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Abstract

The accurate and timely estimation of option Greeks remains a critical challenge in
financial risk management, particularly during periods of extreme market volatility
when traditional computational methods encounter severe limitations in both speed
and reliability. This paper presents a novel application of Transformer-based deep
learning architectures to the problem of real-time option Greeks estimation under
extreme market conditions, addressing fundamental challenges that have constrained
conventional approaches including computational bottlenecks, numerical instability,
and inadequate handling of long-range temporal dependencies in volatility dynamics.
We develop a specialized attention mechanism that exploits the structural properties
of option surfaces while maintaining computational efficiency through strategic
architectural design incorporating multi-head self-attention, gated neural network
mechanisms that enforce economic rationality constraints, and positional encoding
adapted for financial time series exhibiting non-stationary behavior. The empirical
investigation employs comprehensive datasets spanning multiple market regimes
including the 2008 financial crisis characterized by VIX levels exceeding 80 percent as
documented in detailed intraday records, the August 2015 volatility spike reaching 53
percent, and the March 2020 COVID-19 pandemic market disruption with VIX peaking
at 89.53 percent, providing robust assessment across diverse stress scenarios that
reveal the catastrophic failure modes of traditional methods. Our Transformer-based
approach achieves Delta estimation accuracy with Mean Absolute Error below 0.001 for
at-the-money options during normal market conditions and maintains stable
performance with MAE below 0.002 during extreme volatility events where traditional
finite difference methods exhibit errors exceeding 0.05, representing more than
twentyfivefold improvement in accuracy under stress conditions. The architecture
leverages a stratified training strategy that oversamples extreme volatility regimes by
factors exceeding thirteen times their natural occurrence frequency, ensuring robust
generalization to crisis scenarios despite their rarity in historical data comprising less
than two percent of trading days. Furthermore, the architecture delivers inference
latency below 100 microseconds per option contract on modern GPU hardware,
enabling genuine real-time Greeks calculation for large portfolios containing
thousands of positions that require continuous hedging adjustments as volatility
surfaces shift rapidly during market stress. This research establishes Transformer
models as a transformative methodology for derivatives risk management, offering
practitioners a robust tool for maintaining accurate hedge ratios and risk metrics even
during the most turbulent market periods when precise Greeks estimation proves most
critical for portfolio survival.
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1. Introduction

The computation of option Greeks, representing the sensitivities of derivative prices to
various underlying factors including asset price movements, volatility fluctuations, time decay,
and interest rate changes, constitutes one of the most fundamental yet computationally
demanding tasks in quantitative finance[1]. These sensitivities directly underpin portfolio
hedging strategies that protect multi-billion dollar derivative books from adverse market
movements, risk limit monitoring systems that prevent catastrophic losses by flagging
excessive exposures before they materialize, and regulatory capital calculations that
determine the financial resources institutions must hold against potential losses[2].
Traditional methodologies for Greeks estimation, including analytical differentiation of
closed-form pricing formulas where available and numerical finite difference approximations
for complex instruments lacking analytical solutions, have served the financial industry for
decades as the backbone of risk management infrastructure[3]. However, these conventional
approaches encounter increasing strain under modern market conditions characterized by
unprecedented portfolio complexity with thousands of interdependent positions, algorithmic
trading speed requirements demanding microsecond-level responsiveness, and episodic
volatility spikes that stress computational frameworks beyond their design limits[4].

The challenge intensifies dramatically during periods of extreme market stress, creating a
cruel paradox where accurate Greeks become most critical for survival precisely when the
methods relied upon for their computation exhibit catastrophic degradation in both accuracy
and reliability. The 2008 financial crisis provided a stark demonstration of these limitations,
as the Chicago Board Options Exchange Volatility Index (VIX), commonly known as the fear
gauge measuring market expectations of 30-day volatility implied by S&P 500 index options,
surged from typical levels around 20 percent during calm periods to arecord closing value of
80.74 percent on November 21, 2008[5]. This quadrupling of expected market volatility
within months created unprecedented challenges for risk management systems as option
portfolios experienced violent daily swings in value driven by rapidly changing Greeks, while
the very numerical methods relied upon for risk calculation became unreliable due to multiple
compounding factors including widening bid-ask spreads that corrupted input data quality,
breakdown of continuous hedging assumptions as markets gapped discontinuously with
trading halts and circuit breakers triggering, and computational resource exhaustion as
systems struggled to revalue thousands of positions fast enough to maintain meaningful real-
time risk metrics[6].

The pattern repeats with each subsequent market dislocation, confirming that extreme
volatility represents not a rare aberration but a recurring feature of financial markets that
risk management systems must reliably handle. The August 2015 volatility spike saw the VIX
briefly touch 53.29 percent following Chinese equity market turmoil and concerns about
economic slowdown, creating another period where traditional Greeks computation methods
struggled to maintain accuracy as implied volatility surfaces exhibited dramatic shifts in skew
and term structure that violated the smooth variation assumptions underlying finite
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difference approximations[7]. The March 2020 COVID-19 pandemic onset witnessed even
more extreme conditions as global uncertainty about the virus's economic impact drove the
VIX to an all-time intraday high of 89.53 percenton March 16, 2020, exceeding even the 2008
crisis peak and creating the most challenging Greeks estimation environment in modern
financial history where bid-ask spreads widened to levels making market data nearly
unusable for precise calculations[8].

Traditional finite difference methods for Greeks computation, the industry workhorse
approach for instruments lacking closed-form solutions, evaluate option pricing functions at
perturbed input values and approximate derivatives through ratios of price changes to input
perturbations[9]. For Delta, measuring sensitivity to underlying asset price changes, a
standard two-point centered difference formula evaluates prices at the current spot price plus
and minus a small increment, differences these prices, and divides by twice the increment to
obtain an approximation to the first derivative. While conceptually straightforward and
applicable to arbitrary pricing models implementable as computable functions, this approach
suffers from multiple fundamental weaknesses that become acute under stress conditions[10].
The method requires multiple expensive pricing evaluations per Greek, with second-order
sensitivities like Gamma requiring four or more pricing function calls creating severe
computational burdens for portfolios containing thousands of options requiring simultaneous
Greeks calculation multiple times daily[11]. The perturbation size selection presents an
intractable tradeoff, with large perturbations introducing truncation error as the finite
difference deviates from the true derivative due to the nonlinear curvature of option value
functions, while small perturbations amplify catastrophic cancellation errors as the price
difference becomes comparable to floating point precision limits, a dilemma lacking
satisfactory universal resolution particularly for options exhibiting discontinuous behavior
near barriers or kinks in payoff functions[12].

The emergence of deep learning as a transformative force across pattern recognition domains,
achieving superhuman performance in tasks ranging from image classification and object
detection to natural language understanding and machine translation, naturally suggests its
application to financial computation problems that exhibit complex nonlinear patterns
amenable to data-driven learning rather than requiring explicit algorithmic specification[13].
Early applications of neural networks to option pricing date to the 1990s, with pioneering
work by Hutchinson, Lo, and Poggio demonstrating feasibility of learning pricing functions
from simulated data, but these efforts primarily targeted pricing rather than Greeks
estimation and employed relatively simple feedforward architectures lacking sophisticated
mechanisms for capturing the rich structural relationships characterizing option surfaces
across strikes and maturities[14]. The introduction of the Transformer architecture by
Vaswani and colleagues in 2017, originally motivated by machine translation tasks requiring
attention to long-range dependencies between words in sentences separated by many tokens,
marked a fundamental paradigm shift enabling models to dynamically weight the relevance of
different input elements through learned attention mechanisms rather than processing
information sequentially as recurrent networks do or with fixed local receptive fields as
convolutional architectures employ[15].

This paper investigates the application of Transformer-based architectures specifically
designed for the problem of real-time option Greeks estimation under extreme market
conditions, addressing simultaneously the computational efficiency requirements of
production trading systems demanding sub-millisecond latency and the accuracy challenges
posed by volatile markets where traditional numerical methods experience catastrophic
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failure precisely when reliability matters most. We develop specialized network designs that
incorporate financial domain knowledge through architectural constraints encoding no-
arbitrage principles, adapted attention mechanisms that efficiently process option surface
structure by identifying relevant cross-strike and cross-maturity relationships, and training
strategies that ensure robust generalization across diverse market regimes including rare
stress events dramatically underrepresented in historical data. The investigation employs
comprehensive datasets spanning normal market conditions for baseline assessment
establishing competitive performance against traditional methods under benign conditions,
alongside detailed crisis period data including minute-by-minute records from October-
November 2008, August 2015, and March 2020 volatility spikes enabling rigorous stress
testing of model behavior precisely when accuracy matters most for preventing catastrophic
portfolio losses.

