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Abstract 

The acceleration of materials discovery relies heavily on the ability to predict 
physicochemical properties of crystal structures with high accuracy and computational 
efficiency. While Density Functional Theory (DFT) provides precise ground-truth data, 
its cubic scaling with electron count renders it prohibitive for high-throughput 
screening of vast chemical spaces. Consequently, machine learning surrogates have 
emerged as a critical alternative. However, conventional Message Passing Neural 
Networks (MPNNs) often struggle to capture long-range atomic interactions and suffer 
from over-smoothing in deep architectures. Furthermore, standard active learning 
frameworks frequently rely on uncalibrated uncertainty estimates, leading to 
suboptimal sampling strategies and wasted computational resources. This paper 
introduces a novel framework: the Graph Transformer with Uncertainty-Calibrated 
Active Learning (GT-UCAL). We propose a geometric graph transformer architecture 
that integrates structural positional encodings to capture global topology, coupled with 
an evidential deep learning mechanism to quantify both aleatoric and epistemic 
uncertainties. Through rigorous experimentation on the Materials Project and JARVIS 
datasets, we demonstrate that GT-UCAL achieves state-of-the-art predictive 
performance while reducing the requisite labeled data by approximately 40% 
compared to random sampling. 
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Introduction 

1.1 Background 

The paradigm of materials science has shifted dramatically over the past decade, moving from 
Edisonian trial-and-error methodologies toward data-driven inverse design. The central 
challenge in this domain is the structure-property mapping problem: given a crystallographic 
arrangement of atoms, predict properties such as formation energy, bandgap, or elastic 
moduli [1]. Historically, this mapping has been performed using ab initio simulation methods, 
most notably Density Functional Theory (DFT). While DFT offers high fidelity, it is 
computationally expensive, often requiring thousands of CPU hours for a single unit cell 
calculation [2]. 

To circumvent these computational bottlenecks, the field has increasingly adopted machine 
learning (ML) surrogates. These models, trained on databases of pre-calculated DFT results, 
can predict properties in milliseconds. Early approaches utilized hand-crafted descriptors, 
such as Coulomb matrices or radial distribution functions, to vectorize crystal structures [3]. 
However, the advent of Deep Learning, specifically Graph Neural Networks (GNNs), 
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revolutionized this space by allowing models to learn representations directly from the 
molecular graph structure, where atoms serve as nodes and chemical bonds as edges [4]. 

1.2 Problem Statement 

Despite the success of GNNs, significant limitations persist. Standard message-passing 
architectures rely on iterative aggregation of local neighborhoods. This locality bias makes it 
difficult for the network to model long-range interactions, such as electrostatic forces or steric 
hindrance in complex macromolecules, unless the network is made exceedingly deep [5]. 
However, increasing the depth of GNNs frequently leads to the over-smoothing problem, 
where node representations become indistinguishable [6]. 

Moreover, the training of these surrogates assumes the availability of large, labeled datasets. 
In materials science, labels are expensive (DFT calculations). Active Learning (AL) addresses 
this by iteratively selecting the most informative structures to label. However, the efficacy of 
AL depends entirely on the model's ability to estimate its own uncertainty [7]. Standard 
neural networks are notoriously overconfident, assigning high certainty even to erroneous 
predictions on out-of-distribution data. Without calibrated uncertainty, the AL loop may select 
redundant samples or fail to explore novel regions of the chemical space [8]. 

1.3 Contributions 

In this work, we propose GT-UCAL, a unified framework addressing both the representational 
limitations of standard GNNs and the calibration deficits of traditional active learning. Our 
contributions are threefold: 

First, we design a Geometric Graph Transformer that replaces static message passing with a 
dynamic self-attention mechanism. This allows every atom to attend to every other atom, 
modulated by distance and bond characteristics, effectively capturing long-range 
dependencies without deep stacking [9]. 

Second, we integrate a scalable uncertainty quantification method based on Evidential Deep 
Learning. Unlike Bayesian Neural Networks or Ensembles, which are computationally heavy, 
our approach places a distribution over the output parameters, allowing a single forward pass 
to estimate both data noise (aleatoric) and model ignorance (epistemic) [10]. 

Third, we demonstrate a calibration-aware acquisition function that balances exploration and 
exploitation more effectively than standard variance-based sampling. We validate this on the 
Materials Project database, showing significant improvements in data efficiency [11]. 

