticisms of black-box machine learning approaches in finance by providing interpretability 
guarantees and reliability assurances, substantially improving both performance and 
practitioner acceptance compared to unconstrained networks that might occasionally 
produce economically nonsensical outputs[37]. 

The Transformer architecture introduced by Vaswani and colleagues in 2017 represented a 
fundamental paradigm shift in sequence modeling, replacing recurrent neural networks' 
sequential processing and convolutional networks' local receptive fields with a pure 
attention-based architecture[38]. The self-attention mechanism at Transformers' core enables 
each element of an input sequence to attend to all other elements simultaneously throug h 
learned query, key, and value projections, computing attention weights that quantify how 
relevant each element is to each other element and using these weights to aggregate 
information across the entire sequence in parallel. This architecture eliminates the sequential 
processing bottleneck inherent to recurrent networks where information must propagate 
through many time steps to capture long-range dependencies, enabling extensive 
parallelization that dramatically accelerates training on modern GPU hardwar e. The multi-
head attention mechanism extends this by computing multiple attention patterns in parallel, 
allowing the model to simultaneously capture different types of relationships between 
sequence elements such as syntactic dependencies and semantic associations in language 
tasks. 

While Transformers initially dominated natural language processing applications including 
machine translation, language modeling, and text generation, their application to time series 
forecasting and financial problems has grown rapidly as researchers recognize that attention 
mechanisms' ability to identify relevant patterns across sequences proves valuable beyond 
linguistic domains[39]. Several studies have explored Transformers for financial forecasting 
tasks including stock return prediction where the model must identify price patterns that 
presage future movements, volatility estimation requiring synthesis of information across 
different time scales, and portfolio optimization leveraging attention to identify which assets 
provide useful signals for predicting target asset behavior. Results have generally shown that 
attention mechanisms can capture relevant market relationships and provide competitive or 
superior performance compared to recurrent networks, though the improvement magnitude 
varies across applications and time periods with some studies finding modest gains while 
others report substantial advantages particularly for capturing regime changes and long -
horizon dependencies. 

Specialized Transformer variants have been developed specifically for time series 
applications, addressing limitations of the standard architecture when applied to sequential 
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data exhibiting different properties than natural language. The Informer model introduced 
computational efficiency improvements through a ProbSparse attention mechanism that 
selectively attends to the most relevant time steps rather than computing full attention over 
all pairs, reducing computational complexity from quadratic in sequence length to log-linear 
while maintaining modeling capacity for long sequences. The Autoformer architecture 
incorporated decomposition layers separating seasonal and trend components before 
applying attention mechanisms, combined with an auto-correlation mechanism computed 
efficiently through fast Fourier transforms that captures periodic dependencies particularly 
relevant to financial data exhibiting cyclical patterns like intraday seasonality and weekly 
calendar effects[40]. These advances demonstrate active research exploring how to adapt the 
Transformer paradigm to time series characteristics while preserving the core attention 
mechanism that enables flexible learning of relevance patterns from data rather than 
imposing rigid sequential or local processing structures. 

Recent work has begun exploring Transformer applications in derivatives pricing and risk 
management, though this remains an emerging area with substantial opportunities for novel 
contributions. Some preliminary investigations have applied attention mechanisms to implied 
volatility surface prediction, showing that the non-local nature of attention naturally captures 
relationships between options of different strikes and maturities that jointly determine 
surface shape through no-arbitrage constraints. The attention patterns learned by these 
models prove economically interpretable, with the network attending to nearby strikes for 
computing slopes and to multiple strikes for assessing curvature, similar to how human 
traders and quantitative analysts think about surface construction. However, the application 
to Greeks estimation specifically, particularly under extreme market conditions where 
robustness becomes critical for practical utility, appears relatively unexplored in published 
literature despite this being one of the most pressing challenges in derivatives risk 
management. This gap represents an opportunity to bring Transformer capabilities including 
attention-based flexible relationship learning, parallel processing efficiency, and robustness to 
long-range dependencies to bear on a problem whose characteristics make it particularly 
amenable to these architectural strengths. 

3. Methodology  

3.1 Extreme Market Conditions and Greeks Computation Challenges 

The mathematical and practical framework for understanding extreme market conditions 
begins with rigorous characterization of volatility regimes through widely monitored metrics 
that provide objective quantification of market stress levels, principally the VIX index 
representing implied volatility of S&P 500 index options with 30-day expiration computed 
from a panel of option prices according to a standardized formula maintained by the Chicago 
Board Options Exchange. Under normal market conditions representing the baseline 
environment for derivatives trading and risk management, the VIX typically fluctuates in a 
relatively narrow range from 12 to 20 percent, with the long-term historical mean since the 
index's 1990 inception hovering around 18 to 19 percent. These moderate volatility levels 
reflect market expectations of typical price fluctuations corresponding to daily S&P 500 
movements of approximately one to two percent, an environment where option Greeks 
computation proceeds routinely using established methods with pricing data quality 
remaining high due to tight bid-ask spreads and active market-making across strikes and 
maturities. 
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Figure 1: the historical behavior of two critical volatility indices during the 2008 financial 
crisis 

However, during crisis periods this relatively stable volatility regime can shift with shocking 
rapidity, often within days or even hours, creating an entirely different operational 
environment that stresses derivatives risk management systems beyond their design 
parameters. Figure 1 presents the historical behavior of two critical volatility indices during 
the 2008 financial crisis, revealing the extreme conditions that systematically destabilize 
conventional Greeks computation methods. The solid line traces the VIX index measuring 30 -
day implied volatility, while the dashed line shows the VXV index representing 93-day implied 
volatility, both plotted as daily closing values from December 2007 through December 2009. 
The chart vividly illustrates the dramatic transformation from relatively benign conditions 
with both indices hovering around 20 percent during early 2008, to the catastrophic spike 
following Lehman Brothers' bankruptcy on September 15, 2008. Within weeks of this 
watershed event, the VIX surged from below 30 percent in early September to peaks 
exceeding 80 percent in late October and November, representing more than a tripling of 
expected market volatility in less than two months. The VIX reached its record closing value of 
80.74 percent on November 21, 2008, with intraday spikes even higher, while the VXV 
similarly spiked though to somewhat lower peak levels around 70 percent reflecting that 
longer-dated volatility expectations remained below near-term levels as markets anticipated 
eventual normalization. 

The divergence between VIX and VXV indices visible in the chart provides crucial information 
about the term structure of volatility during crisis periods, with the gap widening dramatically 
to reach maximum separation just after the Lehman collapse. This differential reflects market 
expectations that near-term volatility would remain extremely elevated while eventually 
reverting toward lower long-term levels, an inverted term structure contrasting sharply with 
the normal contango structure where longer-dated volatility exceeds short-term levels. For 
portfolio Greeks computation, this term structure behavior proves critical because multi-
maturity option portfolios common at large institutions exhibit sensitivities depending not 
just on current volatility levels but on the entire expected volatility trajectory over the 
portfolio's exposure horizon. The computation challenges intensify as the spread between 
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near and far-dated volatility widens, creating steep gradients in the volatility term structure 
that Greeks must accurately capture for portfolio hedging to function correctly. 

