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Abstract 

The inverse design of metasurfaces constitutes a formidable challenge in 
computational electromagnetics and nanophotonics, primarily due to the non-
uniqueness of the scattering problem and the high dimensionality of the design 
parameter space. Conventional optimization techniques, such as topology optimization 
and evolutionary algorithms, often succumb to high computational costs and 
convergence to local minima. Deep learning approaches, while promising in 
accelerating the design process, frequently struggle to strictly adhere to the governing 
Maxwell’s equations, leading to physically unrealizable or suboptimal structures. This 
paper introduces a novel framework: Physics-Informed Diffusion Models with Spectral 
Constraints (PIDM-SC). By integrating a pre-trained forward surrogate solver into the 
reverse diffusion process, we establish a generative mechanism that is explicitly guided 
by physical laws. The model is conditioned on desired spectral responses, ensuring that 
the generated meta-atoms not only exhibit high structural diversity but also strictly 
satisfy the target optical properties. Our approach utilizes a modified U-Net 
architecture capable of handling multi-modal data input, merging geometric features 
with spectral embeddings. Experimental validation on a dataset of silicon-on-insulator 
dielectric metasurfaces demonstrates that PIDM-SC outperforms state-of-the-art 
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) in 
terms of spectral accuracy and fabrication feasibility. The results indicate a significant 
step forward in the reliable, data-driven design of complex nanophotonic devices. 
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Introduction 

1.1 Background 

Metasurfaces, the two-dimensional counterparts of metamaterials, have revolutionized the 
field of photonics by enabling the precise manipulation of electromagnetic wavefronts with 
subwavelength spatial resolution. Composed of dense arrays of subwavelength scatterers, 
known as meta-atoms or unit cells, metasurfaces can control the amplitude, phase, and 
polarization of light in ways that conventional refractive optics cannot. This capability has led 
to the development of ultra-compact optical components, including high-numerical-aperture 
metalenses, beam deflectors, holograms, and polarimeters. The efficacy of a metasurface 
hinges on the specific geometry of its constituent meta-atoms, which determines the local 
optical response. Consequently, the design process typically involves selecting geometric 
parameters—such as the length, width, and rotation of nano-pillars—to achieve a target 
transmission or reflection coefficient [1]. 
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Traditionally, this design process has relied on a forward-mapping approach, where libraries 
of unit cells are simulated using full-wave numerical methods like Finite-Difference Time-
Domain (FDTD) or Rigorous Coupled-Wave Analysis (RCWA). Designers then construct the 
metasurface by querying this database to match the required phase profile. However, this 
look-up table method is limited by the discrete nature of the library and often fails to account 
for near-field coupling effects between adjacent meta-atoms. Furthermore, as the demand for 
multifunctional and broadband devices grows, the dimensionality of the design space 
expands, rendering brute-force parameter sweeps computationally prohibitive. 

1.2 Problem Statement 

The core challenge in metasurface engineering lies in the inverse design problem: 
determining the physical structure that produces a desired spectral response. This problem is 
mathematically ill-posed for two primary reasons. First, it is a one-to-many mapping; multiple 
distinct geometric configurations can yield identical optical spectra. This non-uniqueness 
confuses deterministic optimization algorithms and traditional regression-based neural 
networks, often leading to mode averaging and the generation of invalid geometries. Second, 
the mapping from geometry to spectrum is highly non-linear and governed by complex 
electromagnetic resonance modes [2]. 

While data-driven approaches using deep learning have emerged as a powerful alternative, 
they face significant hurdles. Generative models like Variational Autoencoders (VAEs) and 
Generative Adversarial Networks (GANs) have been employed to tackle the one-to-many 
mapping issue. However, these models operate primarily in the image or parameter domain 
and lack an intrinsic understanding of the underlying physics. Consequently, a generated 
structure might appear geometrically valid but fail to produce the target spectrum when 
verified with a Maxwell solver. This discrepancy, known as the simulation-reality gap, 
necessitates a design framework that is not only generative but also physics-informed, 
ensuring that the synthesized designs obey the fundamental laws of electromagnetics [3]. 

