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Abstract 

Amidst the current global landscape characterized by complex and volatile supply 
structures, the uncertainty in the supply of critical components has emerged as a 
significant constraint on enterprise development. This study focuses on constructing an 
innovative evaluation framework that integrates system dynamics (SD) modeling with 
stage-based substitution strategy simulation, with the objective of accurately identifying 
effective pathways for achieving autonomous supply of critical components. Through 
detailed analysis and simulation of three key stages—collaborative development, small-
batch prototyping, and large-scale substitution—the study systematically investigates 
the substitution timeline and capacity transition patterns of critical components. Using 
23 categories of heavy industrial equipment parts as case examples, relevant 
parameters were comprehensively collected for model construction. Simulation results 
reveal marked differences under various implementation pathways and strategy 
combinations. The proposed model demonstrates potential for integration with 
enterprise ERP systems, and is expected to provide robust quantitative early-warning 
support for the localization and substitution processes of essential materials. 
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1. Introduction 

Under the deep integration of economic globalization, the global supply chain has evolved into 
a vast and interdependent complex system [1]. As the fundamental support of many industries, 
the stability of critical component supply plays a decisive role in both the survival and 
development of enterprises and the broader direction of industrial evolution [2]. In recent 
years, the international situation has become increasingly volatile, with frequent geopolitical 
conflicts and the resurgence of trade protectionism [3]. Taking the China–U.S. trade friction as 
an example, as tensions have continued to escalate, many Chinese high-tech enterprises—such 
as Huawei and ZTE—have been arbitrarily placed on the U.S. entity list, facing severe obstacles 
in acquiring core components such as advanced chips [4]. According to relevant research 
statistics, in 2019 alone, over 200 incidents occurred in which the supply of core components 
to Chinese high-tech enterprises was disrupted due to trade friction, resulting in halted 
production operations and interrupted R&D processes [5]. In addition, global public health 
emergencies—such as the COVID-19 pandemic—have dealt heavy blows to the already fragile 
global supply chain. During the pandemic, countries implemented lockdowns, factories 
suspended operations, and logistics systems became paralyzed. Enterprises dependent on 
imported critical components quickly depleted their inventories, forcing production lines to 
shut down [6]. According to data released by Goldman Sachs, in 2021, due to the shortage of 
chips as a critical component, the global automobile industry reduced production by 
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approximately 10 million vehicles, with direct economic losses reaching USD 210 billion [7,8]. 
This figure clearly illustrates the severe impact of unstable core component supply on 
industrial output. In the consumer electronics sector, data from IDC show that in the first half 
of 2020, due to the interruption of key component supplies, global smartphone shipments 
declined by 14% year-on-year, and tablet shipments dropped by 10.4%, leading to significant 
revenue losses across many electronics companies [9]. 

Recent studies further reveal that the vulnerability of the global supply chain continues to 
worsen [10,11]. According to the 2024 report by the International Supply Chain Institute, since 
2022, supply disruptions of critical components have increased by 30% due to geopolitical 
conflicts and extreme weather conditions [12]. For example, in the semiconductor industry, 
export restrictions on manufacturing equipment by certain countries have left approximately 
20% of global chip manufacturers facing difficulties in equipment upgrades and maintenance, 
hindering capacity expansion plans [13]. In the new energy vehicle industry, the supply of key 
raw materials such as lithium and cobalt has been heavily affected by geopolitical instability 
and policy adjustments in resource-rich countries, resulting in price volatility exceeding 50% 
during 2023–2024 and severely impacting production planning and cost control for automotive 
enterprises. 

Enterprises’ long-term over-reliance on imported critical components undoubtedly places their 
supply chain security at risk [14]. In high-end equipment manufacturing, once the supply of key 
components is disrupted, companies not only face penalties for failing to deliver orders on time, 
but also risk losing market share to competitors due to a weakened delivery capacity, along 
with potential long-term damage to their brand reputation [15]. For instance, certain aerospace 
companies have experienced delayed aircraft deliveries due to interrupted supplies of 
imported engine components, leading to declining customer trust and reduced global 
competitiveness [16]. Data show that Airbus’s A400M military transport aircraft program, due 
to technical issues and delays related to gearboxes and other core components, had incurred 
EUR 1.2 billion in penalties by May 2023, and its first delivery was postponed by four years, 
significantly affecting its market share and follow-up orders [17,18]. In the construction 
machinery sector, Caterpillar experienced a 25% decline in the production of some excavator 
models in Q4 2022 due to supply shortages of key components such as hydraulic pumps, 
resulting in an 8-percentage-point market share gain by competitor Komatsu. In the face of such 
a severe and complex international supply environment, achieving localized and autonomous 
supply of critical components has become an imperative strategy for enterprises [19]. It is a 
necessary measure to safeguard supply chain security, improve resilience against external 
shocks, and enhance core market competitiveness [20]. More importantly, it represents a 
strategic path for enterprises to pursue sustainable development in a highly uncertain global 
environment [21]. 