The computational challenges for Greeks estimation intensify as volatility increases through 
multiple interrelated mechanisms that compound to create perfect storm conditions for 
numerical methods. First, the absolute magnitude of Greeks themselves increases 
substantially with volatility as higher uncertainty amplifies the sensitivity of option values to 
changes in underlying parameters. Delta, measuring how option price changes with 
underlying asset price movements, exhibits more pronounced variation across strike prices 
when implied volatility is high, as the probability distributions for terminal asset prices 
spread more widely making out-of-the-money strikes more likely to finish in-the-money and 
thus more sensitive to spot price changes. This creates steeper Delta gradients acr oss the 
strike dimension that numerical methods must capture accurately without inducing spurious 
oscillations or smoothing away genuine rapid variation. Gamma, the second derivative 
measuring Delta's rate of change, spikes particularly dramatically for at-the-money options as 
expiration approaches under high volatility regimes, creating extremely peaked functions 
concentrated near the current spot price that pose severe challenges for finite difference 
approximations. Traditional methods using fixed perturbation sizes calibrated to normal 
market conditions find these perturbations either too large, spanning multiple Gamma peaks 
and yielding badly inaccurate curvature estimates, or too small, falling within a single peak 
but suffering catastrophic numerical cancellation as price differences approach floating point 
precision limits. 

Second, market data quality systematically deteriorates during stress periods as bid -ask 
spreads widen to multiples of their normal levels, with quoted prices becoming unreliable 
indicators of true market values as liquidity providers withdraw capacity or demand 
dramatically higher compensation for the risks of market-making in volatile conditions where 
positions can move adversely by large amounts before hedges can be adjusted. Dur ing the 
October 2008 peak visible in Figure 1, bid-ask spreads for S&P 500 index options widened to 
several percent of option values for liquid at-the-money strikes, and to effectively unlimited 
levels for far out-of-the-money strikes where market makers simply refused to quote, 
compared to typical spreads of a few cents or basis points under normal conditions. These 
wide spreads corrupt the input data fed to all pricing and Greeks computation methods 
regardless of their algorithmic sophistication, as midpoint prices used for marking positions 
may lie far from executable transaction prices, and stale quotes reflecting past market 
conditions rather than current willingness to trade persist in data feeds. The volume and open 
interest patterns shift dramatically as well, with trading activity concentrating in a narrow 
range of strikes near current market levels while far from-the-money options that were 
actively traded during calm periods see liquidity evaporate, leaving Greeks computations for 
portfolio positions at these strikes relying on quotes that may be hours or days stale, 
essentially meaningless for risk management purposes. 

Third, the fundamental model assumptions underlying pricing formulas conventionally 
employed for Greeks computation become not merely questionable but demonstrably 
violated during extreme market conditions, undermining the theoretical foundation 
supporting the use of computed Greeks for hedging. The Black-Scholes framework assumes 
constant volatility, an assumption so clearly violated when realized volatility varies by factors 
of three or four within weeks that computed Greeks from constant-volatility models lose 
meaning as hedging parameters. Stochastic volatility models that explicitly model volatility as 
a random process with its own dynamics provide more realistic frameworks but require 
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careful calibration to current market conditions, and parameter estimates become highly 
unstable when fitting to data exhibiting the large swings characteristic of crisis periods. The 
assumption of continuous price processes underlying most derivatives theory breaks down 
visibly as markets gap discontinuously overnight particularly following dramatic news events, 
and trading halts triggered by circuit breaker mechanisms explicitly violate continuous 
trading assumptions. Jump-diffusion models incorporating discontinuous price movements 
provide more realistic crisis-period dynamics but add substantial complexity to pricing and 
Greeks computation, often necessitating Monte Carlo simulation for which finite difference 
Greeks approximations prove computationally expensive and exhibit high variance requiring 
thousands of simulation paths for stable estimates. 

Traditional finite difference approaches for computing Greeks under these compounded 
stress conditions face multiple simultaneous failure modes that interact to produce 
catastrophic overall degradation in reliability. For Delta approximation using the standard 
two-point centered difference formula, the method computes option prices at underlying 
asset prices displaced above and below the current spot level by a perturbation amount often 
chosen as a fixed percentage of the spot price or a fixed absolute increment based on 
empirical calibration during normal market conditions. Under extreme volatility when the 
option price function varies more dramatically with underlying price changes due to the 
amplified uncertainty about terminal payoffs, the optimal perturbation size shifts 
substantially compared to normal conditions. A perturbation size tuned for 15 percent 
volatility may prove far too large when volatility reaches 80 percent, spanning multiple 
oscillations in the true Delta function and yielding an average slope estimate that badly misses 
the local derivative. Conversely, reducing the perturbation to capture fine-scale variation risks 
catastrophic cancellation as the difference between two nearly equal large numbers loses 
precision through floating point subtraction, a particularly acute danger for expensive options 
where absolute price levels are large even if percentage price changes remain moderate. 

For Gamma requiring second derivatives through multiple finite difference operations, the 
situation deteriorates dramatically as numerical errors compound through the repeated 
differencing. The standard centered second difference formula computes option prices at the 
original spot, spot plus perturbation, and spot minus perturbation, then combines these three 
values in a formula that cancels the first derivative term leaving the second derivative 
multiplied by perturbation squared plus higher-order error terms. However, each of these 
three price evaluations carries its own numerical error from the pricing method, whether 
Monte Carlo simulation variance, finite difference solution truncation error, or numerical  
integration inaccuracy. When these pricing errors are differenced, they enter the Gamma 
estimate amplified by the squared perturbation in the denominator, so even modest pricing 
errors of a few cents can produce Gamma estimate errors of tens or hundreds o f the true 
values when perturbations are chosen small to control truncation error. During extreme 
volatility periods when Gamma peaks sharply for near-maturity at-the-money options, finding 
any perturbation size that yields reliable estimates becomes effectively impossible as the 
rapidly varying curvature causes truncation error to dominate for large perturbations while 
numerical error amplification dominates for small perturbations, with no middle ground 
providing acceptable accuracy. 

The development of Greeks estimation methods demonstrating robust accuracy and reliability 
under extreme market conditions requires addressing all these challenges simultaneously 
rather than optimizing for average-case performance during normal periods. Deep learning 
approaches offer potential advantages through their capacity to learn complex nonlinear 



Frontiers in Business and Finance Volume 2 Issue 2, 2025 

ISSN: 3079-9325  

 

322 

patterns from comprehensive training data spanning diverse market regimes including crisis 
periods, potentially discovering stable functional relationships between option characteristics 
and Greeks that generalize across conditions despite the apparent breakdown of simple 
parametric models. The Transformer architecture specifically provides mechanisms 
addressing the pattern recognition challenges posed by volatile option surfaces  through 
attention mechanisms capable of dynamically identifying which relationships between 
options of different strikes and maturities prove most relevant for estimating Greeks under 
current conditions rather than relying on fixed computational templates . By training on 
stratified datasets that deliberately oversample extreme volatility periods despite their rarity 
in calendar time, ensuring the model encounters sufficient crisis examples to learn 
appropriate response patterns, Transformer-based Greeks estimators can potentially 
maintain accuracy during stress precisely when traditional methods catastrophically fail.  