Chapter 2: Related Work 

2.1 Classical Approaches and Descriptor-Based Models 

The earliest attempts to apply machine learning to materials science relied heavily on 
domain-expert knowledge to construct feature vectors. Descriptors such as the Voronoi 
tessellation features and the Sine Matrix were fed into classical algorithms like Random 
Forests and Support Vector Machines (SVMs) [12]. While these models offered 
interpretability and low training costs, they were constrained by the quality of the 
descriptors. Hand-crafted features often failed to capture the nuances of rotational invariance 
or the periodicity of crystal lattices, leading to poor generalization on complex, multi-element 
compounds [13]. 
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2.2 Deep Learning and Graph Neural Networks 

The introduction of Crystal Graph Convolutional Neural Networks (CGCNN) marked a turning 
point. CGCNN formalized crystals as multigraphs, enabling end-to-end learning of atomic 
features [14]. Subsequent architectures like SchNet and MEGNet introduced continuous-filter 
convolutions and global state attributes to better model physical interactions [15]. 

Despite these advancements, standard GNNs are fundamentally limited by the k-hop 
neighborhood aggregation scheme. To model an interaction between two atoms 10 angstroms 
apart, a standard GNN might require 5 to 6 layers, risking the vanishing gradient and over-
smoothing issues previously mentioned [16]. 

2.3 Transformers and Active Learning in Science 

Transformers, originally developed for natural language processing, utilize self-attention to 
model global context. Recently, Graph Transformers have been adapted for molecular data, 
with models like Graphormer showing promise in small molecule property prediction [17]. 
However, applying these to periodic crystal systems requires specialized handling of infinite 
boundaries and periodic image interactions [18]. 

In the realm of Active Learning, Gaussian Processes (GPs) have been the gold standard for 
uncertainty estimation due to their exact Bayesian nature [19]. However, GPs scale cubically 
with dataset size, making them intractable for databases like the OQMD or Materials Project, 
which contain hundreds of thousands of entries. Deep Ensembles offer a robust alternative 
but require training multiple models, increasing the computational overhead linearly [20]. 
Our work bridges this gap by utilizing a single-model deterministic uncertainty estimator 
within a transformer architecture. 

Chapter 3: Methodology 

The core of our proposed GT-UCAL framework lies in the synergistic integration of a 
geometric attention mechanism for representation learning and an evidential regression head 
for uncertainty quantification. This section details the mathematical underpinnings and 
architectural choices. 

3.1 Graph Construction and Featurization 

We represent a crystal structure as a multigraph G = (V, E), where V represents the set of 
atoms and E represents the set of bonds. Unlike molecular graphs, crystal graphs must 
account for periodicity. We construct the graph using a radius-based approach, connecting 
neighbors within a cutoff distance (typically 8 Angstroms) across periodic boundaries. 

Node features h_i are initialized using a one-hot encoding of the atomic number, passed 
through a dense embedding layer to obtain a continuous vector representing the chemical 
species. Edge features e_ij incorporate the Euclidean distance expanded via a Gaussian Basis 
function, ensuring the model is sensitive to precise interatomic distances [21]. 

3.2 Geometric Graph Transformer Layer 

The limitation of MPNNs is resolved by replacing fixed message passing with a multi-head 
self-attention mechanism. In a standard Transformer, attention is computed based solely on 
the similarity between node queries and keys. In our Geometric Graph Transformer, we bias 
the attention scores using structural information. 
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For a given node i, the update rule involves computing attention weights with all other nodes j 
(within the cutoff or global context). To incorporate the edge information into the attention 
mechanism, we modify the standard scaled dot-product attention. The edge features are 
projected and added to the key vector, ensuring that the "importance" of node j to node i is a 
function of both the chemical identity of j and the spatial relationship defined by e_ij. 

 
Figure 1: Architecture of the GT 

3.3 Uncertainty Quantification via Evidential Regression 

To enable effective active learning, the model must output not just a prediction y, but a 
measure of confidence. We employ Evidential Deep Learning (EDL). In standard regression, a 
network outputs a scalar y. In EDL, the network estimates the hyperparameters of a higher-
order probability distribution that explains the observed data. 

