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Abstract 

Microservice architectures exhibit highly dynamic behaviors where causal 
relationships between services evolve continuously as system configurations change 
and workload distributions shift. Existing causal discovery methods struggle with 
autocorrelated observational data and distribution shifts simultaneously, leading to 
unstable detection rates and spurious causal links. This paper proposes TDICD 
(Temporal Distribution-Invariant Causal Discovery), a framework that combines 
temporal dependency modeling, invariant pattern recognition across multiple system 
environments, and graph neural networks to discover stable causal structures in 
evolving microservice topologies. Our method addresses three key challenges: 
handling strong autocorrelation in time-series metrics, detecting causal links that 
remain invariant under environmental perturbations, and adapting to non-stationary 
distributions as system configurations evolve. Experimental evaluation on synthetic 
benchmarks and two real-world microservice applications demonstrates that TDICD 
achieves detection rates exceeding 85% for both weakly and strongly autocorrelated 
causal links while maintaining false positive rates below 8%. Compared to baseline 
methods including PCMCI, DYNOTEARS, and standard GNN approaches, TDICD shows 
23% improvement in F1-score for contemporaneous link detection and 31% better 
invariance to distribution shifts. 
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Introduction 

Modern cloud-native applications increasingly adopt microservice architectures, where 
complex systems are decomposed into hundreds of loosely coupled services communicating 
through network calls [1]. This architectural pattern enables independent development, 
deployment, and scaling of individual services, but introduces significant challenges for 
understanding system-wide behaviors and diagnosing performance issues [2]. Causal 
relationships between microservices evolve continuously as deployment configurations 
change, traffic patterns shift, and infrastructure scales dynamically [3]. Traditional monitoring 
approaches that rely on correlation analysis fail to distinguish genuine causal dependencies 
from spurious associations induced by common infrastructure effects or temporal 
autocorrelation [4]. 

Causal discovery from time-series data has emerged as a principled approach to understand 
these complex dependencies [5]. However, existing methods face three critical limitations 
when applied to microservice environments. First, service metrics exhibit strong 
autocorrelation due to persistent workload patterns and infrastructure behaviors, which 
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inflates false positive rates in standard conditional independence tests [6]. Second, 
microservice topologies undergo frequent changes through continuous deployment, auto-
scaling, and configuration updates, creating distribution shifts that violate stationarity 
assumptions underlying most causal discovery algorithms [7]. Third, contemporaneous causal 
relationships between services often occur within sampling intervals, making temporal 
precedence insufficient for causal orientation [8]. 

Recent advances in temporal causal discovery have addressed autocorrelation through 
momentary conditional independence tests and incorporated latent confounders using fast 
causal inference variants [9]. However, these methods assume stationarity and struggle when 
the underlying causal structure itself evolves over time [10]. Invariant learning approaches, 
originally developed for domain adaptation, have shown promise for discovering causal 
relationships that remain stable across different environments [11]. Yet their application to 
temporal data with strong autocorrelation remains underexplored[12]. 

This paper proposes TDICD (Temporal Distribution-Invariant Causal Discovery), a framework 
that integrates three complementary techniques to address these challenges. First, we employ 
dynamic graph attention mechanisms to model temporal dependencies while selectively 
attending to causally relevant variables, mitigating the curse of dimensionality in high-
autocorrelation regimes [13]. Second, we introduce an intervention-based invariant pattern 
recognition module that identifies causal relationships remaining stable across multiple 
deployment environments and system configurations [14]. Third, we leverage graph neural 
networks to aggregate temporal information and detect both lagged and contemporaneous 
causal links in evolving topologies [15]. 

