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Abstract 

Traditional quantitative investment models often suffer from limited adaptability in 
volatile market environments. To overcome this constraint, this study proposes a 
reinforcement learning-based framework, RL-Quant, which integrates technical 
indicators, sentiment signals, and fundamental variables into a multi-factor state 
representation. The agent is trained using the Proximal Policy Optimization (PPO) 
algorithm, with a customized reward function incorporating dynamic risk control 
parameters to constrain maximum drawdown and return volatility. Empirical 
backtesting is conducted on the CSI 300 and S&P 500 indices from 2014 to 2023. The 
proposed framework achieves an annualized return of 19.6%, a maximum drawdown 
of 9.2%, and a Sharpe ratio of 1.87, consistently outperforming benchmark ETFs and 
equal-weighted portfolios. Notably, the model demonstrates robust downside 
protection during periods of heightened market stress, including the March 2020 
downturn. These results suggest that reinforcement learning can enhance the 
responsiveness and stability of quantitative strategies under dynamic market 
conditions. 
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1. Introduction 

Quantitative investment has steadily gained traction in global financial markets, largely due to 
its systematic methodology and reliance on empirical data [1,2]. Since the early 2000s, the 
assets under management by quantitative strategies have surged from less than USD 500 
billion to over USD 5 trillion by the end of 2020 [3]. Over the same period, their market share 
has grown from approximately 5% to close to 20%. Early-stage strategies typically relied on 
straightforward statistical techniques such as mean reversion and arbitrage, aimed at 
capturing temporary pricing inefficiencies by analyzing historical price patterns [4]. As 
computational power increased and financial modeling tools matured, quantitative strategies 
began to diversify. Contemporary models frequently incorporate multi-factor structures, 
high-frequency trading and complex optimization algorithms, enabling the integration of a 
broader range of inputs—such as macroeconomic data, sector-specific indicators and 
sentiment signals—into the investment process [5,6]. Research in multi-factor modeling, for 
instance, suggests that portfolios constructed with a wider array of predictive variables tend 
to achieve 3–5 percentage points higher annualized returns than those based on fewer inputs. 
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Despite these improvements, most traditional models still rely on fixed, historically derived 
assumptions. This structural rigidity limits their effectiveness in responding to rapidly 
changing market conditions. Financial markets are characterized by uncertainty, nonlinear 
feedback, and regime shifts, all of which are difficult to capture using static modeling 
approaches. Disruptions caused by global crises, macroeconomic shocks, or abrupt shifts in 
investor sentiment often invalidate assumptions on which such models are based. The 2008 
financial crisis is one such example, during which many conventional portfolios experienced 
drawdowns exceeding 30% due to an inability to adjust risk exposure promptly. In many 
cases, these models persist with outdated directional assumptions even as trends reverse, 
exposing portfolios to prolonged losses. Furthermore, their static nature often prevents the 
timely reallocation of assets across sectors or instruments in response to shifting risk–return 
profiles, resulting in inefficiencies during volatile periods. In parallel, recent years have seen 
growing interest in reinforcement learning (RL) as a tool for sequential decision-making in 
uncertain environments. The mechanism of RL, where agents interact with environments and 
learn from outcomes to refine future actions, presents a potentially useful analogy to 
investment management. Unlike models constrained by historical optimization, RL systems 
continuously adapt based on observed outcomes, allowing them to revise strategy in response 
to new information. Several studies have explored the application of RL in financial contexts. 
While preliminary results indicate some improvement over static strategies, the majority of 
existing work relies on limited factor inputs and oversimplified risk modeling. These 
approaches often lack mechanisms for dynamically adjusting exposure during periods of 
stress. As a result, they are prone to breakdown when faced with discontinuities or extreme 
volatility, such as during the COVID-19 market shock or unanticipated geopolitical events. 

Building on this context, the present study introduces an investment framework that 
incorporates reinforcement learning into a comprehensive quantitative strategy. The 
model—referred to as RL-Quant—combines multi-dimensional market indicators with a 
dynamic risk control mechanism designed to respond to evolving conditions. The approach 
utilizes the Proximal Policy Optimization (PPO) algorithm and constructs a richer state space 
that includes technical, sentiment, and fundamental factors. Risk constraints are encoded 
within a flexible reward structure that seeks to manage drawdown and volatility across 
different market regimes. This framework aims to address known weaknesses in both 
traditional and existing RL-based investment models by enhancing adaptability without 
sacrificing risk discipline. 