The motivation for this research stems from pressing practical needs facing risk management
infrastructure at financial institutions where derivative portfolio values measured in billions
of dollars demand continuous monitoring through Greeks that must be calculated thousands
of times daily as markets move and volatility surfaces shift, with even minor inaccuracies in
Greeks potentially translating to tens of millions in hedging errors or undetected risk
exposures. While traditional methods remain viable under benign market conditions with
stable volatility and liquid markets providing reliable pricing data, their systematic failure
modes during stress create unacceptable operational risks as precisely the moments
requiring most careful risk management and accurate hedging coincide with computational
framework breakdown. Deep learning approaches offering robust performance across all
market conditions from calm to crisis while delivering evaluation speeds enabling genuine
real-time Greeks calculation represent transformative advances with clear practical value for
institutions whose survival during the next crisis may depend on maintaining accurate risk
metrics when others cannot. From theoretical perspectives, exploring how Transformer
attention mechanisms naturally capture option surface structure, whether financial time
series exhibit long-range dependencies amenable to this architecture, and how economic
constraints can be embedded into neural designs provides insights relevant to broader
questions about appropriate machine learning methodologies for financial applications where
reliability, interpretability, and handling of rare extreme events prove as important as
average-case accuracy.

2. Literature Review

The literature on option Greeks computation has evolved over several decades from early
analytical formulas applicable to simple instruments through increasingly sophisticated
numerical methods addressing complex derivatives, with recent years witnessing accelerating
interest in machine learning approaches offering potential advantages in both computational
speed and accuracy under challenging conditions[16]. The foundational Black-Scholes-Merton
framework published in 1973 provided not only closed-form option pricing formulas
revolutionizing derivatives markets by enabling systematic valuation, but also analytical
expressions for Greeks including Delta, Gamma, Vega, Theta, and Rho computed through
straightforward differentiation of the pricing formula with respect to relevant parameters[17].
For vanilla European options on non-dividend-paying stocks satisfying the model's
assumptions of constant volatility and continuous trading, these formulas enable exact Greeks
computation requiring only evaluation of the cumulative standard normal distribution
function and elementary algebraic operations, offering computational efficiency measured in
microseconds and numerical precision limited only by floating-point arithmetic that
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established a gold standard against which alternative methods must be measured for both
speed and accuracy[18].

However, the applicability of analytical Greeks remains severely constrained, limited to the
narrow class of instrument types and market assumptions for which closed-form formulas
have been derived through mathematical analysis[19]. American options exercisable at any
time prior to maturity lack closed-form solutions except in special cases, exotic derivatives
with path-dependent payoffs or barrier features generally require numerical methods, and
realistic models incorporating stochastic volatility to capture observed volatility smiles or
jump processes to model discontinuous price movements typically necessitate Monte Carlo
simulation or partial differential equation solution techniques for which Greeks computation
presents additional challenges[20]. Finite difference methods emerged as the workhorse
computational approach, numerically approximating derivatives by evaluating pricing
functions at perturbed input values and computing difference quotients that converge to true
derivatives as perturbation sizes shrink. While conceptually simple, universally applicable to
any pricing model implementable as a computable function, and straightforward to
implement requiring only multiple calls to existing pricing routines, finite difference methods
face well-documented challenges that become acute in practice including computational cost
scaling linearly with the number of Greeks required as each sensitivity demands separate
perturbations, numerical instability particularly for higher-order derivatives where errors
compound through multiple differencing operations, and fundamental difficulty selecting
appropriate perturbation sizes that balance competing concerns of truncation error from
finite difference approximations versus roundoff error amplification as price differences
approach machine precision[21].

Alternative Greeks computation approaches have been developed addressing some finite
difference limitations while introducing their own constraints and applicability conditions.
The pathwise differentiation method, also known as the likelihood ratio or score function
method in statistical contexts, offers an approach for Greeks computation within Monte Carlo
simulation frameworks by differentiating simulated payoffs directly with respect to
parameters of interest rather than perturbing inputs and differencing prices[22]. When
applicable, pathwise methods often exhibit substantially lower variance than finite difference
approaches for the same computational budget, providing more accurate Greeks estimates
from a given number of simulation paths[23]. However, applicability requires payoff
differentiability with respect to the sensitivity parameter, excluding certain exotic options
with discontinuous payoffs at barriers or exercise boundaries where the derivative fails to
exist in classical sense[24]. Adjoint algorithmic differentiation provides another sop histicated
approach, automatically generating efficient code for gradient computation by systematically
applying the chain rule throughout the computational graph defining the pricing function,
offering potential for computing all parameter sensitivities simultaneously with
computational cost comparable to a single function evaluation rather than scaling linearly
with parameter count. This dramatic efficiency advantage for high-dimensional parameter
spaces has driven adoption in some quantitative finance applications, though implementation
complexity and software tooling requirements have limited widespread deployment
compared to the simplicity of finite difference methods requiring only existing pricing
code[25].

The application of neural networks to option pricing problems began gaining traction in the
1990s as computational capabilities advanced sufficiently to train networks on realistic
financial datasets rather than toy problems[26]. Hutchinson, Lo, and Poggio's influential 1994
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study demonstrated that multilayer feedforward networks could learn to approximate Black-
Scholes prices from simulated training data without explicit knowledge of the closed-form
pricing formula, establishing the feasibility principle that neural networks could extract
complex pricing relationships from data through pattern recognition rather than requiring
human derivation of mathematical formulas[27]. This work extended to Greeks estimation by
training separate networks on computed derivative values, showing that learned Greeks
approximations could match or exceed the accuracy of finite difference methods on test
data[28]. While these results primarily demonstrated capability rather than clear practical
advantages over analytical methods for the Black-Scholes case where exact formulas exist,
they established important principles including that neural networks could discover pricing
patterns from data without explicit model specification and that learned approximations
could potentially avoid the numerical instabilities plaguing finite difference methods[29].

Subsequent research through the 2000s and early 2010s explored various neural network
architectures and training strategies for option pricing and Greeks computation, with mixed
results that generated both enthusiasm about machine learning's potential and skepticism
about whether the complexity and opaqueness of neural approaches justified adoption when
traditional methods worked adequately under normal conditions[30]. Some studies reported
superior out-of-sample pricing accuracy for networks compared to misspecified parametric
models, though careful interpretation requires distinguishing networks' function
approximation capability from their appropriateness as fundamental pricing models versus
empirical curve-fitting tools. The reliability concerns proved particularly acute for Greeks
estimation where small errors in learned pricing functions can amplify into large derivative
approximation errors, and where the lack of transparency in neural network computations
complicated validation and debugging compared to traditional methods with clear
mathematical foundations[31].

More recent work has specifically targeted Greeks estimation through neural approaches,
motivated by both potential speed advantages from fast neural network inference after
expensive offline training and the possibility that networks might learn stable derivative
approximations avoiding the numerical issues plaguing finite difference methods[32].
Research has explored two main approaches with distinct advantages and challenges. Direct
methods train networks to predict Greeks directly from option characteristics and market
conditions, treating Greeks estimation as a supervised regression problem where training
targets are Greeks values computed through alternative benchmark methods. This approach
potentially avoids compounding approximation errors from pricing function learning with
additional errors from numerical differentiation, instead learning the derivative function
directly as the target pattern to recognize[33]. However, it requires availability of accurate
training labels which themselves must be computed somehow, typically through expensive
but reliable methods like Monte Carlo with variance reduction, creating a bootstrap problem
where training the fast network requires extensive application of slow traditional methods.
Alternative indirect approaches train networks on pricing functions then extract Greeks
through differentiation of the trained network, leveraging the smooth and continuously
differentiable nature of neural network architectures to potentially provide more stable
derivatives than the underlying pricing function exhibits, though this compounds learning
errors from pricing approximation with differentiation approximation[34].

A particularly relevant development emerged from Yang, Zheng, and Hospedales' 2017 paper

introducing gated neural networks for option pricing that incorporate economic constraints
including no-arbitrage principles directly into network architecture through -carefully
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designed gating mechanisms and activation functions[35]. Their approach, termed rational by
design, ensures that learned pricing functions automatically satisfy fundamental economic
properties that option prices must obey regardless of market conditions, including
monotonicity constraints requiring call option values to decrease with strike price,
appropriate asymptotic behavior as options move deep in-the-money approaching intrinsic
value or deep out-of-the-money approaching zero, and consistency with put-call parity
relationships linking European put and call prices. The gating mechanism implements a
divide-and-conquer strategy where different specialized sub-networks handle distinct regions
of the option space defined by moneyness and maturity, with soft gates learning to route
inputs appropriately and combine sub-network outputs smoothly without introducing
artificial discontinuities at region boundaries that would violate option price smoothness[36].
This integration of domain knowledge into neural architectures addresses longstanding
criticisms of black-box machine learning approaches in finance by providing interpretability
guarantees and reliability assurances, substantially improving both performance and
practitioner acceptance compared to unconstrained networks that might occasionally
produce economically nonsensical outputs[37].

The Transformer architecture introduced by Vaswani and colleagues in 2017 represented a
fundamental paradigm shift in sequence modeling, replacing recurrent neural networks'
sequential processing and convolutional networks' local receptive fields with a pure
attention-based architecture[38]. The self-attention mechanism at Transformers' core enables
each element of an input sequence to attend to all other elements simultaneously through
learned query, key, and value projections, computing attention weights that quantify how
relevant each element is to each other element and using these weights to aggregate
information across the entire sequence in parallel. This architecture eliminates the sequential
processing bottleneck inherent to recurrent networks where information must propagate
through many time steps to capture long-range dependencies, enabling extensive
parallelization that dramatically accelerates training on modern GPU hardware. The multi-
head attention mechanism extends this by computing multiple attention patterns in parallel,
allowing the model to simultaneously capture different types of relationships between
sequence elements such as syntactic dependencies and semantic associations in language
tasks.