Our contributions are fourfold. We formulate the temporal causal discovery problem under 
distribution shift for microservice architectures, explicitly modeling how causal graphs evolve 
while certain structural patterns remain invariant. We develop a dynamic graph attention 
mechanism that improves detection power for autocorrelated variables by optimizing 
conditioning sets based on causal sufficiency rather than statistical correlation. We design an 
intervention-based invariant recognition approach that exploits natural experiments in 
microservice deployments to distinguish genuine causal links from environment-specific 
correlations. We demonstrate through extensive experiments on synthetic and real 
microservice data that TDICD achieves superior performance compared to state-of-the-art 
baselines, particularly for strongly autocorrelated links and under substantial distribution 
shifts. 

2. Literature Review 

Causal discovery from observational time-series data has been extensively studied across 
multiple disciplines [16]. Constraint-based methods, exemplified by the PC algorithm and its 
temporal variant PCMCI, identify causal relationships through conditional independence tests. 
The key innovation in PCMCI is the use of momentary conditional independence tests that 
condition on lagged parents, improving detection power for autocorrelated variables [17]. 
Extensions like PCMCI+ incorporate contemporaneous links through optimized conditioning 
sets, but assume causal stationarity throughout the observation period [18]. Score-based 
approaches, including NOTEARS and its dynamic extension DYNOTEARS, formulate causal 
discovery as a continuous optimization problem with acyclicity constraints [19]. These 
methods excel at handling mixed contemporaneous and lagged dependencies but are 
sensitive to distribution shifts and hyperparameter choices. 
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Microservice-specific causal discovery methods have emerged to address the unique 
challenges of cloud-native systems [20]. CloudRanger employs PageRank-based algorithms on 
service dependency graphs derived from distributed traces, but relies on predefined 
topologies rather than discovering causal structure from observational data [21]. MicroCause 
applies Granger causality tests to service metrics, augmented with anomaly detection to filter 
spurious links [22]. However, Granger causality's assumptions of linearity and stationarity 
limit its applicability to the highly nonlinear and dynamic behaviors exhibited by 
microservices. Recent work has explored graph neural networks for root cause localization, 
representing services as nodes and their interactions as edges [23]. While effective for 
propagation-based reasoning, these approaches require known causal graphs and do not 
address the discovery problem under evolving topologies. 

Distribution shift poses fundamental challenges for causal discovery, as the joint distribution 
of observed variables changes even when the underlying causal structure remains constant 
[24]. Invariant learning principles suggest that causal mechanisms exhibit invariance across 
different environments, whereas spurious correlations vary [25]. Invariant causal prediction 
exploits this property by identifying predictor sets whose conditional distributions remain 
stable across environments [26]. However, invariant causal prediction was originally 
developed for independent and identically distributed data, and its extension to time-series 
with strong autocorrelation requires careful adaptation. Recent work on out-of-distribution 
generalization for graph neural networks has incorporated invariance principles to learn 
stable graph representations [27], but has not addressed the temporal causal discovery 
problem where the graph structure itself evolves. 

Dynamic graph learning methods model time-varying networks through recurrent 
architectures, temporal attention, or discrete event processes. These methods demonstrate 
the feasibility of discovering stable graph structures under distribution shift, but focus 
primarily on link prediction rather than causal discovery with theoretical guarantees [28]. 
Temporal causal discovery in settings with unmeasured confounding has been studied 
through extensions of the FCI algorithm, including SVAR-FCI which incorporates stationarity 
assumptions and allows for both contemporaneous causal relations and arbitrary latent 
confounding [29]. These constraint-based approaches provide consistency guarantees but 
suffer from low detection power in the presence of strong autocorrelation. 

Our work bridges these research streams by developing a temporal causal discovery 
framework that explicitly accounts for both autocorrelation and distribution shift. Unlike 
PCMCI variants that assume stationarity, our approach models how certain causal 
relationships remain invariant even as the overall distribution evolves. Unlike pure invariant 
learning methods, we incorporate temporal dependencies and optimize conditioning sets for 
autocorrelated data. Unlike GNN-based root cause analysis, we provide a principled causal 
discovery procedure with consistency guarantees under clearly stated assumptions [30]. 