1.3 Contributions 

To address these limitations, this paper proposes the Physics-Informed Diffusion Model with 
Spectral Constraints (PIDM-SC), a generative framework designed specifically for the inverse 
design of nanophotonic structures. The contributions of this work are threefold: 

1.  We introduce a conditional diffusion probabilistic model tailored for metasurface design, 
which iteratively denoises random Gaussian noise into structured meta-atom geometries 
conditioned on a target optical spectrum. 

2.  We incorporate a physics-guidance mechanism by integrating a differentiable forward 
surrogate model directly into the sampling process. This allows the diffusion model to 
optimize the geometry not just for structural likelihood, but also for spectral fidelity 
during the generation phase [4]. 

3.  We provide a comprehensive comparative analysis against established baselines, 
demonstrating that PIDM-SC achieves superior spectral accuracy and diversity, effectively 
solving the non-uniqueness problem while adhering to fabrication constraints. 
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Chapter 2: Related Work 

2.1 Classical Approaches 

The historical trajectory of inverse design in nanophotonics began with local optimization 
techniques. Gradient-based topology optimization (TO) treats the material distribution in a 
design region as a continuous variable and iteratively updates it to minimize a figure of merit 
defined by the target optical performance. While TO is capable of discovering free-form 
geometries with high efficiency, it requires the calculation of adjoint fields for every iteration, 
which is computationally expensive for large-scale problems. Furthermore, TO is highly 
sensitive to the initial guess and frequently converges to local minima, preventing the 
exploration of the global design space. 

Evolutionary algorithms (EAs), such as Genetic Algorithms (GA) and Particle Swarm 
Optimization (PSO), offer a gradient-free alternative. These global optimization strategies 
mimic biological evolution to explore the parameter space. They have been successfully 
applied to design plasmonic antennas and dielectric resonators. However, EAs suffer from the 
curse of dimensionality; as the number of design parameters increases, the number of 
required function evaluations (full-wave simulations) scales exponentially. This makes them 
impractical for complex unit cells with many degrees of freedom [5]. 

2.2 Deep Learning Methods 

The advent of deep learning has introduced a paradigm shift in inverse design. Early works 
utilized fully connected neural networks to approximate the forward scattering function, 
replacing slow electromagnetic solvers. While effective for prediction, these networks do not 
directly solve the inverse problem. To address this, Tandem Neural Networks (TNNs) were 
proposed, consisting of a pre-trained forward network and an inverse network connected in 
series. This architecture helps resolve the non-uniqueness issue by training the inverse 
network to minimize the error of the re-predicted spectrum rather than the geometric error. 

More recently, generative deep learning has gained traction. Generative Adversarial Networks 
(GANs) have been used to generate meta-atom shapes from user-defined spectra. In this 
setup, a generator creates geometries, and a discriminator attempts to distinguish them from 
real training data. Despite their success, GANs are notoriously difficult to train, suffering from 
mode collapse where the generator outputs a limited variety of samples. Variational 
Autoencoders (VAEs) provide a more stable training objective by learning a probabilistic 
latent space. However, VAEs often generate blurry or distinct structures that require post-
processing to meet fabrication tolerances [6]. 

Diffusion models have recently emerged as the state-of-the-art in generative modeling, 
surpassing GANs in image synthesis quality and mode coverage. They work by reversing a 
gradual noising process. Initial applications of diffusion models in scientific computing have 
shown promise in fluid dynamics and material science, but their application to 
electromagnetics, specifically with rigorous spectral constraints, remains an active area of 
research. This paper builds upon these foundations, adapting diffusion probabilistic models to 
the specific constraints and physics of metasurface optics [7]. 