We assume the target property y is drawn from a Gaussian distribution with unknown mean 
and variance. We place a Normal-Inverse-Gamma (NIG) prior over this Gaussian. The neural 
network outputs the parameters of this NIG distribution: m (predicted mean), v (evidence 
count), alpha (shape), and beta (scale) [22]. 

The aleatoric uncertainty (data noise) is estimated as beta / (alpha - 1), while the epistemic 
uncertainty (model uncertainty) is inversely proportional to v. This separation is crucial for 
active learning; we specifically want to query data points with high epistemic uncertainty, as 
these represent regions where the model lacks knowledge, rather than regions that are 
inherently noisy. 

3.4 Mathematical Formalism 

The training objective is to maximize the model evidence, which corresponds to minimizing 
the negative log-likelihood of the marginal likelihood. For the NIG distribution, the loss 
function consists of a log-likelihood term and a regularization term that penalizes incorrect 
evidence on misclassified samples (or high error samples in regression). 
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The attention mechanism, modified for the graph structure, is defined mathematically. Let Q, 
K, and V be the Query, Key, and Value matrices derived from node features. The structural bias 
is introduced via the edge features. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, 𝐸) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄(𝐾 + 𝐸)𝑇

√𝑑𝑘
)𝑉 

Here, E represents the edge encoding matrix projected to the same dimension as the keys, and 
d_k is the dimension of the key vectors. This formulation ensures that the structural 
information explicitly modulates the routing of information between atoms [23]. 

3.5 Active Learning Strategy 

With the epistemic uncertainty U_e derived from the NIG parameters, we implement an 
acquisition function based on the Upper Confidence Bound (UCB). In the context of material 
discovery, we are often looking for extreme values (e.g., highest stability). However, for pure 
model improvement (exploration), we select samples that maximize U_e. 

The active learning loop proceeds as follows: 

1. Train the GT-UCAL model on the initial labeled set. 

2. Predict properties and uncertainties for the unlabeled pool. 

3. Select k samples with the highest epistemic uncertainty. 

4. Obtain ground truth labels (simulate DFT) for these samples. 

5. Add to the training set and retrain. 

Code Snippet 1 demonstrates the implementation of the Evidential Loss function in PyTorch, 
which is central to this calibration. 

Code Snippet 1: Evidential Regression Loss Implementation 

    import torch 

    import torch.nn as nn 

    import numpy as np 

    def nig_nll_loss(y, gamma, v, alpha, beta): 

        """ 

        Calculates the Negative Log Likelihood for Normal Inverse Gamma. 

        y: Ground truth 

        gamma, v, alpha, beta: Output parameters from the GT-UCAL head 

        """ 

        two_b_lambda = 2  beta  (1 + v) 

        nll = 0.5  torch.log(np.pi / v) \ 
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              - alpha  torch.log(two_b_lambda) \ 

              + (alpha + 0.5)  torch.log(v  (y - gamma)2 + two_b_lambda) \ 

              + torch.lgamma(alpha) \ 

              - torch.lgamma(alpha + 0.5) 

        return torch.mean(nll) 

    def nig_regularization(y, gamma, v, alpha): 

        """ 

        Regularization term to penalize overconfidence on high errors. 

        """ 

        error = torch.abs(y - gamma) 

        # Evidence is v + 2alpha. We want to minimize evidence where error is high. 

        reg_loss = error  (2  v + alpha) 

        return torch.mean(reg_loss) 

Chapter 4: Experiments and Analysis 

4.1 Dataset and Experimental Setup 

We evaluated our framework on the Materials Project (MP-2020) dataset, focusing on two 
distinct properties: Formation Energy (per atom) and Bandgap. Formation energy represents 
a thermodynamic stability metric, while bandgap is an electronic property crucial for 
semiconductors. The dataset contains approximately 69,000 diverse crystal structures [24]. 

For the Active Learning simulation, we partitioned the data into an initial training set (5%), a 
validation set (10%), a test set (10%), and an unlabeled pool (75%). We performed 10 rounds 
of active learning, querying 500 samples per round. 

4.2 Baselines 

We compared GT-UCAL against three strong baselines: 

1.  CGCNN (Standard GNN): The Crystal Graph Convolutional Neural Network, 
representing the standard MPNN paradigm. 

2.  ALIGNN: The Atomistic Line Graph Neural Network, which includes bond angle 
information and is considered a state-of-the-art graph model. 