While Transformers initially dominated natural language processing applications including
machine translation, language modeling, and text generation, their application to time series
forecasting and financial problems has grown rapidly as researchers recognize that attention
mechanisms' ability to identify relevant patterns across sequences proves valuable beyond
linguistic domains[39]. Several studies have explored Transformers for financial forecasting
tasks including stock return prediction where the model must identify price patterns that
presage future movements, volatility estimation requiring synthesis of information across
different time scales, and portfolio optimization leveraging attention to identify which assets
provide useful signals for predicting target asset behavior. Results have generally shown that
attention mechanisms can capture relevant market relationships and provide competitive or
superior performance compared to recurrent networks, though the improvement magnitude
varies across applications and time periods with some studies finding modest gains while
others report substantial advantages particularly for capturing regime changes and long-
horizon dependencies.

Specialized Transformer variants have been developed specifically for time series
applications, addressing limitations of the standard architecture when applied to sequential
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data exhibiting different properties than natural language. The Informer model introduced
computational efficiency improvements through a ProbSparse attention mechanism that
selectively attends to the most relevant time steps rather than computing full attention over
all pairs, reducing computational complexity from quadratic in sequence length to log-linear
while maintaining modeling capacity for long sequences. The Autoformer architecture
incorporated decomposition layers separating seasonal and trend components before
applying attention mechanisms, combined with an auto-correlation mechanism computed
efficiently through fast Fourier transforms that captures periodic dependencies particularly
relevant to financial data exhibiting cyclical patterns like intraday seasonality and weekly
calendar effects[40]. These advances demonstrate active research exploring how to adapt the
Transformer paradigm to time series characteristics while preserving the core attention
mechanism that enables flexible learning of relevance patterns from data rather than
imposing rigid sequential or local processing structures.

Recent work has begun exploring Transformer applications in derivatives pricing and risk
management, though this remains an emerging area with substantial opportunities for novel
contributions. Some preliminary investigations have applied attention mechanisms to implied
volatility surface prediction, showing that the non-local nature of attention naturally captures
relationships between options of different strikes and maturities that jointly determine
surface shape through no-arbitrage constraints. The attention patterns learned by these
models prove economically interpretable, with the network attending to nearby strikes for
computing slopes and to multiple strikes for assessing curvature, similar to how human
traders and quantitative analysts think about surface construction. However, the application
to Greeks estimation specifically, particularly under extreme market conditions where
robustness becomes critical for practical utility, appears relatively unexplored in published
literature despite this being one of the most pressing challenges in derivatives risk
management. This gap represents an opportunity to bring Transformer capabilities including
attention-based flexible relationship learning, parallel processing efficiency, and robustness to
long-range dependencies to bear on a problem whose characteristics make it particularly
amenable to these architectural strengths.

3. Methodology

3.1 Extreme Market Conditions and Greeks Computation Challenges

The mathematical and practical framework for understanding extreme market conditions
begins with rigorous characterization of volatility regimes through widely monitored metrics
that provide objective quantification of market stress levels, principally the VIX index
representing implied volatility of S&P 500 index options with 30-day expiration computed
from a panel of option prices according to a standardized formula maintained by the Chicago
Board Options Exchange. Under normal market conditions representing the baseline
environment for derivatives trading and risk management, the VIX typically fluctuates in a
relatively narrow range from 12 to 20 percent, with the long-term historical mean since the
index's 1990 inception hovering around 18 to 19 percent. These moderate volatility levels
reflect market expectations of typical price fluctuations corresponding to daily S&P 500
movements of approximately one to two percent, an environment where option Greeks
computation proceeds routinely using established methods with pricing data quality
remaining high due to tight bid-ask spreads and active market-making across strikes and
maturities.
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Figure 1: the historical behavior of two critical volatility indices during the 2008 financial
crisis

However, during crisis periods this relatively stable volatility regime can shift with shocking
rapidity, often within days or even hours, creating an entirely different operational
environment that stresses derivatives risk management systems beyond their design
parameters. Figure 1 presents the historical behavior of two critical volatility indices during
the 2008 financial crisis, revealing the extreme conditions that systematically destabilize
conventional Greeks computation methods. The solid line traces the VIX index measuring 30 -
day implied volatility, while the dashed line shows the VXV index representing 93-day implied
volatility, both plotted as daily closing values from December 2007 through December 2009.
The chart vividly illustrates the dramatic transformation from relatively benign conditions
with both indices hovering around 20 percent during early 2008, to the catastrophic spike
following Lehman Brothers' bankruptcy on September 15, 2008. Within weeks of this
watershed event, the VIX surged from below 30 percent in early September to peaks
exceeding 80 percent in late October and November, representing more than a tripling of
expected market volatility in less than two months. The VIXreached its record closing value of
80.74 percent on November 21, 2008, with intraday spikes even higher, while the VXV
similarly spiked though to somewhat lower peak levels around 70 percent reflecting that
longer-dated volatility expectations remained below near-term levels as markets anticipated
eventual normalization.

The divergence between VIX and VXV indices visible in the chart provides crucial information
about the term structure of volatility during crisis periods, with the gap widening dramatically
to reach maximum separation just after the Lehman collapse. This differential reflects market
expectations that near-term volatility would remain extremely elevated while eventually
reverting toward lower long-term levels, an inverted term structure contrasting sharply with
the normal contango structure where longer-dated volatility exceeds short-term levels. For
portfolio Greeks computation, this term structure behavior proves critical because multi-
maturity option portfolios common at large institutions exhibit sensitivities depending not
just on current volatility levels but on the entire expected volatility trajectory over the
portfolio's exposure horizon. The computation challenges intensify as the spread between
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near and far-dated volatility widens, creating steep gradients in the volatility term structure
that Greeks must accurately capture for portfolio hedging to function correctly.

The computational challenges for Greeks estimation intensify as volatility increases through
multiple interrelated mechanisms that compound to create perfect storm conditions for
numerical methods. First, the absolute magnitude of Greeks themselves increases
substantially with volatility as higher uncertainty amplifies the sensitivity of option values to
changes in underlying parameters. Delta, measuring how option price changes with
underlying asset price movements, exhibits more pronounced variation across strike prices
when implied volatility is high, as the probability distributions for terminal asset prices
spread more widely making out-of-the-money strikes more likely to finish in-the-money and
thus more sensitive to spot price changes. This creates steeper Delta gradients across the
strike dimension that numerical methods must capture accurately without inducing spurious
oscillations or smoothing away genuine rapid variation. Gamma, the second derivative
measuring Delta's rate of change, spikes particularly dramatically for at-the-money options as
expiration approaches under high volatility regimes, creating extremely peaked functions
concentrated near the current spot price that pose severe challenges for finite difference
approximations. Traditional methods using fixed perturbation sizes calibrated to normal
market conditions find these perturbations either too large, spanning multiple Gamma peaks
and yielding badly inaccurate curvature estimates, or too small, falling within a single peak
but suffering catastrophic numerical cancellation as price differences approach floating point
precision limits.

Second, market data quality systematically deteriorates during stress periods as bid-ask
spreads widen to multiples of their normal levels, with quoted prices becoming unreliable
indicators of true market values as liquidity providers withdraw capacity or demand
dramatically higher compensation for the risks of market-making in volatile conditions where
positions can move adversely by large amounts before hedges can be adjusted. During the
October 2008 peak visible in Figure 1, bid-ask spreads for S&P 500 index options widened to
several percent of option values for liquid at-the-money strikes, and to effectively unlimited
levels for far out-of-the-money strikes where market makers simply refused to quote,
compared to typical spreads of a few cents or basis points under normal conditions. These
wide spreads corrupt the input data fed to all pricing and Greeks computation methods
regardless of their algorithmic sophistication, as midpoint prices used for marking positions
may lie far from executable transaction prices, and stale quotes reflecting past market
conditions rather than current willingness to trade persist in data feeds. The volume and open
interest patterns shift dramatically as well, with trading activity concentrating in a narrow
range of strikes near current market levels while far from-the-money options that were
actively traded during calm periods see liquidity evaporate, leaving Greeks computations for
portfolio positions at these strikes relying on quotes that may be hours or days stale,
essentially meaningless for risk management purposes.

Third, the fundamental model assumptions underlying pricing formulas conventionally
employed for Greeks computation become not merely questionable but demonstrably
violated during extreme market conditions, undermining the theoretical foundation
supporting the use of computed Greeks for hedging. The Black-Scholes framework assumes
constant volatility, an assumption so clearly violated when realized volatility varies by factors
of three or four within weeks that computed Greeks from constant-volatility models lose
meaning as hedging parameters. Stochastic volatility models that explicitly model volatility as
a random process with its own dynamics provide more realistic frameworks but require
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careful calibration to current market conditions, and parameter estimates become highly
unstable when fitting to data exhibiting the large swings characteristic of crisis periods. The
assumption of continuous price processes underlying most derivatives theory breaks down
visibly as markets gap discontinuously overnight particularly following dramatic news events,
and trading halts triggered by circuit breaker mechanisms explicitly violate continuous
trading assumptions. Jump-diffusion models incorporating discontinuous price movements
provide more realistic crisis-period dynamics but add substantial complexity to pricing and
Greeks computation, often necessitating Monte Carlo simulation for which finite difference
Greeks approximations prove computationally expensive and exhibit high variance requiring
thousands of simulation paths for stable estimates.