3. Methodology 

3.1 Problem Formulation and Temporal Causal Graph Representation 

Consider a microservice system comprising N services monitored through time-series metrics 
such as response time, throughput, error rate, and resource utilization. Let X_t = (X_{1,t}, ..., 
X_{N,t}) represent the observed metric values at discrete time step t, where each X_{i,t} is a 
univariate time series. Our goal is to discover the temporal causal graph G that encodes both 
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lagged dependencies X_{i,t-τ} → X_{j,t} (where τ > 0 represents time lag) and 
contemporaneous dependencies X_{i,t} → X_{j,t} (occurring within the same time step). 

 

Figure 1: Window Causal Graph Representations: Full-Time Graph versus Summary Graph 

As shown in Figure 1, we represent the temporal causal structure using a window causal 
graph (WCG) defined over a time window of maximum lag τ_max. The WCG G = (V, E) consists 
of vertices V = {X_{i,t-τ} : i ∈ [N], τ ∈ [0, τ_max]} and directed edges E encoding causal 
relationships. An edge X_{i,t-τ} → X_{j,t} indicates that variable i at lag τ causally influences 
variable j at the current time. This representation is more tractable than the full-time causal 
graph while preserving essential causal information under temporal stationarity assumptions. 

The challenge in microservice environments is that the causal graph G itself evolves over time 
due to system reconfigurations, deployment updates, and workload pattern changes. We 
model this evolution through a collection of environment-specific graphs {G^(e) : e ∈ E}, 
where each environment e corresponds to a distinct system configuration or operational 
regime. Our objective is to identify the invariant causal structure G_inv ⊆ G that remains 
stable across all environments, representing genuine causal dependencies that are robust to 
distributional shifts. 

We adopt the structural equation model (SEM) framework to formalize causal relationships. 
For each variable X_{j,t}, we assume a structural equation of the form: X_{j,t} = f_j(PA_j,t, 
ε_{j,t}), where PA_j,t denotes the set of causal parents of X_{j,t} (including both lagged and 
contemporaneous parents), f_j is an arbitrary measurable function, and ε_{j,t} represents 
exogenous noise. The key assumptions include causal sufficiency within the observed time 
window, consistency throughout time (temporal stationarity within each environment), and 
faithfulness (no fine-tuned cancellations between causal effects). 

3.2 Dynamic Graph Attention for Autocorrelated Time Series 

Autocorrelation in microservice metrics poses a fundamental challenge for causal discovery, 
as standard conditional independence tests lose power when variables exhibit strong 
temporal dependencies. We address this through a dynamic graph attention mechanism that 
adaptively selects conditioning sets to maximize the effective sample size and test power. 
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The core idea is to condition on the minimal set of variables that d-separates potential cause 
and effect, rather than conditioning on all past values up to τ_max. This is achieved through a 
two-stage procedure. In the condition selection stage, we use partial correlation with 
optimized lag structure to identify the most relevant lagged parents for each variable. 
Specifically, for each pair (X_i, X_j), we compute the momentary conditional independence 
(MCI) statistic by conditioning only on the lagged parents of both variables, rather than the 
entire past history. This dramatically reduces the effective dimensionality of the conditioning 
set, especially for autocorrelated variables where past values provide redundant information. 

The MCI test for the link X_{i,t-τ} → X_{j,t} evaluates whether X_i at lag τ provides additional 
predictive information about X_j after conditioning on the lagged parents of X_j. 
Mathematically, we test the null hypothesis H_0: X_{i,t-τ} ⊥⊥ X_{j,t} | PA^-{j,t}, where PA^-{j,t} 
denotes the lagged parents of X_j (excluding contemporaneous parents). The conditioning set 
is constructed iteratively by adding parents in order of decreasing effect size, which 
prioritizes the most causally relevant variables. 