Chapter 3: Methodology 

3.1 Framework Overview 

The proposed PIDM-SC framework operates on the principle of Denoising Diffusion 
Probabilistic Models (DDPMs). The core idea is to model the distribution of valid meta-atom 
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geometries as the result of a reverse diffusion process. This process begins with pure 
Gaussian noise and iteratively removes this noise to recover a clean geometric structure. 
Crucially, this reverse process is conditioned on the target spectral response, ensuring that 
the final geometry exhibits the desired optical properties. 

The framework consists of two main components: a forward diffusion process (which is fixed 
and parameter-free) and a parameterized reverse process (the neural network). Additionally, 
a pre-trained surrogate forward model is employed to provide physics-based gradients 
during the inference stage. The geometry of the meta-atom is represented as a 2D binary 
image map, where pixel values indicate the presence (1) or absence (0) of the dielectric 
material (e.g., silicon) on the substrate. 

3.2 The Forward and Reverse Processes 

The forward diffusion process progressively adds Gaussian noise to the original geometry 𝑥0 
over 𝑇  time steps, producing a sequence of latent variables 𝑥1, . . . , 𝑥𝑇 . As 𝑇𝑡𝑜∞ , the 
distribution of 𝑥𝑇  approaches an isotropic Gaussian distribution. This process is defined by a 
variance schedule 𝛽𝑡. 

The reverse process is trained to invert this noise addition. A neural network, 𝜀𝜃(𝑥𝑡, 𝑡, 𝑆), is 
trained to predict the noise component added to 𝑥𝑡 at step 𝑡, conditioned on the target 
spectrum 𝑆. By subtracting the predicted noise, the model moves from a noisy state 𝑥𝑡 to a 
slightly cleaner state 𝑥𝑡−1. This iterative refinement allows the generation of complex, high-
resolution geometries from random noise [8]. 

3.3 Physics-Informed Guidance 

Standard diffusion models rely solely on the statistical patterns found in the training data. To 
ensure that the generated structures strictly adhere to Maxwell’s equations, we introduce a 
physics-informed guidance mechanism. This is achieved by utilizing a differentiable forward 
surrogate model, 𝑓𝜑 , which predicts the spectrum ℎ𝑎𝑡𝑆 of a given geometry 𝑥. 

During the reverse sampling process, we do not simply rely on the score estimated by the 
diffusion network. Instead, we modify the sampling step to include a gradient term derived 
from the surrogate model. This gradient directs the sampling trajectory toward regions of the 
data space that minimize the spectral error. This is conceptually similar to classifier guidance 
in image generation, but here the "classifier" is a physics predictor [9]. 

The physics-guided noise prediction ℎ𝑎𝑡𝜀 at step 𝑡 is formulated as a linear combination of the 
unconditional noise prediction and the gradient of the spectral loss. This ensures that the 
denoising step not only restores structural fidelity but also aligns the geometry with the 
target optical response. This hybrid approach effectively bridges the gap between data-driven 
generation and physical rigor. 
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Figure 1: Schematic of the PIDM 

3.4 Spectral Conditioning and Network Architecture 

The neural network employed is a U-Net based architecture, modified to accept the target 
spectrum 𝑆 as a conditioning input. The spectrum, typically a vector of transmission 
amplitudes across a frequency range, is first processed by a Multi-Layer Perceptron (MLP) to 
generate a spectral embedding. This embedding is injected into the U-Net at various 
resolution levels using cross-attention mechanisms. This allows the network to focus on 
specific geometric features that correlate with the resonance peaks and dips in the target 
spectrum [10]. 