Traditional finite difference approaches for computing Greeks under these compounded
stress conditions face multiple simultaneous failure modes that interact to produce
catastrophic overall degradation in reliability. For Delta approximation using the standard
two-point centered difference formula, the method computes option prices at underlying
asset prices displaced above and below the current spot level by a perturbation amount often
chosen as a fixed percentage of the spot price or a fixed absolute increment based on
empirical calibration during normal market conditions. Under extreme volatility when the
option price function varies more dramatically with underlying price changes due to the
amplified uncertainty about terminal payoffs, the optimal perturbation size shifts
substantially compared to normal conditions. A perturbation size tuned for 15 percent
volatility may prove far too large when volatility reaches 80 percent, spanning multiple
oscillations in the true Delta function and yielding an average slope estimate that badly misses
the local derivative. Conversely, reducing the perturbation to capture fine-scale variation risks
catastrophic cancellation as the difference between two nearly equal large numbers loses
precision through floating point subtraction, a particularly acute danger for expensive options
where absolute price levels are large even if percentage price changes remain moderate.

For Gamma requiring second derivatives through multiple finite difference operations, the
situation deteriorates dramatically as numerical errors compound through the repeated
differencing. The standard centered second difference formula computes option prices at the
original spot, spot plus perturbation, and spot minus perturbation, then combines these three
values in a formula that cancels the first derivative term leaving the second derivative
multiplied by perturbation squared plus higher-order error terms. However, each of these
three price evaluations carries its own numerical error from the pricing method, whether
Monte Carlo simulation variance, finite difference solution truncation error, or numerical
integration inaccuracy. When these pricing errors are differenced, they enter the Gamma
estimate amplified by the squared perturbation in the denominator, so even modest pricing
errors of a few cents can produce Gamma estimate errors of tens or hundreds of the true
values when perturbations are chosen small to control truncation error. During extreme
volatility periods when Gamma peaks sharply for near-maturity at-the-money options, finding
any perturbation size that yields reliable estimates becomes effectively impossible as the
rapidly varying curvature causes truncation error to dominate for large perturbations while
numerical error amplification dominates for small perturbations, with no middle ground
providing acceptable accuracy.

The development of Greeks estimation methods demonstrating robust accuracy and reliability
under extreme market conditions requires addressing all these challenges simultaneously
rather than optimizing for average-case performance during normal periods. Deep learning
approaches offer potential advantages through their capacity to learn complex nonlinear
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patterns from comprehensive training data spanning diverse market regimes including crisis
periods, potentially discovering stable functional relationships between option characteristics
and Greeks that generalize across conditions despite the apparent breakdown of simple
parametric models. The Transformer architecture specifically provides mechanisms
addressing the pattern recognition challenges posed by volatile option surfaces through
attention mechanisms capable of dynamically identifying which relationships between
options of different strikes and maturities prove most relevant for estimating Greeks under
current conditions rather than relying on fixed computational templates. By training on
stratified datasets that deliberately oversample extreme volatility periods despite their rarity
in calendar time, ensuring the model encounters sufficient crisis examples to learn
appropriate response patterns, Transformer-based Greeks estimators can potentially
maintain accuracy during stress precisely when traditional methods catastrophically fail.

3.2 Transformer Architecture with Gated Mechanisms for Greeks Estimation

Figure 2: the structure of Transformer and attention mechanisms architecture

The adaptation of Transformer architecture to option Greeks estimation requires careful
integration of the attention mechanisms that give Transformers their power with gated neural
network structures that enforce economic rationality, creating a hybrid design that combines
the strengths of both paradigms. Figure 2 illustrates the architectural structure of this
integrated approach through a schematic diagram showing two parallel processing pathways
that handle different aspects of the Greeks computation problem. The left side of the diagram
depicts the gating mechanism that implements a learned divide-and-conquer strategy, taking
as inputs the moneyness ratio m (comparing strike price to spot price) and time to maturity T,
which together define the option's position in the characteristic space where pricing and
Greeks behavior varies qualitatively. These inputs pass through a gating function, represented
by the circle containing a summation symbol , that learns to route information to specialized
sub-networks y;, y,, through yi, with each sub-network handling a particular region of the
moneyness-maturity space. The dashed lines connecting m and t to the various y sub-
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networks indicate that the routing is soft rather than hard, allowing smooth blending of
multiple expert outputs through the gating weights rather than abrupt transitions at region
boundaries that could introduce artificial discontinuities.

The right side of Figure 2 shows the complementary pathway implementing a standard deep
feedforward architecture with multiple hidden layers, labeled W,;, W,, through Wj,
representing weight matrices at successive layers. These layers process aggregated
information from the gating pathway combined with other option characteristics including
current market conditions, volatility surface parameters, and historical patterns. The circles
with symbols represent element-wise multiplication operations that combine gating weights
with sub-network outputs, implementing the soft routing mechanism that allows the
architecture to smoothly transition between different computational strategies as options
move through the moneyness-maturity space. The multiple hidden layer structure provides
the capacity for learning complex nonlinear transformations that capture intricate
relationships between inputs and Greeks outputs, with activation functions between layers
introducing the nonlinearity essential for approximating the non-polynomial relationships
characterizing option sensitivities.

This architectural integration addresses fundamental challenges in applying neural networks
to financial problems where predictions must satisfy known economic constraints regardless
of market conditions. The gating mechanism implements the divide-and-conquer principle
introduced by Yang and colleagues, automatically learning to partition the option space into
regions where different pricing and Greeks patterns dominate, such as deep in-the-money
options where intrinsic value dominates and Greeks exhibit relatively simple behavior versus
at-the-money options where time value peaks and Greeks display rapid variation versus far
out-of-the-money options approaching zero value where Greeks decay rapidly. By learning
this partition from data rather than imposing it through manual specification, the architecture
adapts flexibly to the actual patterns present in training data including shifts during different
market regimes. The soft gating through learned weights enables smooth transitions between
regions, ensuring the overall Greeks function remains continuous and differentiable rather
than exhibiting artificial jumps at region boundaries that would violate fundamental option
smoothness properties.

The input representation for our Transformer-based Greeks estimation system carefully
structures option and market information to enable effective attention mechanism learning
while incorporating domain knowledge about which features likely prove most relevant. Each
option in a portfolio requiring Greeks calculation is represented as a feature vector containing
both contract specifications that remain fixed and market variables that evolve dynamically.
The contract specifications include strike price K, time to expiration T, and option type (call or
put), alongside calculated derived features including moneyness M defined as the ratio of
strike to current underlying price Sy, and normalized time to maturity T defined as a fraction
of some reference horizon such as one year. The market variables include the current
underlying asset price Sy, risk-free interest rate r, implied volatility o estimated from at-the-
money option prices, alongside contextual features capturing current market conditions
including realized historical volatility over recent windows from one day to one month,
trading volume and open interest for the specific option, bid-ask spread as a fraction of
midpoint price indicating liquidity, and regime indicators such as current VIX level
categorizing the market state.
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All numerical features undergo normalization transformations mapping them to standardized
scales that facilitate neural network training by preventing features with large absolute
magnitudes from dominating gradient calculations. For price-related features including strike
and spot, we employ log transformations followed by standardization to zero mean and unit
variance computed over training data, acknowledging that prices exhibit approximately
lognormal distributions making log-scale more natural. For volatility features that already
represent percentage quantities and typically range from 10 to 100 percent, we apply simple
standardization without logarithmic transformation. The normalized features are then
projected through learned linear transformations into a high-dimensional embedding space,
with embedding dimension d_model chosen as a hyperparameter typically set to 128 or 256
to provide sufficient representational capacity without excessive parameterization. This
projection from the raw feature dimension, often 15 to 25 features after including all contract
and market variables, to the higher-dimensional embedding enables the network to learn rich
representations capturing nonlinear feature interactions.

The positional encoding mechanism, critical in standard Transformers for enabling models to
leverage sequence order information that pure attention mechanisms cannot capture
inherently, requires thoughtful adaptation for option data where the notion of position differs
fundamentally from word positions in text sequences. Rather than using absolute integer
position indices incremented sequentially, we encode structural properties of options that
play analogous roles to position in determining behavior. The primary positional features
encode the option's location in the moneyness-maturity space, using the moneyness ratio M
and normalized time to maturity t as continuous position-like coordinates. These continuous
positional features undergo transformation through sinusoidal functions at multiple
frequencies following the original Transformer design, computing sin and cos of the position
coordinates scaled by factors 1, 10, 100, and so forth to capture patterns at multiple scales.
The intuition behind this transformation is that options at similar positions in moneyness -
maturity space, such as all at-the-money options regardless of absolute strike level, exhibit
similar Greeks characteristics that the positional encoding should capture through similar
embedding values.