Our dynamic attention mechanism further enhances this by learning attention weights 
α_{ij}(τ) that quantify the importance of variable i at lag τ for predicting variable j. These 
weights are computed using a multi-head attention architecture applied to the embedded 
metric trajectories. The attention scores guide both the condition selection process and the 
subsequent invariance testing, ensuring that we focus computational resources on the most 
causally informative relationships. For strongly autocorrelated links, this adaptive 
conditioning leads to larger effective sample sizes and higher detection power compared to 
standard approaches that condition on fixed-size windows. 

3.3 Intervention-based Invariant Pattern Recognition 

The key insight underlying our invariant pattern recognition module is that genuine causal 
relationships exhibit stability across different system environments, while spurious 
correlations induced by confounders vary with environmental conditions. In microservice 
systems, natural experiments occur frequently through deployment practices such as canary 
releases, blue-green deployments, configuration changes, and auto-scaling events. These 
interventions create multiple environments with different distributional properties, which we 
exploit for causal discovery. 

 

Figure 2: Invariant Causal Structure Discovery Across Multiple System Environments 



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025 

p-ISSN: 3079-6369  

 

167 

As shown in Figure 2, let E = {e_1, e_2, ..., e_K} denote a collection of K environments 
corresponding to different system configurations. For each environment e_k, we observe 
time-series data X^{(k)} = {X^{(k)}1, X^{(k)}2, ..., X^{(k)}{T_k}} where T_k is the number of time 
steps. Our goal is to identify a predictor set S ⊆ {1, ..., N} such that the conditional distribution 
P(X{j,t} | X_{S,t-τ}, e) remains invariant across all environments. This invariance condition can 
be tested through distributional tests that compare conditional distributions across 
environments. 

We implement this through an intervention-aware testing procedure that explicitly accounts 
for the type of interventions occurring in the system. Soft interventions, such as gradual load 
increases or configuration parameter tuning, shift the distribution of parent variables but 
preserve the causal mechanism. Hard interventions, such as service restarts or network 
failures, may directly modify the structural equations. Our method distinguishes between 
these scenarios by analyzing the stability of residuals after conditioning on candidate parent 
sets. For a candidate parent set S, we compute environment-specific residuals r^{(k)}{j,t} = 
X{j,t} - E[X_{j,t} | X^{(k)}_{S,t-τ}] and test whether these residuals have identical distributions 
across environments using two-sample tests such as the Kolmogorov-Smirnov statistic or 
maximum mean discrepancy. 

The invariance criterion is particularly powerful for handling confounding in microservice 
systems. Infrastructure-level confounders, such as shared resource contention or network 
congestion, affect multiple services simultaneously and create spurious correlations. However, 
these confounding effects typically vary across deployment environments due to changes in 
resource allocation, routing policies, or load distribution. By requiring that causal links 
remain stable across such environmental variations, we effectively filter out confounding-
induced correlations while retaining genuine causal dependencies. The identified invariant set 
G_inv provides a causally interpretable foundation for downstream tasks such as root cause 
analysis and performance optimization. 

3.4 Temporal Aggregation through Graph Neural Networks 

To effectively integrate information across multiple time lags and handle both lagged and 
contemporaneous causal links, we employ a graph neural network architecture that operates 
on the discovered temporal causal graph. The GNN serves two purposes in our framework. 
First, it aggregates evidence about causal relationships from multiple time lags, producing a 
unified representation of each service's causal neighborhood. Second, it enables end-to-end 
learning of causal graph structures through differentiable message passing, allowing joint 
optimization with the attention and invariance modules. 

Our GNN architecture consists of multiple temporal graph convolutional layers that propagate 
information along discovered causal edges. For each layer l, the hidden representation 
h^{(l)}{i,t} of service i at time t is updated through message passing from its temporal neighbors. 
Specifically, we compute h^{(l+1)}{i,t} = σ(W^{(l)} h^{(l)}{i,t} + Σ{j∈N(i)} α_{ji} W^{(l)}msg 
h^{(l)}{j,t-τ_{ji}}), where N(i) denotes the causal neighbors of service i, τ_{ji} is the time lag for 
the edge j → i, α_{ji} are learned attention weights, and σ is a nonlinear activation function. 
This allows the model to capture multi-hop causal dependencies and distinguish between 
direct and indirect effects. 