The objective function used to train the diffusion model includes a standard noise prediction 
error and a spectral consistency term. The mathematical formulation of the total loss function 
during training is critical for balancing structural realism and spectral accuracy. We define the 
loss function as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎𝑡ℎ𝑏𝑏𝐸𝑡,𝑥0,𝜀[|𝜀 − 𝜀 𝜃(𝑥𝑡, 𝑡, 𝑆)|
2] + 𝜆 · 𝑚𝑎𝑡ℎ𝑏𝑏𝐸𝑥0[|𝑆 − 𝑓 𝜑(ℎ𝑎𝑡𝑥0)|

2] 

In this equation, the first term represents the standard variational lower bound on the 
negative log-likelihood, forcing the model to learn the data distribution. The variable 𝜀 is the 
actual noise added, and 𝜀𝜃 is the predicted noise. The second term is the spectral constraint, 
where 𝑓𝜑 is the pre-trained surrogate model and ℎ𝑎𝑡𝑥0 is the estimated clean image derived 

from the current noisy state 𝑥𝑡. The hyperparameter 𝜆 controls the weight of the physics 
constraint. This composite loss ensures that the gradients used to update the network weights 
𝜃 encapsulate both the visual plausibility of the meta-atoms and their electromagnetic 
functionality. 

3.5 Surrogate Model Training 

The surrogate model 𝑓𝜑 is a Convolutional Neural Network (CNN) trained independently prior 

to the diffusion model. It is trained on the same dataset to map geometry to spectra. Because 
the surrogate model is differentiable, it allows backpropagation of the spectral error to the 
input geometry, which is the mechanism used for the guidance term in the diffusion sampling. 
The accuracy of this surrogate is paramount; if the surrogate is inaccurate, the physics 
guidance will be misleading. Therefore, we employ a ResNet-based architecture for the 
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surrogate, optimized to minimize the Mean Squared Error (MSE) between the ground truth 
FDTD-simulated spectra and the predicted spectra. 

Chapter 4: Experiments and Analysis 

4.1 Dataset and Experimental Setup 

To evaluate the efficacy of PIDM-SC, we constructed a large-scale dataset of dielectric 
metasurface unit cells. The simulations were performed using the rigorous FDTD method 
(Lumerical FDTD Solutions). The material system consists of amorphous silicon nanopillars 
on a silica substrate, operating in the near-infrared region (1200 nm to 1600 nm). 

The dataset comprises 60,000 unique unit cell designs. The geometries include basic shapes 
(circles, rectangles, crosses) as well as free-form topology-optimized structures to ensure a 
diverse distribution. The unit cell period was fixed at 600 nm. For each geometry, the complex 
transmission coefficients (amplitude and phase) were recorded at 31 frequency points. The 
geometric data was rasterized into 64 × 64 binary images. The dataset was split into 50,000 
samples for training, 5,000 for validation, and 5,000 for testing. 

The diffusion model was trained for 1000 epochs using the Adam optimizer with a learning 
rate of 10−4. The noise schedule was linear, with 𝑇 = 1000 timesteps. The surrogate model 
achieved a mean absolute error of 0.02 on the normalized transmission spectrum during pre-
training, indicating sufficient accuracy for guidance [11]. 

4.2 Baselines 

We compared the proposed PIDM-SC against three established baselines in the field of 
metasurface inverse design: 

1.  Conditional GAN (cGAN): A standard adversarial network where the generator is 
conditioned on the spectrum. 

2.  Conditional VAE (cVAE): A variational autoencoder where the encoder and decoder are 
conditioned on the spectrum. 

3.  Tandem Neural Network (TNN): A deterministic inverse network connected to a 
forward network, trained end-to-end. 

All baselines were trained on the same dataset with optimized hyperparameters to ensure a 
fair comparison. 

4.3 Results and Discussion 

The evaluation metrics focused on three aspects: Spectral Accuracy, Structural Diversity, and 
Fabrication Feasibility. Spectral Accuracy was measured using the Root Mean Squared Error 
(RMSE) between the target spectrum and the FDTD-verified spectrum of the generated 
design. Structural Diversity was quantified by calculating the average pairwise structural 
similarity index (SSIM) among designs generated for the same target spectrum; a lower SSIM 
indicates higher diversity (i.e., the model finds multiple distinct solutions for the same 
problem). 