3.  Ensemble-CGCNN: A Deep Ensemble of 5 CGCNN models to provide a baseline for 
uncertainty quantification, albeit at a higher computational cost. 

4.3 Predictive Performance Results 

Table 1 summarizes the performance of the models on the full test set after the active learning 
cycles were completed. The metrics reported are Mean Absolute Error (MAE) for both 
formation energy (eV/atom) and bandgap (eV). 
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Model Formation Energy 
MAE (eV/atom) 

Bandgap MAE (eV) Inference Time 
(ms/sample) 

CGCNN [14] 0.039 0.34 4.2 

ALIGNN [21] 0.026 0.22 18.5 

Ensemble-CGCNN 0.032 0.29 21.0 

GT-UCAL (Ours) 0.024 0.20 12.1 

GT-UCAL outperforms the standard CGCNN significantly and achieves parity or slight 
superiority over ALIGNN. Crucially, GT-UCAL is faster than ALIGNN because it does not 
require the computation of the costly line graph (angular graph) representation, relying 
instead on the attention mechanism to infer geometric constraints. It is also nearly twice as 
fast as the ensemble approach while providing comparable uncertainty estimates [25]. 

4.4 Analysis of Active Learning Efficiency 

The primary hypothesis of this work was that calibrated uncertainty would lead to more 
efficient data acquisition. In our experiments, we tracked the reduction in Test MAE as a 
function of the number of training samples. 

Using random sampling (passive learning), the GT model required 20,000 samples to reach a 
formation energy MAE of 0.030 eV/atom. Using the proposed uncertainty-calibrated active 
learning, the model reached the same error rate with only 11,500 samples. This represents a 
42.5% reduction in the data requirement. 

The analysis of the selected samples revealed that the epistemic uncertainty metric 
successfully identified "out-of-distribution" crystals. In early cycles, the model prioritized 
structures with rare elements (e.g., Lanthanides) and complex stoichiometries, which are 
typically underrepresented in the initial random subset. In contrast, standard variance-based 
sampling (using Dropout Monte Carlo) tended to select samples that were merely noisy or 
structurally disordered, rather than information-rich [26]. 

We also observed that the Graph Transformer architecture was more robust to noise in the 
atomic coordinates than MPNNs. Since the attention mechanism is global, the model is less 
reliant on exact local bond lengths, which can be noisy in unrelaxed structures, and can 
aggregate information from the broader crystal lattice to stabilize predictions. 

Chapter 5: Conclusion 

5.1 Summary and Implications 

This paper presented GT-UCAL, a comprehensive framework for materials property 
prediction that merges the expressive power of Graph Transformers with the rigorous 
uncertainty quantification of Evidential Deep Learning. Our results demonstrate that the 
attention mechanism effectively captures long-range interactions in crystal lattices, 
outperforming standard local message-passing networks. Furthermore, the integration of 
evidential regression provides a scalable, deterministic method for separating aleatoric and 
epistemic uncertainty. 

The implications for materials discovery are substantial. The active learning experiments 
confirm that high-fidelity models can be trained with significantly fewer DFT calculations if 
the training data is selected intelligently. By quantifying what the model "doesn't know," 
researchers can direct expensive simulation resources toward the most chemically distinct 
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and informative regions of the material space, rather than randomly sampling redundant 
structures. 

5.2 Limitations and Future Directions 

Despite these successes, several limitations remain. First, while the attention mechanism is 
more efficient than calculating line graphs, the quadratic complexity of full self-attention with 
respect to the number of atoms limits the application of GT-UCAL to relatively small unit cells 
(typically < 200 atoms). For large-scale systems like Metal-Organic Frameworks (MOFs) or 
protein-ligand interfaces, sparse attention mechanisms or approximations like the Nyström 
method would be necessary. 

Second, the calibration of Evidential Deep Learning can be sensitive to hyperparameter 
tuning, specifically the regularization coefficient that balances accuracy with uncertainty 
inflation. Future work will focus on adaptive regularization schemes that automatically tune 
this parameter during training. Additionally, extending this framework to multi-fidelity 
learning, where the model learns simultaneously from expensive DFT and cheaper semi-
empirical methods, represents a promising avenue for further accelerating the materials 
design cycle. 
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