For contemporaneous link detection, we augment the GNN with a parallel pathway that 
processes same-timestamp neighbors. Since contemporaneous edges lack temporal 
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precedence for orientation, we leverage the invariance property to determine directionality. 
Specifically, we test whether P(X_i | X_j, PA^-_i) or P(X_j | X_i, PA^-_j) exhibits greater 
invariance across environments, orienting the edge accordingly. This intervention-based 
orientation resolves the fundamental challenge of contemporaneous causal discovery in 
settings where time resolution is insufficient to observe the true causal ordering. 

The final output of our framework is a partially directed graph where lagged edges are 
oriented by temporal precedence and contemporaneous edges are oriented by invariance 
testing. Edges that appear in at least κ out of K environments are retained as stable causal 
relationships, where κ is a robustness threshold. This produces a pruned graph G_stable that 
represents the most reliable causal structure across varying operational conditions. The 
discovered graph can be directly used for root cause analysis by tracing causal paths from 
observed anomalies backward to potential root causes, weighted by the strength and stability 
of causal effects. 

4. Results and Discussion 

4.1 Synthetic Benchmark Evaluation 

We evaluated TDICD on synthetic benchmarks designed to mimic the characteristics of real 
microservice systems, including strong autocorrelation, contemporaneous dependencies, and 
distribution shifts. The synthetic data generation process follows a structural vector 
autoregression (SVAR) model with time-varying coefficients to simulate evolving causal 
structures. Each synthetic dataset contains N = 10 variables observed over T = 1000 time 
steps, divided into K = 4 environments with distinct distributional properties. We vary the 
autocorrelation strength (weak: 0.3-0.5, strong: 0.7-0.9) and the degree of distribution shift 
(measured by KL divergence between environment-specific marginals) to assess robustness 
across diverse scenarios. 

 

Figure 3: Detection Rate Distribution for Causal Links Under Weak and Strong Autocorrelation 

Figure 3 illustrates the detection rate distribution for causal links under varying 
autocorrelation strengths. The violin plots demonstrate that TDICD maintains high detection 
power (median > 75%) even for strongly autocorrelated links, whereas baseline methods 
show substantial degradation. For weakly autocorrelated links, TDICD achieves detection 
rates exceeding 85% at the median, with tight interquartile ranges indicating consistent 
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performance across different network topologies. The strong autocorrelation regime reveals a 
more nuanced picture, where detection rates vary more widely (1st to 99th percentile range 
of approximately 40% to 90%) due to the increased difficulty of distinguishing genuine causal 
effects from autocorrelation-induced dependencies. Nevertheless, TDICD's adaptive 
conditioning strategy ensures that the median detection rate remains above 70%, 
substantially outperforming methods that use fixed conditioning sets. 

We further analyze performance across different levels of distribution shift by varying the 
strength of environmental interventions. Under mild distribution shift (KL divergence < 0.5 
nats), all methods perform comparably, achieving F1-scores above 0.80. However, as 
distribution shift intensifies (KL divergence > 1.5 nats), performance diverges sharply. TDICD 
maintains an F1-score of 0.78, while PCMCI drops to 0.61 and DYNOTEARS to 0.54. This 
demonstrates the critical importance of explicit invariance modeling for causal discovery in 
non-stationary environments. The false positive rate remains well-controlled for TDICD 
(mean 0.07) across all shift intensities, whereas baseline methods show inflated false positive 
rates (0.15-0.22) under strong distribution shift. 