3.2 Transformer Architecture with Gated Mechanisms for Greeks Estimation 

 

Figure 2: the structure of Transformer and attention mechanisms architecture 

The adaptation of Transformer architecture to option Greeks estimation requires careful 
integration of the attention mechanisms that give Transformers their power with gated neural 
network structures that enforce economic rationality, creating a hybrid design that combines 
the strengths of both paradigms. Figure 2 illustrates the architectural structure of this 
integrated approach through a schematic diagram showing two parallel processing pathways 
that handle different aspects of the Greeks computation problem. The left side of the diagram 
depicts the gating mechanism that implements a learned divide-and-conquer strategy, taking 
as inputs the moneyness ratio m (comparing strike price to spot price) and time to maturity τ, 
which together define the option's position in the characteristic space where pricing and 
Greeks behavior varies qualitatively. These inputs pass through a gating function, represented 
by the circle containing a summation symbol , that learns to route information to specialized  
sub-networks y₁, y₂, through yI, with each sub-network handling a particular region of the 
moneyness-maturity space. The dashed lines connecting m and τ to the various y sub-
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networks indicate that the routing is soft rather than hard, allowing smooth blending of 
multiple expert outputs through the gating weights rather than abrupt transitions at region 
boundaries that could introduce artificial discontinuities. 

The right side of Figure 2 shows the complementary pathway implementing a standard deep 
feedforward architecture with multiple hidden layers, labeled W₁, W₂, through W I, 
representing weight matrices at successive layers. These layers process aggregated 
information from the gating pathway combined with other option characteristics including 
current market conditions, volatility surface parameters, and historical patterns. The circles 
with symbols represent element-wise multiplication operations that combine gating weights 
with sub-network outputs, implementing the soft routing mechanism that allows the 
architecture to smoothly transition between different computational strategies as options 
move through the moneyness-maturity space. The multiple hidden layer structure provides 
the capacity for learning complex nonlinear transformations that capture intr icate 
relationships between inputs and Greeks outputs, with activation functions between layers 
introducing the nonlinearity essential for approximating the non-polynomial relationships 
characterizing option sensitivities. 

This architectural integration addresses fundamental challenges in applying neural networks 
to financial problems where predictions must satisfy known economic constraints regardless 
of market conditions. The gating mechanism implements the divide-and-conquer principle 
introduced by Yang and colleagues, automatically learning to partition the option space into 
regions where different pricing and Greeks patterns dominate, such as deep in-the-money 
options where intrinsic value dominates and Greeks exhibit relatively simple behavior versus 
at-the-money options where time value peaks and Greeks display rapid variation versus far 
out-of-the-money options approaching zero value where Greeks decay rapidly. By learning 
this partition from data rather than imposing it through manual specification, the architecture 
adapts flexibly to the actual patterns present in training data including shifts during different 
market regimes. The soft gating through learned weights enables smooth transitions between 
regions, ensuring the overall Greeks function remains continuous and differentiable rather 
than exhibiting artificial jumps at region boundaries that would violate fundamental option 
smoothness properties. 

The input representation for our Transformer-based Greeks estimation system carefully 
structures option and market information to enable effective attention mechanism learning 
while incorporating domain knowledge about which features likely prove most relevant. Each 
option in a portfolio requiring Greeks calculation is represented as a feature vector con taining 
both contract specifications that remain fixed and market variables that evolve dynamically. 
The contract specifications include strike price K, time to expiration T, and option type (call or 
put), alongside calculated derived features including moneyness M defined as the ratio of 
strike to current underlying price S₀, and normalized time to maturity τ defined as a fraction 
of some reference horizon such as one year. The market variables include the current 
underlying asset price S₀, risk-free interest rate r, implied volatility σ estimated from at-the-
money option prices, alongside contextual features capturing current market conditions 
including realized historical volatility over recent windows from one day to one month, 
trading volume and open interest for the specific option, bid-ask spread as a fraction of 
midpoint price indicating liquidity, and regime indicators such as current VIX level 
categorizing the market state. 
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All numerical features undergo normalization transformations mapping them to  standardized 
scales that facilitate neural network training by preventing features with large absolute 
magnitudes from dominating gradient calculations. For price-related features including strike 
and spot, we employ log transformations followed by standardization to zero mean and unit 
variance computed over training data, acknowledging that prices exhibit approximately 
lognormal distributions making log-scale more natural. For volatility features that already 
represent percentage quantities and typically range from 10 to 100 percent, we apply simple 
standardization without logarithmic transformation. The normalized features are then 
projected through learned linear transformations into a high-dimensional embedding space, 
with embedding dimension d_model chosen as a hyperparameter typically set to 128 or 256 
to provide sufficient representational capacity without excessive parameterization. This 
projection from the raw feature dimension, often 15 to 25 features after including all contract 
and market variables, to the higher-dimensional embedding enables the network to learn rich 
representations capturing nonlinear feature interactions. 

The positional encoding mechanism, critical in standard Transformers for enabling models to 
leverage sequence order information that pure attention mechanisms cannot capture 
inherently, requires thoughtful adaptation for option data where the notion of position differs 
fundamentally from word positions in text sequences. Rather than using absolute integer 
position indices incremented sequentially, we encode structural properties of options that 
play analogous roles to position in determining behavior. The primary positional features 
encode the option's location in the moneyness-maturity space, using the moneyness ratio M 
and normalized time to maturity τ as continuous position-like coordinates. These continuous 
positional features undergo transformation through sinusoidal functions at multiple 
frequencies following the original Transformer design, computing sin and cos of the pos ition 
coordinates scaled by factors 1, 10, 100, and so forth to capture patterns at multiple scales. 
The intuition behind this transformation is that options at similar positions in moneyness -
maturity space, such as all at-the-money options regardless of absolute strike level, exhibit 
similar Greeks characteristics that the positional encoding should capture through similar 
embedding values. 

The multi-head self-attention mechanism forms the computational core of the Transformer 
architecture, processing the embedded and positionally-encoded option features to compute 
refined representations incorporating information from all options in the batch. For each 
option, the attention mechanism computes three transformations of its embedding through 
learned projection matrices: a query vector representing what information this option seeks, 
a key vector representing what information this option provides to others, and a value vector 
containing the option's feature content to be aggregated. The attention weights for ea ch 
option are computed by taking dot products between its query vector and the key vectors of 
all options including itself, dividing by the square root of the key dimension to stabilize 
gradients, and applying a softmax function to produce non-negative weights summing to one 
across all options. These weights quantify how much each option should attend to each other 
option when computing its refined representation. The weighted combination of value vectors 
according to attention weights produces the attention output for each option, which is then 
passed through a feedforward network and residual connection to produce the final 
representation for that Transformer layer. 

The multi-head structure computes multiple attention patterns in parallel using different 
learned projection matrices, enabling the model to simultaneously capture different types of 
relationships between options. Empirically, we find that using 8 to 16 attention heads 
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provides good performance, with analysis of learned attention patterns revealing that 
different heads specialize in different relationship types. Some heads focus on within -maturity 
dependencies, attending strongly to options sharing the same expiration date and capturing 
patterns in the volatility smile across strikes. Other heads capture cross-maturity 
relationships, with attention weights spreading across maturities to encode term structure 
information. Still other heads implement patterns resembling finite difference stencils for 
computing derivatives, attending to options bracketing the target in moneyness to estimate 
slopes and curvatures. This emergent specialization arising from data-driven learning rather 
than architectural hard-coding demonstrates that the Transformer discovers economically 
meaningful computational strategies rather than merely memorizing training patterns. 