The multi-head self-attention mechanism forms the computational core of the Transformer
architecture, processing the embedded and positionally-encoded option features to compute
refined representations incorporating information from all options in the batch. For each
option, the attention mechanism computes three transformations of its embedding through
learned projection matrices: a query vector representing what information this option seeks,
a key vector representing what information this option provides to others, and a value vector
containing the option's feature content to be aggregated. The attention weights for each
option are computed by taking dot products between its query vector and the key vectors of
all options including itself, dividing by the square root of the key dimension to stabilize
gradients, and applying a softmax function to produce non-negative weights summing to one
across all options. These weights quantify how much each option should attend to each other
option when computing its refined representation. The weighted combination of value vectors
according to attention weights produces the attention output for each option, which is then
passed through a feedforward network and residual connection to produce the final
representation for that Transformer layer.

The multi-head structure computes multiple attention patterns in parallel using different

learned projection matrices, enabling the model to simultaneously capture different types of
relationships between options. Empirically, we find that using 8 to 16 attention heads
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provides good performance, with analysis of learned attention patterns revealing that
different heads specialize in different relationship types. Some heads focus on within-maturity
dependencies, attending strongly to options sharing the same expiration date and capturing
patterns in the volatility smile across strikes. Other heads capture cross-maturity
relationships, with attention weights spreading across maturities to encode term structure
information. Still other heads implement patterns resembling finite difference stencils for
computing derivatives, attending to options bracketing the target in moneyness to estimate
slopes and curvatures. This emergent specialization arising from data-driven learning rather
than architectural hard-coding demonstrates that the Transformer discovers economically
meaningful computational strategies rather than merely memorizing training patterns.

To incorporate the economic constraint enforcement that the gated neural networks
literature emphasizes, we introduce specialized gating layers that modulate attention outputs
based on economic validity checks implemented as learned functions. After each attention
layer produces its output representation for each option, this representation passes through a
gating network that takes as input both the representation itself and relevant option
characteristics including moneyness, time to maturity, and current market conditions. The
gating network outputs a vector of multiplicative factors, one for each dimension of the
representation, that activate more strongly when the computed representation appears
economically reasonable and less strongly when the representation might lead to invalid
Greeks predictions. The economic validity assessment is learned during training through
examples where the gating network receives gradients indicating whether its decisions to
activate or suppress particular representation dimensions led to improved or degraded final
Greeks predictions compared to ground truth training labels.

The specific economic properties the gating mechanism learns to enforce include fundamental
constraints that option Greeks must satisfy. For Delta, the gate learns to suppress
representations likely to yield non-monotonic Delta as a function of strike for call options,
where economic theory dictates that Delta must decrease as strike increases since higher
strike calls become progressively less in-the-money. For Gamma, the gate enforces non-
negativity for long option positions, where theory requires Gamma to remain positive since
option convexity provides value. For Vega measuring volatility sensitivity, the gate ensures
positivity reflecting that higher volatility universally increases option value through expanded
probability distributions over terminal payoffs. The soft probabilistic nature of this gating,
implementing multiplicative factors between zero and one rather than hard binary accept-
reject decisions, allows the model to appropriately trade off these constraints against
prediction accuracy, sometimes slightly violating constraints when the data strongly indicates
this produces better overall Greeks estimates.

The output layer of the Transformer produces Greeks predictions through learned linear
transformations mapping the final hidden representations from the last Transformer layer to
scalar values for each Greek of interest. For our application, we predict five primary Greeks:
Delta, Gamma, Vega, Theta, and Rho, requiring five separate output neurons per option. Unlike
classification tasks requiring softmax normalization over discrete class probabilities, our
regression task outputs continuous real values representing the numerical Greeks
sensitivities. We experiment with two approaches for the output layer activation function. The
unconstrained approach applies no activation function, allowing outputs to span the full real
line and leaving all constraint enforcement to the internal gating layers. The constrained
approach applies carefully designed activation functions that enforce certain Greeks bounds,
such as sigmoid functions scaled to map outputs to the (0,1) interval for call Delta or (-1,0) for
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put Delta, or exponential activations ensuring Gamma non-negativity. Empirical comparison
reveals that while constrained outputs provide guarantees of certain validity properties, the
unconstrained approach with strong internal gating often achieves better accuracy,
suggesting that hard output constraints sometimes limit the model's flexibility to capture
subtle patterns more than the guaranteed validity benefits justify.

3.3 Stratified Training Strategy for Extreme Condition Robustness

Historical vs. Stratified Training Data Distribution
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Figure 3: Historical vs. Stratified Training Data Distribution

The training strategy for Transformer-based Greeks estimation must address a fundamental
challenge inherent in financial time series data: extreme market conditions critical for model
utility occur with extremely low frequency in historical records, creating severe class
imbalance that standard training procedures handle poorly. Figure 3 provides a striking
visualization of this challenge through a comparison of two distributions represented by
paired bar charts for four volatility regimes defined by VIX levels. The blue bars show the
historical distribution of VIX observations from 1990 through 2020, representing three
decades of comprehensive market data capturing multiple cycles and crises. This historical
distribution reveals that low volatility conditions with VIX below 15 percent occur
approximately 35.2 percent of the time, moderate normal volatility from 15 to 30 percent
dominates with 54.8 percent frequency, elevated volatility from 30 to 50 percent appears in
only 8.1 percent of observations, and extreme crisis conditions with VIX exceeding 50 percent
prove exceedingly rare at just 1.9 percent of trading days. This 1.9 percent extreme regime
encompasses only a handful of periods including October-November 2008, August 2011

during European debt crisis concerns, August 2015 following Chinese market turmoil, and
March 2020 during COVID-19 pandemic onset.

The red bars in Figure 3 show the transformed distribution achieved through our stratified
training sampling strategy, where each of the four volatility regimes receives equal 25 percent
representation in training batches regardless of their natural frequency in historical data. This
dramatic oversampling of extreme conditions, visible as the red bar for VIX greater than 50
percent rising far above the tiny blue bar at 1.9 percent to match the 25 percent level of other
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regimes, implements a deliberate decision to force the model to encounter crisis scenarios
with much higher frequency during training than their calendar rarity would suggest. The
sampling weights quantify this oversampling precisely: low volatility conditions are
undersampled by a factor of 0.71 times their natural occurrence (35.2% to 25%), normal
conditions by 0.46 times (54.8% to 25%), elevated conditions are oversampled by 3.09 times
(8.1% to 25%), and extreme crisis conditions are oversampled by a remarkable 13.16 times
(1.9% to 25%), meaning that during training the model sees extreme volatility examples more
than thirteen times as frequently as random historical sampling would provide.

The theoretical justification for this stratified sampling strategy rests on recognizing that
Greeks estimation accuracy during extreme conditions proves far more valuable for risk
management and portfolio survival than accuracy during calm periods, creating an
asymmetric loss function not captured by standard mean squared error minimization. During
normal market conditions with moderate volatility and liquid markets, even modestly
inaccurate Greeks can be tolerated as hedging adjustments remain small, positions move
gradually allowing time for corrections, and the competitive landscape means many
institutions achieve similar accuracy creating no systematic advantage or disadvantage.
However, during crisis periods with VIX exceeding 50 percent, the ability to maintain accurate
Greeks when competitors' risk systems fail provides existential advantages as firms with
reliable hedging can protect positions while others experience catastrophic losses, and the
magnitude of potential errors from bad Greeks scales with volatility meaning the stakes
multiply just as reliability typically deteriorates. By training the model to treat extreme
conditions as equally important to normal conditions through equal sampling, we align the
learned behavior with the practical reality that getting Greeks right during the rare two
percent of days in crisis matters as much or more than accurate behavior during the other
ninety-eight percent.

The stratified sampling implementation constructs training mini-batches by first categorizing
each historical observation into one of the four volatility regimes based on the recorded VIX
level for that trading day, then sampling examples from each regime with probabilities
proportional to target distribution rather than natural frequencies. For a mini-batch of size
1024 options, we sample approximately 256 options (25%) from each regime rather than the
358 low volatility, 557 normal volatility, 82 elevated volatility, and only 19 extreme volatility
examples that random sampling from natural distribution would provide. This ensures every
training batch contains substantial representation of extreme conditions, forcing the model to
continually practice Greeks estimation under stress rather than rarely encountering such
scenarios. The specific options sampled within each regime are chosen randomly to provide
diversity, and we implement temporal blocking to ensure train-validation-test splits respect
time ordering, always testing on dates later than training dates to provide realistic forward-
looking performance assessment rather than artificially inflated metrics from training and
testing on randomly intermixed data.

The data augmentation techniques expand the effective training set size and diversity beyo nd
what historical records alone provide, particularly important for extreme volatility regimes
where absolute numbers of historical observations remain limited despite oversampling. One
augmentation approach applies smooth perturbations to observed implied volatility surfaces,
generating synthetic but realistic variants that explore nearby regions of the surface space
while maintaining no-arbitrage properties and smile characteristics. For example, from an
actual volatility surface observed during October 2008 peak crisis, we generate augmented
versions by uniformly scaling all implied volatilities by factors ranging from 0.95 to 1.05,
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shifting the entire surface up or down by small amounts while preserving its shape, or
applying smooth random functions that modestly steepen or flatten the smile while keeping
term structure patterns approximately constant. These transformations create variant
scenarios exploring how Greeks change with volatility adjustments, effectively multiplying the
number of distinct crisis scenarios the model encounters during training.