2. Methodology 

2.1. Construction of the RL-Quant System 

The RL-Quant system consists of an agent, an environment, and a reward function. The agent 
makes buy, sell, or hold decisions for assets based on market states and the learned policy. 
The environment responds to each decision by providing a new state and a reward signal. The 
agent's decision space is defined as the investment proportion in a single stock, ranging from 
0% to 100%, with a step size of 0.1%, resulting in 1,001 discrete combinations, simulating 
real-world investment decisions. 

2.2. State Space Construction 

The state space is constructed using multi-factor modeling that integrates technical, 
sentiment, and fundamental factors. Technical factors include moving averages (5-day, 
10-day, 20-day, 60-day), RSI, and Bollinger Bands, describing price trends and volatility. 
Sentiment factors include the Investor Sentiment Index and the VIX, reflecting market 
psychology and risk appetite. Fundamental factors such as PE ratio, PB ratio, and revenue 
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growth rate are used to assess asset value. This study includes 15 technical, 5 sentiment, and 
10 fundamental factors to form a high-dimensional state vector that captures market 
information. 

2.3. Application of the PPO Algorithm 

The Proximal Policy Optimization (PPO) algorithm, based on policy gradient methods, is used 
to optimize the policy network and maximize cumulative rewards. In the RL-Quant system, 
the policy network outputs a probability distribution over investment decisions based on the 
market state. The PPO algorithm introduces a proximal policy objective to constrain policy 
update magnitudes, balancing learning stability and environmental adaptability. Experimental 
results show that, compared to the traditional A2C algorithm, PPO achieves higher sample 
efficiency, 30% faster convergence, and a 15% improvement in average policy returns. 

2.4. Dynamic Risk Control 

A tunable risk control reward function is introduced to manage the maximum drawdown and 
volatility of the investment portfolio. When the maximum drawdown or volatility exceeds 
predefined thresholds (initial settings: 10% drawdown, 20% annualized volatility), the 
reward function gives negative feedback to the agent to encourage policy adjustment. During 
stable markets, risk control parameters adjust slowly to maintain returns. When market 
volatility increases (e.g., VIX exceeds 30), adjustments become faster, and the maximum 
drawdown threshold may be reduced to 8% to enhance defense. The risk control parameter 
settings are shown in Table 1. 

 

Table 1. Risk Control Parameter Setting Table 

Market Condition 
Maximum 

Drawdown Threshold 

Volatility 
Threshold 

(Annualized) 

Adjustment 
Frequency 

Stable Period 10% 20% Slow 

High Volatility (VIX > 30) 8% 20% Fast 

 

3. Results and Discussion 

3.1. Backtesting Data and Configuration 

Historical market data from the CSI 300 and the S&P 500 indices during the period from 2014 
to 2023 were selected as the backtesting samples. The CSI 300 consists of 300 representative 
A-share stocks, covering multiple sectors including energy, finance, and consumer goods. The 
data frequency is daily, with a total of 2,510 trading days. The S&P 500 comprises 500 
large-cap U.S. listed companies, also with daily frequency, including 2,522 trading days within 
the same period. The dataset was divided into a training set and a test set. The training set 
was used for model parameter learning and optimization, while the test set was used to 
evaluate the generalization performance of the model. The training set includes data from 
2014 to 2020, and the test set includes data from 2021 to 2023. During the backtesting 
process, the initial investment capital was set at 1 million CNY to simulate a real trading 
scenario. To ensure the authenticity and reliability of the results, transaction costs and 
slippage were taken into account. The transaction cost was set at 0.1% per transaction 
(one-way). Slippage was calculated based on historical trading data and set at 10% of the 
bid-ask spread on average. Details of the backtesting data and configuration are summarized 
as follows: 
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Table 2. Detailed Settings of Backtesting Data and Configuration 