According to recent industry research, more than 60% of high-end manufacturing enterprises 
in 2024 still exhibit a dependency rate exceeding 40% on imported core components [22]. 
Taking the medical equipment industry as an example, in China's high-end MRI systems, over 
80% of key components such as superconducting magnets and radiofrequency coils are 
imported [23]. This results in persistently high equipment costs, prolonged supply cycles, and 
slow maintenance responses, which have seriously constrained the development of the 
industry. In the industrial robotics sector, although the localization rates of critical components 
such as precision reducers and servo motors have improved, the average localization rate in 
2024 remains only 35% [24]. Most enterprises still face challenges in matching the 
performance and reliability of international brands, thus limiting the applicability of 
domestically produced industrial robots in high-end manufacturing scenarios [25]. 

Although the issue of component substitution has attracted extensive attention from both 
academia and industry, a review of existing literature reveals significant limitations [26]. From 
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the perspective of research dimensions, some studies focus solely on the technological R&D 
stage, aiming to overcome core technical bottlenecks to achieve localization of key components, 
while neglecting the coordination between subsequent stages such as manufacturing process 
optimization, stringent quality control, and gradual capacity scaling [27]. As a result, 
technological achievements often fail to be effectively translated into actual productive 
capacity. From the standpoint of process phases, certain studies only address isolated stages—
such as focusing exclusively on quality improvements during small-batch prototyping—while 
lacking a holistic, full-process perspective that encompasses the entire dynamic trajectory from 
initial R&D to mass production [28]. This fragmented approach fails to comprehensively 
uncover the internal mechanisms and critical influencing factors involved in the autonomous 
supply of core components. With the rapid advancement of science and technology—
particularly the increasing penetration of digitalization and intelligent technologies in the 
manufacturing sector—supply chain management paradigms are undergoing fundamental 
transformation [29]. Existing research outcomes are no longer sufficient to support enterprise 
decision-making in complex and ever-changing environments [30]. According to the McKinsey 
Global Institute, supply chains that undergo digital transformation can recover from 
unexpected disruptions 30% to 50% faster than traditional supply chains [31]. However, 
current research on autonomous supply pathways for critical components still lacks adequate 
integration of digital and intelligent concepts and methodologies. In response, this study 
proposes an innovative path evaluation method that integrates system dynamics (SD) modeling 
with stage-based substitution strategy simulation. The objective is to construct a 
comprehensive, dynamic, and future-oriented research framework that enables in-depth 
analysis of the key stages in the autonomous supply process for core components, as well as the 
complex interdependencies among them. This approach provides a solid theoretical foundation 
and practical guidance for enterprises to formulate scientific, feasible, and adaptive 
substitution strategies, thereby supporting steady progress toward autonomous supply in 
critical component domains. 

2. Methodology 

2.1. 2.1 System Dynamics (SD) Modeling Principles 

System dynamics is a research methodology rooted in systems theory, cybernetics, and 
information theory. It views complex systems as being composed of interrelated feedback loops 
and simulates the dynamic behavior of the system through the construction of SD models. In 
evaluating autonomous supply pathways for critical components, SD modeling facilitates a 
clear representation of causal relationships and feedback mechanisms across various stages, 
such as the impact of R&D investment on the prototyping cycle, or the feedback effect of quality 
acceptance results on capacity expansion [32]. By identifying state variables (e.g., component 
production capacity, technological maturity), rate variables (e.g., prototyping progress, quality 
improvement rate), and auxiliary variables (e.g., import dependency, market demand), the 
model constructs flow diagrams and logical feedback models that capture the dynamic 
evolution of the autonomous supply system for critical components. 
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Figure 1. System Dynamics Model Framework 

 

2.2. 2.2 Stage-Based Substitution Strategy Design 

This study divides the autonomous supply process of core components into three closely linked 
stages: “Collaborative Development – Small-Batch Prototyping – Large-Scale Substitution.” 