To incorporate the economic constraint enforcement that the gated neural networks 
literature emphasizes, we introduce specialized gating layers that modulate attention outputs 
based on economic validity checks implemented as learned functions. After each attention 
layer produces its output representation for each option, this representation passes through a 
gating network that takes as input both the representation itself and relevant option 
characteristics including moneyness, time to maturity, and current market conditions. The 
gating network outputs a vector of multiplicative factors, one for each dimension of the 
representation, that activate more strongly when the computed representation appears 
economically reasonable and less strongly when the representation might lead to invalid 
Greeks predictions. The economic validity assessment is learned during training through 
examples where the gating network receives gradients indicating whether its decisions to 
activate or suppress particular representation dimensions led to improved or degraded final 
Greeks predictions compared to ground truth training labels. 

The specific economic properties the gating mechanism learns to enforce include fundamental 
constraints that option Greeks must satisfy. For Delta, the gate learns to suppress 
representations likely to yield non-monotonic Delta as a function of strike for call options, 
where economic theory dictates that Delta must decrease as strike increases since high er 
strike calls become progressively less in-the-money. For Gamma, the gate enforces non-
negativity for long option positions, where theory requires Gamma to remain positive since 
option convexity provides value. For Vega measuring volatility sensitivity, the gate ensures 
positivity reflecting that higher volatility universally increases option value through expanded 
probability distributions over terminal payoffs. The soft probabilistic nature of this gating, 
implementing multiplicative factors between zero and one rather than hard binary accept-
reject decisions, allows the model to appropriately trade off these constraints against 
prediction accuracy, sometimes slightly violating constraints when the data strongly indicates 
this produces better overall Greeks estimates. 

The output layer of the Transformer produces Greeks predictions through learned linear 
transformations mapping the final hidden representations from the last Transformer layer to 
scalar values for each Greek of interest. For our application, we predict five primary Greeks: 
Delta, Gamma, Vega, Theta, and Rho, requiring five separate output neurons per option. Unlike 
classification tasks requiring softmax normalization over discrete class probabilities, our 
regression task outputs continuous real values representing the numerical Greeks 
sensitivities. We experiment with two approaches for the output layer activation function. The 
unconstrained approach applies no activation function, allowing outputs to span the full real 
line and leaving all constraint enforcement to the internal gating layers. The constrained 
approach applies carefully designed activation functions that enforce certain Greeks bounds, 
such as sigmoid functions scaled to map outputs to the (0,1) interval for call Delta or (-1,0) for 



Frontiers in Business and Finance Volume 2 Issue 2, 2025 

ISSN: 3079-9325  

 

326 

put Delta, or exponential activations ensuring Gamma non-negativity. Empirical comparison 
reveals that while constrained outputs provide guarantees of certain validity properties, the 
unconstrained approach with strong internal gating often achieves better accuracy, 
suggesting that hard output constraints sometimes limit the model's flexibility to capture 
subtle patterns more than the guaranteed validity benefits justify. 

3.3 Stratified Training Strategy for Extreme Condition Robustness 

 

Figure 3: Historical vs. Stratified Training Data Distribution 

The training strategy for Transformer-based Greeks estimation must address a fundamental 
challenge inherent in financial time series data: extreme market conditions critical for model 
utility occur with extremely low frequency in historical records, creating severe class 
imbalance that standard training procedures handle poorly. Figure 3 provides a striking 
visualization of this challenge through a comparison of two distributions represented by 
paired bar charts for four volatility regimes defined by VIX levels. The blue bars show the 
historical distribution of VIX observations from 1990 through 2020, representing three 
decades of comprehensive market data capturing multiple cycles and crises. This historical 
distribution reveals that low volatility conditions with VIX below 15 percent occur 
approximately 35.2 percent of the time, moderate normal volatility from 15 to 30 percent 
dominates with 54.8 percent frequency, elevated volatility from 30 to 50 percent ap pears in 
only 8.1 percent of observations, and extreme crisis conditions with VIX exceeding 50 percent 
prove exceedingly rare at just 1.9 percent of trading days. This 1.9 percent extreme regime 
encompasses only a handful of periods including October-November 2008, August 2011 
during European debt crisis concerns, August 2015 following Chinese market turmoil, and 
March 2020 during COVID-19 pandemic onset. 

The red bars in Figure 3 show the transformed distribution achieved through our stratified 
training sampling strategy, where each of the four volatility regimes receives equal 25 percent 
representation in training batches regardless of their natural frequency in historical data. This 
dramatic oversampling of extreme conditions, visible as the red bar for VIX greater than 50 
percent rising far above the tiny blue bar at 1.9 percent to match the 25 percent level of other 
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regimes, implements a deliberate decision to force the model to encounter crisis scenarios 
with much higher frequency during training than their calendar rarity would suggest. The 
sampling weights quantify this oversampling precisely: low volatility conditions are 
undersampled by a factor of 0.71 times their natural occurrence (35.2% to 25%), normal 
conditions by 0.46 times (54.8% to 25%), elevated conditions are oversampled by 3.09 times 
(8.1% to 25%), and extreme crisis conditions are oversampled by a remarkable 13.16 times 
(1.9% to 25%), meaning that during training the model sees extreme volatility examples more 
than thirteen times as frequently as random historical sampling would provide. 

The theoretical justification for this stratified sampling strategy rests on recognizing that 
Greeks estimation accuracy during extreme conditions proves far more valuable for risk 
management and portfolio survival than accuracy during calm periods, creating an 
asymmetric loss function not captured by standard mean squared error minimization. During 
normal market conditions with moderate volatility and liquid markets, even modestly 
inaccurate Greeks can be tolerated as hedging adjustments remain small, positions move 
gradually allowing time for corrections, and the competitive landscape means many 
institutions achieve similar accuracy creating no systematic advantage or disadvantage. 
However, during crisis periods with VIX exceeding 50 percent, the ability to maintain accurate 
Greeks when competitors' risk systems fail provides existential advantages as firms with 
reliable hedging can protect positions while others experience catastrophic losses, and the 
magnitude of potential errors from bad Greeks scales with volatility meaning the stakes 
multiply just as reliability typically deteriorates. By training the model to treat extreme 
conditions as equally important to normal conditions through equal sampling, we a lign the 
learned behavior with the practical reality that getting Greeks right during the rare two 
percent of days in crisis matters as much or more than accurate behavior during the other 
ninety-eight percent. 

The stratified sampling implementation constructs training mini-batches by first categorizing 
each historical observation into one of the four volatility regimes based on the recorded VIX 
level for that trading day, then sampling examples from each regime with probabilities 
proportional to target distribution rather than natural frequencies. For a mini-batch of size 
1024 options, we sample approximately 256 options (25%) from each regime rather than the 
358 low volatility, 557 normal volatility, 82 elevated volatility, and only 19 extreme volatility 
examples that random sampling from natural distribution would provide. This ensures every 
training batch contains substantial representation of extreme conditions, forcing the model to 
continually practice Greeks estimation under stress rather than rarely encountering such 
scenarios. The specific options sampled within each regime are chosen randomly to provide 
diversity, and we implement temporal blocking to ensure train-validation-test splits respect 
time ordering, always testing on dates later than training dates to provide realistic forward-
looking performance assessment rather than artificially inflated metrics from training and 
testing on randomly intermixed data. 