Index 
Number of 

Stocks 
Data 

Frequency 

Number of 
Trading 

Days 
Training Period Test Period 

Transaction 
Cost 

CSI 300 300 Daily 2,510 2014–2020 2021–2023 
0.1% per trade 

(one-way) 

S&P 500 500 Daily 2,522 2014–2020 2021–2023 
0.1% per trade 

(one-way) 

 

3.2. Model Performance Analysis 

The RL-Quant model achieved an annualized return of 19.6% on the test set. Compared with 
the equal-weighted strategy and benchmark ETFs, this model more effectively captures 
market investment opportunities and realizes asset appreciation through dynamic portfolio 
adjustment. During the same test period, the equal-weighted strategy achieved an annualized 
return of only 10.5%, while the benchmark ETF tracking the CSI 300 yielded 12.8%, and the 
ETF tracking the S&P 500 achieved 14.3%. The comparative return performance is shown in 
the table below: 

 

Table 3. Comparison of Return Performance 

Strategy / ETF Annualized Return (%) 

RL-Quant 19.6 

Equal-Weighted Strategy 10.5 

CSI 300 Benchmark ETF 12.8 

S&P 500 Benchmark ETF 14.3 

 

This result indicates that the reinforcement learning-based multi-factor modeling approach 
can extract hidden effective information from the market and provide strong support for 
investment decisions. The model successfully limited the maximum drawdown to 9.2%, and 
achieved a Sharpe ratio of 1.87. The relatively low drawdown indicates that the model can 
adjust its strategy in a timely manner during market declines, effectively controlling losses. 
During the overall market downturn in 2022, the maximum drawdown of the equal-weighted 
strategy reached 25%, while the CSI 300 benchmark ETF experienced a drawdown of 22%, 
and the S&P 500 benchmark ETF experienced a drawdown of 18%. In contrast, the RL-Quant 
model, through its dynamic risk control mechanism, significantly reduced the extent of loss. 
The high Sharpe ratio reflects the model’s ability to achieve higher excess returns under a 
given level of risk, indicating a sound balance between return and risk. The dynamic risk 
control mechanism played an important role in limiting portfolio risk, enabling the model to 
maintain relatively stable performance across different market conditions. During bear 
market test intervals, such as the sharp market decline in March 2020 triggered by the 
COVID-19 pandemic, the RL-Quant model demonstrated excellent capital preservation 
capability. In that month, the equal-weighted strategy portfolio declined by 20%, the CSI 300 
benchmark ETF fell by 18%, and the S&P 500 benchmark ETF dropped by 15%. In 
comparison, the RL-Quant portfolio only declined by 8%, effectively reducing investor losses. 
This further verifies the robustness of the model and the effectiveness of its risk control 
mechanism under extreme market conditions. By dynamically adjusting investment 
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strategies, the model can implement timely loss control during periods of high market 
volatility, thereby protecting investors’ principal capital. 

4. Conclusion 

This study constructed a quantitative investment framework, RL-Quant, based on 
reinforcement learning and multi-factor modeling. The framework utilized the Proximal 
Policy Optimization (PPO) algorithm and integrated technical, sentiment, and fundamental 
indicators to form a high-dimensional state space. A dynamic risk control mechanism was 
incorporated into the reward function to manage drawdown and volatility in varying market 
conditions. Backtesting results based on CSI 300 and S&P 500 index data from 2014 to 2023 
indicate that the model achieved an annualized return of 19.6%, with maximum drawdown 
constrained to 9.2% and a Sharpe ratio of 1.87. Compared with equal-weighted portfolios and 
benchmark ETFs, RL-Quant generated higher returns and reduced downside risk. During 
periods of heightened market volatility, the model adjusted exposure in accordance with 
predefined thresholds, leading to lower portfolio losses. In the stress test conducted for March 
2020, the portfolio decline was limited to 8%, significantly lower than the benchmarks. The 
results confirm that reinforcement learning, when combined with multi-factor modeling and 
parameterized risk constraints, can enhance the responsiveness and risk management 
capability of quantitative strategies. The model remains stable across multiple market phases 
without reliance on fixed statistical assumptions. 
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