In the collaborative development stage, enterprises work jointly with domestic suppliers or 
research institutions to carry out technological R&D, aiming to overcome key technical 
bottlenecks and enhance the maturity level of the components. The small-batch prototyping 
stage, based on initial development results, involves limited-scale trial production, during 
which production processes are optimized and rigorous quality inspections are conducted to 
reduce the failure rate during quality acceptance. The large-scale substitution stage proceeds 
upon successful small-batch trials, gradually expanding production scale to achieve large-scale 
replacement of imported components and increase the self-supply ratio [33]. 

2.3. 2.3 Parameter Collection and Model Construction 

Taking 23 categories of heavy industrial equipment components as the research object, this 
study collects relevant parameters covering the period from 2019 to 2024. These data are used 
as the empirical foundation for model construction. The collected data are summarized in Table 
1. 

 

Table 1. Parameter Statistics for the Autonomous Supply of Heavy Industrial Equipment 
Components 

Parameter Category Year Detailed Description Data Result 

Import Dependency 2019 
Average level of import 

dependency 
65% 

 2024 
Average level of import 

dependency 

58% (despite a 
decrease, dependency 
on some critical parts 
remains above 80%) 

Prototyping Duration 2019–2023 
Average duration of 

the prototyping phase 
85 days 

 2024 
Average duration of 

the prototyping phase 

78 days (slightly 
shortened due to 

technological 
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improvements) 

Quality Acceptance 
Failure Rate 

2019–2023 
Average failure rate 

during the small-batch 
prototyping stage 

15% 

 2024 
Average failure rate 

during the small-batch 
prototyping stage 

12% (reduction 
attributed to process 

optimization) 

R&D Investment 
Proportion 

2019–2023 

Average proportion of 
core component R&D 
investment relative to 

total revenue 

4.8% 

 2024 

Proportion of core 
component R&D 

investment relative to 
total revenue 

5.5% (reflecting 
intensified R&D 

efforts) 

Technical Personnel 
Composition 

— 

Average number of 
technical personnel 

per component 
category 

56 persons 

 

Based on these detailed parameters, a system dynamics model for evaluating the autonomous 
supply pathways of critical components was developed using professional system dynamics 
modeling software. All equations and parameter settings in the model were calibrated 
according to the actual data collected and the logical relationships among each stage, in order 
to ensure that the model accurately reflects the real-world process of autonomous supply. 

To more clearly present the differences across various stages of autonomous supply for 
different categories of heavy industrial equipment components, a summary is provided in Table 
2. 
 

Table 2. Comparative Indicators of Autonomous Supply Stages for Different Types of 
Heavy Industrial Equipment Components. 

Component Type 

Average Duration 
for Overcoming 

Technical 
Challenges in 
Collaborative 
Development 

Stage 

Unit Cost in 
Small-Batch 

Prototyping Stage 
(CNY) 

Number of 
Batches Required 

to Reach 80% 
Qualification Rate 

Time Required to 
Ramp Up 

Capacity to 80% 
in Large-Scale 

Substitution Stage 
(Months) 

Structural 
Components 

45 days 5,000 8 batches 6 months 

Transmission 
Components 

52 days 6,500 10 batches 7 months 

Electronic Control 
Components 

60 days 8,000 12 batches 8 months 

 

As shown in Table 2, different types of heavy industrial equipment components exhibit notable 
differences in terms of challenges, required time, and associated costs throughout the 
autonomous supply process. For structural components, the time required to overcome 
technical bottlenecks during the collaborative development stage is relatively shorter 
compared to the other two types, which may be attributed to a relatively mature technological 
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system and a solid foundation of domestic research in this area [34]. However, despite their 
relatively low unit cost in the small-batch prototyping stage, achieving an 80% qualification 
rate still requires eight batches, reflecting that process optimization cannot be achieved in a 
single step and must undergo multiple rounds of debugging and improvement. Transmission 
components show moderate values across all stages. While the technical R&D difficulty is 
relatively balanced, a certain amount of time and cost investment is still required during the 
production phase for process refinement. Electronic control components take the longest time 
to overcome technical challenges in the collaborative development stage, which is related to 
the rapid iteration of technologies in the electronic control field and the extremely high 
requirements for precision and stability. In the small-batch prototyping stage, they also have 
the highest unit cost and require the largest number of batches to reach an 80% qualification 
rate, indicating that electronic control components face more severe technical and process-
related challenges during the autonomous supply process. The transition from R&D to mass 
production is, therefore, significantly more complex in this category. 