Table 1 summarizes the quantitative results. The TNN achieves reasonable spectral accuracy 
but fails to generate diverse designs due to its deterministic nature; it collapses to a single 
solution. The cGAN and cVAE provide diversity but suffer from higher spectral errors, often 
generating artifacts or disconnected pixels that are physically invalid. 
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Model Spectral RMSE (Lower 
is Better) 

Diversity (1-SSIM) 
(Higher is Better) 

Invalid Geometries (%) 

TNN 0.045 0.00 5.2 

cVAE 0.072 0.15 12.8 

cGAN 0.068 0.22 8.4 

PIDM-SC (Ours) 0.031 0.28 1.5 

The proposed PIDM-SC achieves the lowest Spectral RMSE of 0.031, significantly 
outperforming the baselines. This improvement is directly attributed to the physics-informed 
guidance, which actively corrects the geometry during the generation process to match the 
spectrum. Furthermore, the diversity score of 0.28 indicates that our model successfully 
captures the one-to-many mapping, providing designers with multiple valid options for a 
single target. 

The "Invalid Geometries" column refers to generated structures that violate basic fabrication 
constraints (e.g., minimum feature size violations or floating islands). The diffusion model, by 
learning the underlying data distribution of valid shapes, inherently produces cleaner 
geometries. The iterative denoising process acts as a regularization, smoothing out high-
frequency noise that typically corresponds to un-manufacturable features. 

Visual inspection of the generated samples confirms that PIDM-SC produces sharp, well-
defined boundaries, whereas cVAE samples often exhibit blur at the edges of the nano-pillars. 
The spectral response of the PIDM-SC designs, when validated with FDTD, shows excellent 
agreement with the target resonances, capturing even high-Q factor modes that are typically 
difficult for deep learning models to regress [12-15]. 

Chapter 5: Conclusion 

5.1 Summary and Implications 

This work presented PIDM-SC, a novel inverse design framework for metasurfaces that 
leverages the generative power of diffusion models augmented by physics-based spectral 
constraints. By integrating a differentiable surrogate solver into the reverse diffusion 
sampling, we successfully bridged the gap between data-driven generation and physical rigor. 
The proposed method demonstrates superior performance compared to traditional GAN and 
VAE approaches, offering a significant reduction in spectral error while maintaining high 
structural diversity. 

The implications of this research are substantial for the nanophotonics community. PIDM-SC 
allows for the rapid prototyping of complex optical components without the need for 
exhaustive parameter sweeps or computationally expensive topology optimization. The 
ability to generate multiple diverse designs for a single spectral target provides engineers 
with the flexibility to select designs that are most robust to fabrication errors or easiest to 
integrate into larger systems. This moves the field closer to an "on-demand" design paradigm 
where optical properties can be specified, and valid physical structures are generated in 
seconds. 

5.2 Limitations and Future Directions 

Despite its success, the proposed framework has limitations. The primary drawback is the 
inference speed. Unlike TNNs or VAEs, which generate a design in a single forward pass, 
diffusion models require iterative sampling (typically hundreds of steps), which increases the 
computational time for generation. While techniques such as Denoising Diffusion Implicit 
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Models (DDIM) can accelerate this, real-time generation remains a challenge. Additionally, the 
accuracy of the physics guidance is bounded by the accuracy of the surrogate model; if the 
surrogate fails to capture complex physics (e.g., extreme near-field coupling), the guidance 
will be suboptimal. 

Future research will focus on extending this framework to 3D volumetric metamaterials and 
multi-layer structures, where the design space is significantly larger. We also aim to explore 
the integration of active learning, where the model can autonomously request FDTD 
simulations for generated designs that have high uncertainty, thereby iteratively improving 
the surrogate model and the generation quality in a closed loop. Reducing the inference time 
through distillation techniques will also be a priority to enable interactive design tools for 
researchers. 
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