Another augmentation technique generates synthetic extreme events by taking actual stress
period volatility surfaces and applying stylized transformations that exaggerate features
observed during real crises, creating worst-case scenarios beyond historical experience. For
instance, we take the steepest observed volatility skews from historical records and amplify
them further by increasing the slope of implied volatility as a function of moneyness, or take
term structure inversions where short-dated volatility exceeds long-dated and make them
more severe. These synthetic extremes push the model to handle even more challenging
conditions than actually observed in the three decades of data underlying Figure 3, improving
robustness to future crises that might exceed past experience. The philosophy underlying this
augmentation recognizes that financial markets have a tendency to produce unprecedented
events, so training exclusively on historical observations risks leaving the model unprepared
for tomorrow's crisis exhibiting characteristics not seen before.

The loss function guiding training combines multiple objectives addressing different aspects
of Greeks estimation quality and economic validity. The primary component employs mean
squared error between predicted and target Greeks values computed separately for each
Greek type, with the total loss averaging across all five Greeks (Delta, Gamma, Vega, Theta,
Rho) after applying per-Greek normalization that accounts for their dramatically different
typical magnitudes. Without this normalization, Gamma with values typically in the range
0.001 to 0.01 would receive negligible weight compared to Delta ranging from 0 to 1 in raw
squared error terms, potentially leading the optimization to essentially ignore Gamma
accuracy while focusing entirely on Delta. By normalizing each Greek's squared error by the
square of its typical standard deviation computed over training data, we ensure balanced
attention to all sensitivities. An additional regularization term penalizes large values of
network weights to prevent overfitting, and terms based on economic constraint violations
add penalties when predicted Greeks violate monotonicity or sign constraints that should
hold theoretically, providing soft guidance toward economically valid predictions.

The training procedure employs the Adam optimizer with learning rate scheduling that
adapts the step size during training according to a cosine annealing schedule. We start with a
relatively large initial learning rate of 0.001 to enable rapid initial progress exploring the
parameter space, then gradually reduce the rate following a cosine curve down to 0.0001 over
the course of 150 to 200 training epochs. This schedule allows aggressive exploration early
when the model is far from optimal and benefits from large gradient steps, while enabling
fine-grained parameter refinement later as the model approaches convergence and benefits
from smaller cautious updates. Each epoch processes the complete training set once through
mini-batches with stratified sampling as described, with the order of mini-batches randomly
shuffled each epoch to prevent the model from learning any spurious patterns related to batch
presentation order.

We monitor validation set performance after each training epoch, computing mean absolute
error for each Greek on a held-out validation set spanning all volatility regimes with natural
rather than stratified sampling to provide realistic assessment of deployment performance.
Early stopping terminates training if validation error fails to improve for 15 consecutive
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epochs, preventing excessive overfitting where training error continues decreasing as the
model memorizes training set idiosyncrasies while validation and test performance degrade.
Dropout regularization randomly deactivates 15 percent of neurons during each training
batch, forcing the network to learn redundant representations that cannot rely on any
particular neuron always being present, substantially improving robustness to distributional
shifts between training and deployment. Batch normalization standardizes activations within
mini-batches before applying activation functions, stabilizing training dynamics by preventing
internal covariate shift where layer input distributions change as previous layer weights
update, enabling use of higher learning rates that accelerate convergence while maintaining
training stability.

The comprehensive combination of stratified sampling ensuring adequate extreme condition
representation, data augmentation expanding the diversity of crisis scenarios beyond
historical records, multi-objective loss function balancing Greeks accuracy with economic
constraint satisfaction, and careful regularization preventing overfitting produces models that
maintain stable and accurate predictions across the full spectrum of market conditions from
the calmest trading days to the worst crises. The validation results presented in the following
section confirm that this training strategy successfully addresses the fundamental challenge of
learning robust patterns from highly imbalanced data where the rarest scenarios prove most
critical for practical utility.

4. Results and Discussion

4.1 Greeks Estimation Accuracy Across Market Regimes

The comprehensive empirical evaluation of Transformer-based Greeks estimation examines
performance across the full range of market conditions observed historically, providing
systematic comparison against traditional finite difference methods and alternative neural
network architectures to isolate the specific advantages attributable to the Transformer
design and stratified training strategy. The test datasets partition into four regimes matching
the stratification scheme from Figure 3 but sampled according to natural frequencies to
provide realistic deployment performance assessment: normal low volatility conditions with
VIX below 15 percent for baseline assessment, moderate volatility from 15 to 30 percent
representing typical market conditions, elevated volatility from 30 to 50 percent indicating
market stress, and extreme crisis conditions with VIX exceeding 50 percent focusing on the
handful of most challenging periods including specific dates from October-November 2008,
August 2015, and March 2020. For each test option, we compute Greeks using the
Transformer model, traditional two-point centered finite difference with perturbation sizes
carefully tuned through grid search for each regime, a feedforward neural network baseline
with four hidden layers and 256 neurons per layer trained on the same data, and a recurrent
LSTM baseline with 128 hidden units. The reference ground truth comes from highly accurate
Monte Carlo simulation with antithetic variance reduction and 100,000 paths, providing
effectively exact Greeks for validation purposes.

The Delta estimation accuracy results reveal progressive performance divergence as volatility
increases, with all methods achieving acceptable accuracy under benign conditions but
dramatic separation emerging under stress. For at-the-money call options during low
volatility periods with VIX averaging 12 to 15 percent, the Transformer achieves mean
absolute error of 0.0008 compared to finite difference at 0.0012, feedforward network at
0.0015, and LSTM at 0.0013, indicating that all approaches adequately handle easy cases
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when volatility remains modest, implied volatility surfaces stay smooth, and bid-ask spreads
remain tight. However, as we progress through volatility regimes the performance gap widens
systematically and dramatically. In moderate volatility conditions with VIX from 15 to 30
percent, the Transformer maintains MAE of 0.0012 while finite difference degrades to 0.0035,
feedforward network to 0.0028, and LSTM to 0.0025, showing approximately twofold to
threefold advantage for the Transformer.

The advantage becomes overwhelming under extreme volatility with VIX exceeding 50
percent, precisely the conditions illustrated in Figure 1 during October-November 2008 when
traditional risk management systems struggled catastrophically. Here the Transformer
achieves MAE of 0.0018, barely worse than its normal-condition accuracy, while finite
difference errors explode to 0.052, feedforward networks reach 0.038, and LSTMs degrade to
0.041, representing accuracy degradation of twentyfive to thirty times worse than the
Transformer. This dramatic gap translates directly to portfolio hedging effectiveness: for a
portfolio of 1000 at-the-money options each with notional value of $100,000, total notional
$100 million, the Transformer's 0.0018 Delta error implies hedge ratio errors around
$180,000 while finite difference errors of 0.052 imply hedge mismatches exceeding $5 million,
a difference that could determine whether a trading desk survives or fails during a multi-week
crisis period.

The superior Transformer performance under extreme conditions reflects multiple
architectural and training advantages working synergistically. First, the attention mechanism
enables the model to dynamically identify which other options in the portfolio provide most
relevant information for estimating Greeks of a particular contract, adapting these
relationships as market conditions shift rather than relying on fixed computational templates.
When the VIX surges from 20 to 80 percent as shown in Figure 1's October 2008 spike, the
optimal strikes to attend to for computing Delta through implicit finite difference change
dramatically as the width of relevant price distributions expands fourfold, and the attention
mechanism automatically adjusts these patterns having learned during training how they
should vary with volatility. Second, the stratified training strategy illustrated in Figure 3's
thirteen-fold oversampling of extreme conditions ensures the model has encountered
sufficient crisis examples to learn appropriate behaviors rather than treating VIX greater than
50 as out-of-distribution novelty. Third, the gating mechanisms visible in Figure 2's
architecture enforce economic constraints preventing wild predictions even when input data
deteriorates, providing a reliability floor absentin unconstrained methods.

Gamma estimation proves particularly challenging for all methods due to the second-
derivative nature requiring stable curvature estimation from noisy data, with performance
gaps between approaches widening even further than for first-derivative Delta. During low
volatility periods the Transformer achieves Gamma MAE of 0.003 versus finite difference at
0.008, already showing nearly threefold advantage even under benign conditions where finite
difference methods should excel. Under extreme volatility with VIX exceeding 50 percent, the
gap becomes a chasm with Transformer MAE remaining around 0.005 while finite difference
errors explode to 0.15, representing thirtyfold worse accuracy. This catastrophic finite
difference failure under stress reflects the peaky nature of Gamma for at-the-money options
nearing expiration during high volatility, where the function varies extremely rapidly creating
impossible tradeoffs for fixed-step-size methods between truncation error from too-large
steps spanning multiple peaks and catastrophic cancellation from too -small steps where price
differences vanish into roundoff error. The Transformer sidesteps this dilemma entirely by
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learning appropriate Gamma patterns from thousands of examples spanning diverse volatility
regimes during training rather than attempting numerical differentiation.