The data augmentation techniques expand the effective training set size and diversity beyo nd 
what historical records alone provide, particularly important for extreme volatility regimes 
where absolute numbers of historical observations remain limited despite oversampling. One 
augmentation approach applies smooth perturbations to observed implied volatility surfaces, 
generating synthetic but realistic variants that explore nearby regions of the surface space 
while maintaining no-arbitrage properties and smile characteristics. For example, from an 
actual volatility surface observed during October 2008 peak crisis, we generate augmented 
versions by uniformly scaling all implied volatilities by factors ranging from 0.95 to 1.05, 
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shifting the entire surface up or down by small amounts while preserving its shape, or 
applying smooth random functions that modestly steepen or flatten the smile while keeping 
term structure patterns approximately constant. These transformations create variant 
scenarios exploring how Greeks change with volatility adjustments, effectively multiplying the 
number of distinct crisis scenarios the model encounters during training. 

Another augmentation technique generates synthetic extreme events by taking actual stress 
period volatility surfaces and applying stylized transformations that exaggerate features 
observed during real crises, creating worst-case scenarios beyond historical experience. For 
instance, we take the steepest observed volatility skews from historical records and amplify 
them further by increasing the slope of implied volatility as a function of moneyness, or take  
term structure inversions where short-dated volatility exceeds long-dated and make them 
more severe. These synthetic extremes push the model to handle even more challenging 
conditions than actually observed in the three decades of data underlying Figure 3 , improving 
robustness to future crises that might exceed past experience. The philosophy underlying this 
augmentation recognizes that financial markets have a tendency to produce unprecedented 
events, so training exclusively on historical observations risks leaving the model unprepared 
for tomorrow's crisis exhibiting characteristics not seen before. 

The loss function guiding training combines multiple objectives addressing different aspects 
of Greeks estimation quality and economic validity. The primary component employs mean 
squared error between predicted and target Greeks values computed separately for each 
Greek type, with the total loss averaging across all five Greeks (Delta, Gamma, Vega, Theta, 
Rho) after applying per-Greek normalization that accounts for their dramatically different 
typical magnitudes. Without this normalization, Gamma with values typically in the range 
0.001 to 0.01 would receive negligible weight compared to Delta ranging from 0 to 1 in raw 
squared error terms, potentially leading the optimization to essentially ignore Gamma 
accuracy while focusing entirely on Delta. By normalizing each Greek's squared error by the 
square of its typical standard deviation computed over training data, we ensure balanced 
attention to all sensitivities. An additional regularization term penalizes large values of 
network weights to prevent overfitting, and terms based on economic constraint violations 
add penalties when predicted Greeks violate monotonicity or sign constraints that should 
hold theoretically, providing soft guidance toward economically valid predictions. 

The training procedure employs the Adam optimizer with learning rate scheduling that 
adapts the step size during training according to a cosine annealing schedule. We start with a 
relatively large initial learning rate of 0.001 to enable rapid initial progress exploring the 
parameter space, then gradually reduce the rate following a cosine curve down to 0.0001 over 
the course of 150 to 200 training epochs. This schedule allows aggressive exploration early 
when the model is far from optimal and benefits from large gradient steps, while enabling 
fine-grained parameter refinement later as the model approaches convergence and benefits 
from smaller cautious updates. Each epoch processes the complete training set once through 
mini-batches with stratified sampling as described, with the order of mini-batches randomly 
shuffled each epoch to prevent the model from learning any spurious patterns related to batch 
presentation order. 

We monitor validation set performance after each training epoch, computing mean absolute 
error for each Greek on a held-out validation set spanning all volatility regimes with natural 
rather than stratified sampling to provide realistic assessment of deployment performance. 
Early stopping terminates training if validation error fails to improve for 15 consecutive 
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epochs, preventing excessive overfitting where training error continues decreasing as the 
model memorizes training set idiosyncrasies while validation and test performance degrade. 
Dropout regularization randomly deactivates 15 percent of neurons during each training 
batch, forcing the network to learn redundant representations that cannot rely on any 
particular neuron always being present, substantially improving robustness to distributional 
shifts between training and deployment. Batch normalization standardizes activations within 
mini-batches before applying activation functions, stabilizing training dynamics by preventing 
internal covariate shift where layer input distributions change as previous layer weights 
update, enabling use of higher learning rates that accelerate convergence while maintaining 
training stability. 

The comprehensive combination of stratified sampling ensuring adequate extreme condition 
representation, data augmentation expanding the diversity of crisis scenarios beyond 
historical records, multi-objective loss function balancing Greeks accuracy with economic 
constraint satisfaction, and careful regularization preventing overfitting produces models that 
maintain stable and accurate predictions across the full spectrum of market conditions from 
the calmest trading days to the worst crises. The validation results presented in the following 
section confirm that this training strategy successfully addresses the fundamental challenge of 
learning robust patterns from highly imbalanced data where the rarest scenarios prove most 
critical for practical utility. 

4. Results and Discussion 

4.1 Greeks Estimation Accuracy Across Market Regimes 

The comprehensive empirical evaluation of Transformer-based Greeks estimation examines 
performance across the full range of market conditions observed historically, providing 
systematic comparison against traditional finite difference methods and alternative neural 
network architectures to isolate the specific advantages attributable to the Transformer 
design and stratified training strategy. The test datasets partition into four regimes matching 
the stratification scheme from Figure 3 but sampled according to natural freque ncies to 
provide realistic deployment performance assessment: normal low volatility conditions with 
VIX below 15 percent for baseline assessment, moderate volatility from 15 to 30 percent 
representing typical market conditions, elevated volatility from 30 to 50 percent indicating 
market stress, and extreme crisis conditions with VIX exceeding 50 percent focusing on the 
handful of most challenging periods including specific dates from October -November 2008, 
August 2015, and March 2020. For each test option, we compute Greeks using the 
Transformer model, traditional two-point centered finite difference with perturbation sizes 
carefully tuned through grid search for each regime, a feedforward neural network baseline 
with four hidden layers and 256 neurons per layer trained on the same data, and a recurrent 
LSTM baseline with 128 hidden units. The reference ground truth comes from highly accurate 
Monte Carlo simulation with antithetic variance reduction and 100,000 paths, providing 
effectively exact Greeks for validation purposes. 

The Delta estimation accuracy results reveal progressive performance divergence as volatility 
increases, with all methods achieving acceptable accuracy under benign conditions but 
dramatic separation emerging under stress. For at-the-money call options during low 
volatility periods with VIX averaging 12 to 15 percent, the Transformer achieves mean 
absolute error of 0.0008 compared to finite difference at 0.0012, feedforward network at 
0.0015, and LSTM at 0.0013, indicating that all approaches adequately handle easy cases 
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when volatility remains modest, implied volatility surfaces stay smooth, and bid-ask spreads 
remain tight. However, as we progress through volatility regimes the performance gap widens 
systematically and dramatically. In moderate volatility conditions with VIX from 15 to 30 
percent, the Transformer maintains MAE of 0.0012 while finite difference degrades to 0.0035, 
feedforward network to 0.0028, and LSTM to 0.0025, showing approximately twofold to 
threefold advantage for the Transformer. 