3. Results and Discussion 

3.1. 3.1 Simulation Results 

A simulation was conducted using the system dynamics model constructed in this study. Under 
the moderate implementation path, the average duration for technology transfer was 68 days, 
reflecting the time needed for converting R&D outcomes into production capabilities. By Day 
90, production capacity reached 82.5%, indicating that the enterprise had effectively enhanced 
its capacity through continuous process optimization and technological improvement. 

When the "collaborative development – transitional redundancy" strategy was applied, the 
project startup delay was reduced by 18% compared with other strategies. This approach 
emphasizes stronger cooperation during development and reserves buffer capacity during 
transition to respond to unforeseen disruptions. As a result, the time between project initiation 
and actual production was effectively shortened. The overall switching loss remained below 
7.1%, showing that losses caused by production halts and quality instability during the 
transition from imported to localized parts were well controlled. Specifically, 62.5% of the 
startup delay reduction (10 days) was attributed to early technical collaboration, while the 
remaining 37.5% (8 days) was due to the cushioning effect of redundant capacity. Among 
switching losses, 40% were due to quality variation, 35% to production stoppage, and 25% to 
equipment calibration and process adjustment. 

 

 

Figure 2. Simulation Results: Switchover Loss 
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3.2. 3.2 Analysis and Discussion 

The simulation results under the moderate pace provide practical benchmarks for scheduling 
technology transfer and capacity ramp-up. Enterprises can adjust the speed of implementation 
based on internal resources and market needs to achieve a balance between technology 
deployment and production stability. The effectiveness of the "collaborative development – 
transitional redundancy" strategy confirms the importance of reinforcing early-stage 
cooperation and maintaining reasonable redundant capacity. Collaboration promotes faster 
technological breakthroughs and knowledge sharing, while redundancy helps mitigate risks 
associated with production interruptions. Nevertheless, the simulation also revealed certain 
potential risks. Even though some strategies resulted in higher capacity within a given 
timeframe, fluctuations in quality acceptance rates persisted [35]. These were likely caused by 
unstable production processes or inconsistent raw material quality. During actual substitution, 
enterprises must focus on quality control and continuous process optimization to ensure 
product consistency. Moreover, different types of heavy equipment components exhibit unique 
characteristics. Substitution strategies should therefore be tailored accordingly, with model 
parameters adjusted to reflect the specific requirements of each part. Analysis of quality 
variation showed that 60% of issues stemmed from instability in key process parameters such 
as current and voltage during welding. The remaining 40% resulted from raw material 
inconsistencies, including insufficient purity or hardness. Structural components typically face 
issues like dimensional errors or surface defects due to strict mold and machining 
requirements, while electronic parts are more sensitive to environmental conditions and 
assembly processes, often leading to instability in electrical performance [36]. 

4. Conclusion 

This study investigates the self-sufficiency pathway for critical component supply by 
integrating system dynamics modeling with staged substitution strategy simulation. The 
findings indicate that, among the 23 types of heavy industrial equipment parts, the 
“collaborative development – transitional redundancy” strategy combination offers clear 
advantages, reducing startup delays by 18% and maintaining total switching loss below 7.1%. 
This strategy should be prioritized during enterprise planning. Under a moderate 
implementation schedule, the average duration for technology transfer is 68 days, and 
production capacity reaches 82.5% by Day 90, providing important reference values for 
planning technical conversion and capacity growth. Quality control remains essential. Although 
the failure rate in small-batch trials has decreased from an average of 15% during 2019–2023 
to 12% in 2024, further improvements in process stability and raw material inspection are 
necessary to ensure consistent product quality. The developed model supports integration with 
ERP systems, enabling enterprises to conduct real-time monitoring and risk alerts. This study 
provides a scientific decision-making foundation for advancing self-reliant supply of core 
components, enhancing supply chain resilience and competitiveness, and assisting enterprises 
in maintaining stable development amid complex international conditions. 
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