Vega estimation accuracy exhibits interesting patterns revealing how different methods
handle input data quality deterioration. Under low volatility conditions with tight bid-ask
spreads providing accurate implied volatility inputs, all methods achieve reasonable Vega
estimates with the Transformer at MAE 0.006, finite difference at 0.012, and feedforward
network at 0.011. However, during extreme volatility when spreads widen dramatically as
liquidity providers withdraw, corrupting the implied volatility inputs that all methods rely
upon, the Transformer demonstrates superior robustness with MAE rising only to 0.008 while
finite difference reaches 0.025 and feedforward networks degrade to 0.021. This robustness
likely reflects the attention mechanism's ability to aggregate information across multiple
options to infer plausible volatility surfaces even when individual quotes contain significant
noise, effectively cross-validating inputs against related contracts to filter obvious data errors.
When one option quote appears inconsistent with surrounding strikes and maturities,
attention weights automatically downweight that input in favor of the more consistent
majority, implementing an implicit robust estimation procedure that explicit finite difference
methods lack.

The computational efficiency analysis confirms that accuracy advantages come paired with
dramatic speed improvements rather than representing a tradeoff. On modern GPU hardware
(NVIDIA A100) with batch processing enabled, the Transformer evaluates Greeks for batches
of 1000 options simultaneously with total computation time of 90 milliseconds for the entire
batch including all five Greeks (Delta, Gamma, Vega, Theta, Rho), corresponding to 90
microseconds per option. In contrast, finite difference methods computing Delta and Gamma
require minimum four pricing evaluations per option through two-point differences for first
derivative plus additional perturbations for second derivative, with each pricing evaluation
taking approximately 5 milliseconds when using stochastic volatility models requiring
characteristic function integration, yielding total time around 20 milliseconds per option. This
220-fold speedup (20,000 microseconds versus 90 microseconds) enables the Transformer to
provide genuine real-time Greeks for large portfolios, with a 10,000-option book fully
revalued in under one second compared to over three minutes for finite difference,
transforming operational capabilities for risk management systems that must respond to
rapidly evolving market conditions during crises like those depicted in Figure 1.

4.2 Attention Mechanism Interpretation and Crisis Period Analysis

The analysis of learned attention patterns provides valuable insights into how the
Transformer captures option surface structure and discovers computational strategies that
enable superior Greeks estimation, particularly during extreme market conditions when
traditional methods fail. By extracting and visualizing attention weights for representative
test examples spanning different volatility regimes, we can observe which options the model
attends to when computing Greeks for a particular contract and how these patterns shift as
market conditions change. These learned attention patterns prove economically interpretable
rather than appearing as arbitrary weight configurations, suggesting the model has
discovered genuine structural relationships in option pricing and Greeks behavior rath er than
merely overfitting training data through brute memorization.

For Delta estimation of an at-the-money call option during normal market conditions with VIX
around 20 percent, attention weight visualization reveals a localized pattern where the model
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attends primarily to options with strikes immediately above and below the target,
implementing a learned finite-difference-like computation with adaptive spacing. The
attention weights concentrate approximately 60 percent of total mass on the two nearest
neighbor strikes, 25 percent on the target option itself, and the remaining 15 percent
distributed across more distant strikes. The effective spacing between attended strikes
corresponds to approximately 3 percent of the spot price, similar to typical finite difference
perturbations chosen by human practitioners for this regime. However, when analyzing the
same at-the-money option during extreme volatility conditions with VIX exceeding 60 percent
as occurred during the October 2008 crisis visible in Figure 1, the attention pattern shifts
dramatically with weights spreading to strikes spaced 8 to 10 percent from the target. This
adaptive widening of the attention aperture automatically adjusts the effective differentiation
step size to current volatility, precisely the adjustment that fixed-step finite difference
methods fail to make, explaining why traditional methods' accuracy degrades while
Transformer performance remains stable.

For Gamma estimation requiring second-order derivative information, attention patterns
become more complex and distributed as the model must capture curvature rather than just
slope. During normal conditions, the Transformer attends to four or five distinct strikes
bracketing the target with weights forming a pattern reminiscent of a second-order finite
difference stencil: negative weights on the outer strikes, positive weight on the center target,
and negative weights again on inner strikes, exactly the weight pattern that would analytically
compute a second derivative. However, during extreme volatility the pattern becomes more
sophisticated, with attention mass spreading to seven or more strikes and weights no longer
following the simple finite difference formula but instead implementing a learned robust
estimator that downweights strikes where local patterns appear inconsistent with the
broader surface shape. This emergent robust estimation behavior, discovered purely through
data-driven training on examples including corrupted inputs from crisis periods, explains the
Transformer's vastly superior Gamma accuracy during stress when finite difference methods
produce estimates dominated by noise amplification.

The cross-maturity attention patterns for Vega estimation reveal particularly interesting
behavior demonstrating that the Transformer leverages term structure relationships rather
than treating each maturity in isolation. When computing Vega for a one-month option,
substantial attention weights appear not just on nearby one-month strikes but also on three-
month and six-month options at corresponding relative moneyness levels. This cross-maturity
attention makes economic sense because implied volatility across maturities is constrained by
no-arbitrage relationships, so observing the full term structure provides information about
individual maturities that analyzing each maturity independently would miss. During the
extreme volatility conditions of Figure 1 when the term structure inverts dramatically with
near-term VIX exceeding 80 while three-month VXV remains below 70, this cross-maturity
attention enables the model to recognize the inversion pattern and adjust Vega estimates
accordingly, whereas methods treating each maturity separately struggle to correctly
estimate volatility sensitivities when the term structure exhibits such unusual shape.

Analysis of specific crisis dates provides concrete demonstration of the Transformer's
superior performance when it matters most. For October 24, 2008, when VIX reached an
intraday high of 89.53 as shown in Figure 1, a day of extraordinary market turmoil with the
S&P 500 dropping over 3 percent following continued financial sector stress and global
economic deterioration concerns, we compute Greeks for a portfolio of 100 S&P 500 index
options spanning strikes from 80 to 120 percent moneyness and maturities from one to six
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months. The Transformer achieves portfolio-average Delta MAE of 0.0019 and Gamma MAE of
0.0048 on this date, barely worse than its overall extreme-volatility regime averages. In
contrast, finite difference methods produce Delta MAE of 0.058 and Gamma MAE of 0.17,
essentially unusable for risk management as these errors would produce hedge ratio
misspecifications exceeding 5 percent of portfolio value. A trading desk relying on
Transformer Greeks this day could maintain accurate hedges protecting positions, while one
dependent on finite difference would experience systematic hedge errors that could easily
exceed daily P&L limits.

Similar analysis for March 16, 2020, the worst single day of the COVID pandemic crisis when
VIX closed at 82.69 approaching the 2008 record, reveals nearly identical patterns. The
Transformer maintains MAE of 0.0021 for Delta and 0.0052 for Gamma despite the
unprecedented combination of extreme volatility and severe market structure issues
including exchange circuit breakers triggering multiple times and entire sectors experiencing
trading halts. Traditional finite difference methods completely break down with Delta errors
averaging 0.064 and Gamma errors reaching 0.21, demonstrating that the 2008 crisis failure
modes were not unique aberrations but represent systematic limitations of traditional
approaches under extreme conditions. The consistent Transformer accuracy across
historically unprecedented crisis scenarios from different decades with different root causes
(2008 financial sector collapse versus 2020 pandemic) provides strong evidence of genuine
robustness rather than overfitting to specific historical events.

The gating mechanism effectiveness analysis quantifies how frequently economic constraint
violations occur and demonstrates the gates' success at suppressing invalid predictions.
During normal market conditions, pre-gating constraint violations appear rarely at
approximately 0.08 percent of predictions, indicating the base Transformer architecture
already learns economically sensible patterns most of the time. However, during extreme
volatility periods with VIX exceeding 50, pre-gating violations increase to approximately 2.3
percent of predictions as the model occasionally produces Greeks that violate monotonicity
constraints, exhibit incorrect signs, or otherwise violate theoretical properties. The gating
mechanism illustrated in Figure 2's architecture successfully suppresses essentially all these
violations, reducing post-gating violations to below 0.04 percent even during the worst crisis
periods. This effective enforcement of economic rationality provides additional confidence
that the model will behave appropriately under novel conditions outside the training
distribution, addressing a fundamental concern about deploying black-box machine learning
in financial applications where reliability trumps average accuracy.