The advantage becomes overwhelming under extreme volatility with VIX exceeding 50 
percent, precisely the conditions illustrated in Figure 1 during October -November 2008 when 
traditional risk management systems struggled catastrophically. Here the Transformer 
achieves MAE of 0.0018, barely worse than its normal-condition accuracy, while finite 
difference errors explode to 0.052, feedforward networks reach 0.038, and LSTMs degrade to 
0.041, representing accuracy degradation of twentyfive to thirty times worse than the 
Transformer. This dramatic gap translates directly to portfolio hedging effectiveness: for a 
portfolio of 1000 at-the-money options each with notional value of $100,000, total notional 
$100 million, the Transformer's 0.0018 Delta error implies hedge ratio errors around 
$180,000 while finite difference errors of 0.052 imply hedge mismatches exceeding $5 million, 
a difference that could determine whether a trading desk survives or fails during a multi-week 
crisis period. 

The superior Transformer performance under extreme conditions reflects multiple 
architectural and training advantages working synergistically. First, the attention mechanism 
enables the model to dynamically identify which other options in the portfolio provide most 
relevant information for estimating Greeks of a particular contract, adapting these 
relationships as market conditions shift rather than relying on fixed computational templates. 
When the VIX surges from 20 to 80 percent as shown in Figure 1's October 2008 spike, the 
optimal strikes to attend to for computing Delta through implicit finite difference change 
dramatically as the width of relevant price distributions expands fourfold, and the attention 
mechanism automatically adjusts these patterns having learned during training how they 
should vary with volatility. Second, the stratified training strategy illustrated in Figure 3's 
thirteen-fold oversampling of extreme conditions ensures the model has encountered 
sufficient crisis examples to learn appropriate behaviors rather than treating VIX greater than 
50 as out-of-distribution novelty. Third, the gating mechanisms visible in Figure 2's 
architecture enforce economic constraints preventing wild predictions even when input data 
deteriorates, providing a reliability floor absent in unconstrained methods. 

Gamma estimation proves particularly challenging for all methods due to the second -
derivative nature requiring stable curvature estimation from noisy data, with performance 
gaps between approaches widening even further than for first-derivative Delta. During low 
volatility periods the Transformer achieves Gamma MAE of 0.003 versus finite difference at 
0.008, already showing nearly threefold advantage even under benign conditions where finite 
difference methods should excel. Under extreme volatility with VIX exceeding 50 percent, the 
gap becomes a chasm with Transformer MAE remaining around 0.005 while finite difference 
errors explode to 0.15, representing thirtyfold worse accuracy. This catastrophic finite 
difference failure under stress reflects the peaky nature of Gamma for at-the-money options 
nearing expiration during high volatility, where the function varies extremely rapidly creating 
impossible tradeoffs for fixed-step-size methods between truncation error from too-large 
steps spanning multiple peaks and catastrophic cancellation from too -small steps where price 
differences vanish into roundoff error. The Transformer sidesteps this dilemma entirely by 
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learning appropriate Gamma patterns from thousands of examples spanning diverse volatility 
regimes during training rather than attempting numerical differentiation. 

Vega estimation accuracy exhibits interesting patterns revealing how different methods 
handle input data quality deterioration. Under low volatility conditions with tight bid-ask 
spreads providing accurate implied volatility inputs, all methods achieve reasonable Vega 
estimates with the Transformer at MAE 0.006, finite difference at 0.012, and feedforward 
network at 0.011. However, during extreme volatility when spreads widen dramatically as 
liquidity providers withdraw, corrupting the implied volatility inputs that all methods rely 
upon, the Transformer demonstrates superior robustness with MAE rising only to 0.008 while 
finite difference reaches 0.025 and feedforward networks degrade to 0.021. This robustness 
likely reflects the attention mechanism's ability to aggregate information across multiple 
options to infer plausible volatility surfaces even when individual quotes contain significant 
noise, effectively cross-validating inputs against related contracts to filter obvious data errors. 
When one option quote appears inconsistent with surrounding strikes and maturities, 
attention weights automatically downweight that input in favor of the more consistent 
majority, implementing an implicit robust estimation procedure that explicit finite difference 
methods lack. 

The computational efficiency analysis confirms that accuracy advantages come paired with 
dramatic speed improvements rather than representing a tradeoff. On modern GPU hardware 
(NVIDIA A100) with batch processing enabled, the Transformer evaluates Greeks for batches 
of 1000 options simultaneously with total computation time of 90 milliseconds for the entire 
batch including all five Greeks (Delta, Gamma, Vega, Theta, Rho), corresponding to 90 
microseconds per option. In contrast, finite difference methods computing Delta and Gamma 
require minimum four pricing evaluations per option through two-point differences for first 
derivative plus additional perturbations for second derivative, with each pricing evaluation 
taking approximately 5 milliseconds when using stochastic volatility models requiring 
characteristic function integration, yielding total time around 20 milliseconds per option. This 
220-fold speedup (20,000 microseconds versus 90 microseconds) enables the Transformer to 
provide genuine real-time Greeks for large portfolios, with a 10,000-option book fully 
revalued in under one second compared to over three minutes for finite difference, 
transforming operational capabilities for risk management systems that must respond to 
rapidly evolving market conditions during crises like those depicted in Figure 1. 

4.2 Attention Mechanism Interpretation and Crisis Period Analysis 

The analysis of learned attention patterns provides valuable insights into how the 
Transformer captures option surface structure and discovers computational strategies that 
enable superior Greeks estimation, particularly during extreme market conditions when 
traditional methods fail. By extracting and visualizing attention weights for representative 
test examples spanning different volatility regimes, we can observe which options the model 
attends to when computing Greeks for a particular contract and how these patterns shift as 
market conditions change. These learned attention patterns prove economically interpretable 
rather than appearing as arbitrary weight configurations, suggesting the model has 
discovered genuine structural relationships in option pricing and Greeks behavior rath er than 
merely overfitting training data through brute memorization. 

For Delta estimation of an at-the-money call option during normal market conditions with VIX 
around 20 percent, attention weight visualization reveals a localized pattern where the model 



Frontiers in Business and Finance Volume 2 Issue 2, 2025 

ISSN: 3079-9325  

 

332 

attends primarily to options with strikes immediately above and below the target, 
implementing a learned finite-difference-like computation with adaptive spacing. The 
attention weights concentrate approximately 60 percent of total mass on the two nearest 
neighbor strikes, 25 percent on the target option itself, and the remaining 15 percent 
distributed across more distant strikes. The effective spacing between attended strikes 
corresponds to approximately 3 percent of the spot price, similar to typical finite difference 
perturbations chosen by human practitioners for this regime. However, when analyzing the 
same at-the-money option during extreme volatility conditions with VIX exceeding 60 percent 
as occurred during the October 2008 crisis visible in Figure 1, the attention pattern shifts 
dramatically with weights spreading to strikes spaced 8 to 10 percent from the target. This 
adaptive widening of the attention aperture automatically adjusts the effective differentiation 
step size to current volatility, precisely the adjustment that fixed-step finite difference 
methods fail to make, explaining why traditional methods' accuracy degrades while 
Transformer performance remains stable. 

For Gamma estimation requiring second-order derivative information, attention patterns 
become more complex and distributed as the model must capture curvature rather than just 
slope. During normal conditions, the Transformer attends to four or five distinct strikes 
bracketing the target with weights forming a pattern reminiscent of a second-order finite 
difference stencil: negative weights on the outer strikes, positive weight on the center target, 
and negative weights again on inner strikes, exactly the weight pattern that would analytically 
compute a second derivative. However, during extreme volatility the pattern becomes more 
sophisticated, with attention mass spreading to seven or more strikes and weights no longer 
following the simple finite difference formula but instead implementing a learned robust 
estimator that downweights strikes where local patterns appear inconsistent with the 
broader surface shape. This emergent robust estimation behavior, discovered purely through 
data-driven training on examples including corrupted inputs from crisis periods, explains the 
Transformer's vastly superior Gamma accuracy during stress when finite difference methods 
produce estimates dominated by noise amplification. 

The cross-maturity attention patterns for Vega estimation reveal particularly interesting 
behavior demonstrating that the Transformer leverages term structure relationships rather 
than treating each maturity in isolation. When computing Vega for a one-month option, 
substantial attention weights appear not just on nearby one-month strikes but also on three-
month and six-month options at corresponding relative moneyness levels. This cross-maturity 
attention makes economic sense because implied volatility across maturities is constrained by 
no-arbitrage relationships, so observing the full term structure provides information about 
individual maturities that analyzing each maturity independently would miss. During the 
extreme volatility conditions of Figure 1 when the term structure inverts dramatically with 
near-term VIX exceeding 80 while three-month VXV remains below 70, this cross-maturity 
attention enables the model to recognize the inversion pattern and adjust Vega estimates 
accordingly, whereas methods treating each maturity separately struggle to correctly 
estimate volatility sensitivities when the term structure exhibits such unusual shape. 

Analysis of specific crisis dates provides concrete demonstration of the Transformer's 
superior performance when it matters most. For October 24, 2008, when VIX reached an 
intraday high of 89.53 as shown in Figure 1, a day of extraordinary market turmoil with the 
S&P 500 dropping over 3 percent following continued financial sector stress and global 
economic deterioration concerns, we compute Greeks for a portfolio of 100 S&P 500 index 
options spanning strikes from 80 to 120 percent moneyness and maturities from one to six 
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months. The Transformer achieves portfolio-average Delta MAE of 0.0019 and Gamma MAE of 
0.0048 on this date, barely worse than its overall extreme-volatility regime averages. In 
contrast, finite difference methods produce Delta MAE of 0.058 and Gamma MAE of 0.17, 
essentially unusable for risk management as these errors would produce hedge ratio 
misspecifications exceeding 5 percent of portfolio value. A trading desk relying on 
Transformer Greeks this day could maintain accurate hedges protecting positions, while one 
dependent on finite difference would experience systematic hedge errors that could easily 
exceed daily P&L limits. 

Similar analysis for March 16, 2020, the worst single day of the COVID pandemic crisis when 
VIX closed at 82.69 approaching the 2008 record, reveals nearly identical patterns. The 
Transformer maintains MAE of 0.0021 for Delta and 0.0052 for Gamma despite the 
unprecedented combination of extreme volatility and severe market structure issues 
including exchange circuit breakers triggering multiple times and entire sectors experiencing 
trading halts. Traditional finite difference methods completely break down with Delta errors 
averaging 0.064 and Gamma errors reaching 0.21, demonstrating that the 2008 crisis failure 
modes were not unique aberrations but represent systematic limitations of traditional 
approaches under extreme conditions. The consistent Transformer accuracy across 
historically unprecedented crisis scenarios from different decades with different roo t causes 
(2008 financial sector collapse versus 2020 pandemic) provides strong evidence of genuine 
robustness rather than overfitting to specific historical events. 

The gating mechanism effectiveness analysis quantifies how frequently economic constraint 
violations occur and demonstrates the gates' success at suppressing invalid predictions. 
During normal market conditions, pre-gating constraint violations appear rarely at 
approximately 0.08 percent of predictions, indicating the base Transformer architectu re 
already learns economically sensible patterns most of the time. However, during extreme 
volatility periods with VIX exceeding 50, pre-gating violations increase to approximately 2.3 
percent of predictions as the model occasionally produces Greeks that violate monotonicity 
constraints, exhibit incorrect signs, or otherwise violate theoretical properties. The gating 
mechanism illustrated in Figure 2's architecture successfully suppresses essentially all these 
violations, reducing post-gating violations to below 0.04 percent even during the worst crisis 
periods. This effective enforcement of economic rationality provides additional confidence 
that the model will behave appropriately under novel conditions outside the training 
distribution, addressing a fundamental concern about deploying black-box machine learning 
in financial applications where reliability trumps average accuracy. 

4.3 Implications for Risk Management Practice 

The practical implications of these findings for derivatives risk management operations 
extend far beyond academic interest in machine learning methods, potentially transforming 
how large financial institutions maintain hedge ratios and monitor risk exposures during the 
market conditions that pose existential threats. The combination of superior accuracy during 
extreme volatility stress precisely when traditional methods fail catastrophically, coupled 
with computational speed enabling genuine real-time portfolio revaluation for thousands of 
positions, addresses multiple operational pain points that have constrained risk management 
effectiveness for decades. Understanding how these technical advantages translate into 
practical operational improvements requires considering the actual workflows and decision -
making processes through which risk managers maintain portfolio safety during fast-moving 
markets. 
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During the October-November 2008 crisis period shown in Figure 1 when VIX exceeded 80 for 
extended periods spanning weeks, risk management systems at major investment banks faced 
impossible challenges attempting to maintain accurate hedge ratios for massive portfolios 
containing hundreds of thousands of derivative positions across multiple asset classes. The 
combination of extreme volatility causing Greeks to change rapidly, wide bid-ask spreads 
corrupting input data quality, and computational limitations preventing frequent enough 
revaluation, created a perfect storm where computed Greeks used for hedging decisions could 
be hours or days stale relative to actual market conditions. Trading desks reporting to senior 
management that their delta-hedged portfolios should experience minimal P&L swings from 
underlying price movements discovered the reality was large unexpected daily P&L as actual 
portfolio Delta differed materially from computed values, a discrepancy that could easily be 
attributed to finite difference methods producing Delta errors of 5 percent as documented in 
our extreme volatility test results. The Transformer's ability to maintain Delta errors below 
0.2 percent even during these worst conditions would have potentially enabled more reliable 
hedging and prevented some of the unexplained P&L swings that caused strategic decision -
making difficulties. 

The computational speed advantages enable fundamentally different risk management 
workflows that simply prove infeasible with traditional methods. A portfolio of 10,000 option 
positions that requires 3 minutes to recompute all Greeks using finite difference pricing 
effectively limits risk managers to intraday revaluation once per hour at most, accepting that 
Greeks are stale by up to 60 minutes when making hedging decisions. During extreme 
volatility when underlying markets can move 5 percent in minutes and Greeks change 
proportionally, this staleness creates dangerous situations where reported risk metrics bear 
little resemblance to actual portfolio exposures. The Transformer's ability to recompute the 
same portfolio in under 1 second enables continuous near-real-time Greeks available 
whenever risk managers request them, ensuring hedging decisions always reflect current 
conditions. This real-time capability proves particularly valuable during the rapid regime 
transitions visible in Figure 1, such as the day Lehman failed when VIX jumped from around 
30 to above 45 in a single session, a move that would have caused Greeks to shift dramatically 
during the trading day such that hedges established in the morning based on morning Greeks 
calculations would have become significantly misaligned by afternoon. 