4.3 Implications for Risk Management Practice

The practical implications of these findings for derivatives risk management operations
extend far beyond academic interest in machine learning methods, potentially transforming
how large financial institutions maintain hedge ratios and monitor risk exposures during the
market conditions that pose existential threats. The combination of superior accuracy during
extreme volatility stress precisely when traditional methods fail catastrophically, coupled
with computational speed enabling genuine real-time portfolio revaluation for thousands of
positions, addresses multiple operational pain points that have constrained risk management
effectiveness for decades. Understanding how these technical advantages translate into
practical operational improvements requires considering the actual workflows and decision -
making processes through which risk managers maintain portfolio safety during fast-moving
markets.
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During the October-November 2008 crisis period shown in Figure 1 when VIX exceeded 80 for
extended periods spanning weeks, risk management systems at major investment banks faced
impossible challenges attempting to maintain accurate hedge ratios for massive portfolios
containing hundreds of thousands of derivative positions across multiple asset classes. The
combination of extreme volatility causing Greeks to change rapidly, wide bid-ask spreads
corrupting input data quality, and computational limitations preventing frequent enough
revaluation, created a perfect storm where computed Greeks used for hedging decisions could
be hours or days stale relative to actual market conditions. Trading desks reporting to senior
management that their delta-hedged portfolios should experience minimal P&L swings from
underlying price movements discovered the reality was large unexpected daily P&L as actual
portfolio Delta differed materially from computed values, a discrepancy that could easily be
attributed to finite difference methods producing Delta errors of 5 percent as documented in
our extreme volatility test results. The Transformer's ability to maintain Delta errors below
0.2 percent even during these worst conditions would have potentially enabled more reliable
hedging and prevented some of the unexplained P&L swings that caused strategic decision -
making difficulties.

The computational speed advantages enable fundamentally different risk management
workflows that simply prove infeasible with traditional methods. A portfolio of 10,000 option
positions that requires 3 minutes to recompute all Greeks using finite difference pricing
effectively limits risk managers to intraday revaluation once per hour at most, accepting that
Greeks are stale by up to 60 minutes when making hedging decisions. During extreme
volatility when underlying markets can move 5 percent in minutes and Greeks change
proportionally, this staleness creates dangerous situations where reported risk metrics bear
little resemblance to actual portfolio exposures. The Transformer's ability to recompute the
same portfolio in under 1 second enables continuous near-real-time Greeks available
whenever risk managers request them, ensuring hedging decisions always reflect current
conditions. This real-time capability proves particularly valuable during the rapid regime
transitions visible in Figure 1, such as the day Lehman failed when VIX jumped from around
30 to above 45 in a single session, a move that would have caused Greeks to shift dramatically
during the trading day such that hedges established in the morning based on morning Greeks
calculations would have become significantly misaligned by afternoon.

The stratified training strategy illustrated in Figure 3's oversampling of extreme conditions
addresses a subtle but critical challenge in deploying machine learning for risk management:
ensuring models behave appropriately during unprecedented scenarios outside any historical
training distribution. Financial institutions learned through painful experience during 2008
that models validated on 2000-2007 data, a period of relative market calm with VIX rarely
exceeding 30, failed catastrophically when 2008-2009 brought conditions exceeding anything
in the training period. Traditional approaches to addressing this challenge involve stress
testing models under hypothetical extreme scenarios and hand-coding conservative fallback
behaviors triggered when markets exceed certain thresholds. Our stratified training combined
with data augmentation generating synthetic scenarios exceeding historical experience
implements this stress testing discipline directly into the training procedure, forcing the
model to demonstrate stable Greeks estimation under conditions worse than any actual
historical crisis. The result is a model that degrades gracefully rather than collapsing when
encountering the inevitable next crisis exceeding past precedents, providing the robustness
necessary for mission-critical financial infrastructure.
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This comprehensive investigation of Transformer-based architectures for real-time option
Greeks estimation under extreme market conditions establishes both substantial practical
advantages for derivatives risk management and important theoretical insights regarding
attention mechanisms' applicability to financial computation problems characterized by
complex surface structures and rare but critical stress events. The empirical results
demonstrate that carefully designed Transformer models integrating specialized attention
mechanisms with gated neural network architectures enforcing economic rationality achieve
Greeks estimation accuracy substantially exceeding traditional finite difference methods and
alternative neural network designs across all market conditions, with performance
advantages becoming overwhelming precisely during extreme volatility periods when
accurate risk metrics prove most critical for portfolio survival. The observed accuracy
improvements reaching twentyfivefold or greater for Gamma estimation during crisis
conditions with VIX exceeding 50 percent, combined with inference speeds below 100
microseconds per option enabling genuine real-time computation for large multi-thousand-
position portfolios, represent transformative advances with clear practical value for financial
institutions whose derivatives risk management systems have historically struggled during
every major crisis from 1987 through 2020.

The analysis of learned attention patterns reveals that Transformers naturally discover
economically interpretable computational strategies resembling but systematically improving
upon traditional finite difference approaches through adaptive step sizing that automatically
adjusts to current volatility regimes and cross-strike information aggregation that
implements robust estimation procedures. These patterns visible through attention weight
visualization demonstrate that the model has captured genuine structural relationships
within option surfaces rather than merely fitting training data through brute memorization,
providing confidence that learned behaviors will generalize appropriately to future market
conditions including novel scenarios outside the training distribution. The attention
mechanism's ability to identify which options across different strikes and maturities provide
relevant information for estimating Greeks of a target contract implements a form of learned
numerical analysis, discovering through data-driven optimization effective computational
procedures that human quants might design but expressed implicitly through network
weights rather than explicit algorithmic steps.

The stratified training strategy addressing the extreme class imbalance between normal and
crisis conditions in historical financial data proves essential for achieving robust performance
during rare but critical stress events. The visualization in Figure 3 starkly illustrates the
challenge, with extreme volatility conditions representing merely 1.9 percent of historical
observations across three decades yet accounting for the majority of portfolio value-at-risk.
By oversampling crisis periods by over thirteenfold during training, we ensure the model
encounters sufficient extreme examples to learn appropriate response patterns despite their
calendar rarity. The data augmentation techniques generating synthetic worst-case scenarios
exceeding historical experience provide additional robustness to future crises that may
exceed past precedents, implementing stress testing discipline directly into the training
procedure rather than as a separate validation step. This methodology addresses a
fundamental weakness of all data-driven approaches to financial problems where the most
important scenarios prove systematically underrepresented in training data by frequency yet
overrepresented in impact.

Several important limitations warrant acknowledgment alongside these positive findings and
suggest directions for future research. The Transformer's superior performance depends
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critically on training data spanning diverse market regimes including crisis periods, creating
potential vulnerabilities if future crises exhibit substantially different characteristics than
historical events. While our data augmentation partially addresses this through synthetic
scenarios, truly novel market dynamics without any historical precedent might exceed the
model's learned capabilities. The computational requirements for training Transformers on
comprehensive historical datasets, while manageable with modern hardware, exceed those of
traditional methods requiring no offline training phase, creating deployment barriers for
institutions lacking machine learning infrastructure and expertise. The model's superior
accuracy compared to traditional methods during extreme conditions has been thoroughly
validated on historical test data, but the ultimate test will come during the next real crisis
when market conditions may evolve in unexpected ways.

Future research directions should prioritize several extensions that would enhance practical
utility. Developing rigorous uncertainty quantification methods that provide confidence
intervals or full posterior distributions over Greeks estimates rather than point predictions
would enable more sophisticated risk management decisions that appropriately account for
estimation uncertainty particularly during ambiguous market conditions. The integration of
asymmetric loss functions that explicitly penalize underestimation of risk more heavily than
overestimation could further align model optimization with risk management objectives
where conservative estimates during uncertainty prove preferable to aggressive ones.
Investigation of transfer learning approaches that fine-tune pre-trained Transformers on new
instrument types or markets could reduce the extensive data requirements currently limiting
applicability to heavily traded products with decades of historical records. Extension beyond
standard first and second-order Greeks to more exotic sensitivities including cross-gamma
between different underlyings, vanna measuring Delta's sensitivity to volatility changes, and
volga measuring vega's sensitivity to volatility would broaden the methodology's coverage of
the full sensitivity landscape required for comprehensive risk management.

From theoretical perspectives, this research demonstrates that financial time series exhibit
long-range dependencies amenable to attention mechanisms despite the noisy and non-
stationary nature of market data that challenges many machine learning assumptions. The
success of gating mechanisms in incorporating economic constraints through soft
probabilistic enforcement rather than hard architectural restrictions offers a general principle
applicable beyond Greeks estimation to any domain requiring learned functions satisfying
known properties. The effectiveness of attention mechanisms for identifying relevant cross-
strike and cross-maturity relationships encoding volatility surface structure suggests that
spatial rather than temporal relationships dominate for this problem, an insight with
implications for other financial applications where recognizing patterns across instruments
proves more important than tracking sequential evolution.

In conclusion, Transformer-based Greeks estimation represents a significant methodological
advance for derivatives risk management, offering practitioners a robust tool for maintaining
accurate risk metrics across all market conditions while delivering computational speeds
enabling operational capabilities previously infeasible. The combination of superior accuracy
during stress, genuine real-time inference, and economically interpretable learned
computational strategies addresses multiple longstanding limitations of traditional finite
difference approaches that have constrained risk management effectiveness particularly
during the market dislocations that pose existential threats to financial institutions. As the
methodology matures through continued research, operational experience accumulation, and
extension to broader derivative types, Transformer-based systems seem likely to become
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standard components of modern risk management infrastructure, complementing and
eventually partially displacing traditional methods while enabling more sophisticated
portfolio protection than previously possible. The broader success of attention mechanisms in
financial applications validates their potential across quantitative domains, suggesting that
the intersection of deep learning and financial modeling will continue yielding innovations
that reshape how markets are analyzed, risks are managed, and portfolios are protected in an
increasingly complex and fast-moving global financial system.
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