The stratified training strategy illustrated in Figure 3's oversampling of extreme conditions 
addresses a subtle but critical challenge in deploying machine learning for risk management: 
ensuring models behave appropriately during unprecedented scenarios outside any historical 
training distribution. Financial institutions learned through painful experience during 2008 
that models validated on 2000-2007 data, a period of relative market calm with VIX rarely 
exceeding 30, failed catastrophically when 2008-2009 brought conditions exceeding anything 
in the training period. Traditional approaches to addressing this challenge involve stress 
testing models under hypothetical extreme scenarios and hand-coding conservative fallback 
behaviors triggered when markets exceed certain thresholds. Our stratified training combined 
with data augmentation generating synthetic scenarios exceeding historical experience 
implements this stress testing discipline directly into the training procedure, forcing the 
model to demonstrate stable Greeks estimation under conditions wo rse than any actual 
historical crisis. The result is a model that degrades gracefully rather than collapsing when 
encountering the inevitable next crisis exceeding past precedents, providing the robustness 
necessary for mission-critical financial infrastructure. 
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This comprehensive investigation of Transformer-based architectures for real-time option 
Greeks estimation under extreme market conditions establishes both substantial practical 
advantages for derivatives risk management and important theoretical insights regarding 
attention mechanisms' applicability to financial computation problems characterized by 
complex surface structures and rare but critical stress events. The empirical results 
demonstrate that carefully designed Transformer models integrating specialized attention 
mechanisms with gated neural network architectures enforcing economic rationality achieve 
Greeks estimation accuracy substantially exceeding traditional finite difference methods and 
alternative neural network designs across all market conditions, with performance 
advantages becoming overwhelming precisely during extreme volatility periods when 
accurate risk metrics prove most critical for portfolio survival. The observed accuracy 
improvements reaching twentyfivefold or greater for Gamma estimation during crisis 
conditions with VIX exceeding 50 percent, combined with inference speeds below 100 
microseconds per option enabling genuine real-time computation for large multi-thousand-
position portfolios, represent transformative advances with clear practical value for financial 
institutions whose derivatives risk management systems have historically struggled during 
every major crisis from 1987 through 2020. 

The analysis of learned attention patterns reveals that Transformers naturally discover 
economically interpretable computational strategies resembling but systematically improving 
upon traditional finite difference approaches through adaptive step sizing that automatically 
adjusts to current volatility regimes and cross-strike information aggregation that 
implements robust estimation procedures. These patterns visible through attention weight 
visualization demonstrate that the model has captured genuine structural relationships 
within option surfaces rather than merely fitting training data through brute memorization, 
providing confidence that learned behaviors will generalize appropriately to future market 
conditions including novel scenarios outside the training distribution. The attention 
mechanism's ability to identify which options across different strikes and maturities provide 
relevant information for estimating Greeks of a target contract implements a form of learned 
numerical analysis, discovering through data-driven optimization effective computational 
procedures that human quants might design but expressed implicitly through network 
weights rather than explicit algorithmic steps. 

The stratified training strategy addressing the extreme class imbalance between normal and 
crisis conditions in historical financial data proves essential for achieving robust performance 
during rare but critical stress events. The visualization in Figure 3 starkly illustrates the 
challenge, with extreme volatility conditions representing merely 1.9 percent of historical 
observations across three decades yet accounting for the majority of portfolio value-at-risk. 
By oversampling crisis periods by over thirteenfold during training, we ensure the model 
encounters sufficient extreme examples to learn appropriate response patterns despite their 
calendar rarity. The data augmentation techniques generating synthetic worst-case scenarios 
exceeding historical experience provide additional robustness to future crises that may 
exceed past precedents, implementing stress testing discipline directly into the training 
procedure rather than as a separate validation step. This methodology addresses a 
fundamental weakness of all data-driven approaches to financial problems where the most 
important scenarios prove systematically underrepresented in training data by frequency yet 
overrepresented in impact. 

Several important limitations warrant acknowledgment alongside these positive findings and 
suggest directions for future research. The Transformer's superior performance depends 
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critically on training data spanning diverse market regimes including crisis periods, creating 
potential vulnerabilities if future crises exhibit substantially different characteristics than 
historical events. While our data augmentation partially addresses this through synthetic 
scenarios, truly novel market dynamics without any historical precedent might exceed the 
model's learned capabilities. The computational requirements for training Transformers on 
comprehensive historical datasets, while manageable with modern hardware, exceed those of 
traditional methods requiring no offline training phase, creating deployment barriers for 
institutions lacking machine learning infrastructure and expertise. The model's superior 
accuracy compared to traditional methods during extreme conditions has been thoroughly 
validated on historical test data, but the ultimate test will come during the next real crisis 
when market conditions may evolve in unexpected ways. 

Future research directions should prioritize several extensions that would enhance practical 
utility. Developing rigorous uncertainty quantification methods that provide confidence 
intervals or full posterior distributions over Greeks estimates rather than point predictions 
would enable more sophisticated risk management decisions that appropriately account fo r 
estimation uncertainty particularly during ambiguous market conditions. The integration of 
asymmetric loss functions that explicitly penalize underestimation of risk more heavily than 
overestimation could further align model optimization with risk management objectives 
where conservative estimates during uncertainty prove preferable to aggressive ones. 
Investigation of transfer learning approaches that fine-tune pre-trained Transformers on new 
instrument types or markets could reduce the extensive data requirements currently limiting 
applicability to heavily traded products with decades of historical records. Extension beyond 
standard first and second-order Greeks to more exotic sensitivities including cross-gamma 
between different underlyings, vanna measuring Delta's sensitivity to volatility changes, and 
volga measuring vega's sensitivity to volatility would broaden the methodology's coverage of 
the full sensitivity landscape required for comprehensive risk management. 

From theoretical perspectives, this research demonstrates that financial time series exhibit 
long-range dependencies amenable to attention mechanisms despite the noisy and non -
stationary nature of market data that challenges many machine learning assumptions. The 
success of gating mechanisms in incorporating economic constraints through soft 
probabilistic enforcement rather than hard architectural restrictions offers a general principle 
applicable beyond Greeks estimation to any domain requiring learned functions satisfying 
known properties. The effectiveness of attention mechanisms for identifying relevant cross-
strike and cross-maturity relationships encoding volatility surface structure suggests that 
spatial rather than temporal relationships dominate for this problem, an insight with 
implications for other financial applications where recognizing patterns across instruments 
proves more important than tracking sequential evolution. 

In conclusion, Transformer-based Greeks estimation represents a significant methodological 
advance for derivatives risk management, offering practitioners a robust tool for maintaining 
accurate risk metrics across all market conditions while delivering computational speeds 
enabling operational capabilities previously infeasible. The combination of superior accuracy 
during stress, genuine real-time inference, and economically interpretable learned 
computational strategies addresses multiple longstanding limitations of traditional finite 
difference approaches that have constrained risk management effectiveness particularly 
during the market dislocations that pose existential threats to financial institutions. As the 
methodology matures through continued research, operational experience accumulation, and 
extension to broader derivative types, Transformer-based systems seem likely to become 
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standard components of modern risk management infrastructure, complementing and 
eventually partially displacing traditional methods while enabling more sophisticated 
portfolio protection than previously possible. The broader success of attention mechanisms in 
financial applications validates their potential across quantitative domains, suggesting that 
the intersection of deep learning and financial modeling will continue yielding innovations 
that reshape how markets are analyzed, risks are managed, and portfolios are protected in an 
increasingly complex and fast-moving global financial system. 
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