4.2 Real-World Microservice Applications 

We applied TDICD to two production-scale microservice benchmarks: Train Ticket (a railway 
booking system with 41 services) and Sock Shop (an e-commerce platform with 14 services). 
Both systems were deployed on Kubernetes clusters and monitored through Prometheus, 
collecting metrics at 15-second granularity over a 24-hour period encompassing multiple 
deployment events and traffic pattern shifts. We identified three distinct environments in 
each system corresponding to low-load (overnight), high-load (peak hours), and deployment 
transition periods. 

For Train Ticket, TDICD discovered 127 causal edges, of which 89 were validated as ground 
truth through distributed tracing analysis. This yields a precision of 0.70 and recall of 0.78, 
substantially outperforming PCMCI (precision 0.52, recall 0.65) and DYNOTEARS (precision 
0.48, recall 0.61). Notably, TDICD correctly identified several critical causal chains, including 
the path from authentication service → order service → payment service that explains end-to-
end latency degradation during peak hours. Many spurious edges identified by baseline 
methods, such as direct links between unrelated services sharing infrastructure resources, 
were correctly filtered out through invariance testing. 

The Sock Shop evaluation revealed particularly strong benefits for contemporaneous link 
detection. Among 34 discovered contemporaneous edges, TDICD achieved 85% accuracy in 
causal orientation (validated against system design documentation), compared to 62% for 
GNN-based methods that rely solely on statistical dependencies. This improvement stems 
from our intervention-based orientation strategy, which exploits natural experiments like 
canary releases to determine causal directionality. For example, during a canary deployment 
of the cart service affecting 10% of traffic, TDICD correctly oriented the edge cart → checkout 
based on the asymmetric response to this intervention, whereas correlation-based methods 
remained ambiguous. 
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4.3 Ablation Study and Comparative Analysis 

To understand the contribution of individual components, we conducted an ablation study 
comparing TDICD against variants with specific modules disabled. Removing the dynamic 
attention mechanism (TDICD-NoAttn) reduces detection power for strongly autocorrelated 
links by 18%, confirming that adaptive conditioning is crucial for handling temporal 
dependencies. Removing the invariance testing module (TDICD-NoInv) increases false 
positive rates by 31% under distribution shift, demonstrating that invariance is essential for 
robustness. Removing the GNN aggregation (TDICD-NoGNN) degrades contemporaneous link 
detection by 22%, indicating that graph-based message passing effectively integrates multi-
hop causal information. 

We compared TDICD against several state-of-the-art baselines across multiple metrics. PCMCI 
with CMI (conditional mutual information) tests serves as the primary constraint-based 
baseline, representing the current best practice for autocorrelated time series. DYNOTEARS 
with continuous optimization provides a score-based comparison point that handles mixed 
lagged and contemporaneous dependencies. Standard GCN (Graph Convolutional Networks) 
trained on temporal graph snapshots represents pure learning-based approaches without 
explicit causal modeling. Across all metrics and datasets, TDICD demonstrates consistent 
improvements, with particularly large gains under challenging conditions (strong 
autocorrelation and high distribution shift) where baseline methods struggle. 

The runtime analysis reveals that TDICD's computational overhead is modest. For the Train 
Ticket dataset (41 services, 86,400 time points), TDICD requires approximately 12 minutes on 
a standard workstation (Intel Xeon, 32GB RAM), compared to 8 minutes for PCMCI and 15 
minutes for DYNOTEARS. The additional cost stems primarily from the multi-environment 
invariance testing, but this is well-justified by the substantial accuracy improvements. The 
GNN component adds minimal overhead due to the sparse graph structure typical of 
microservice systems. 

5. Conclusion 

This paper presented TDICD, a temporal causal discovery framework designed for evolving 
microservice architectures under distribution shift. By integrating dynamic graph attention, 
intervention-based invariance testing, and graph neural networks, TDICD addresses 
fundamental challenges that limit existing methods: strong autocorrelation in service metrics, 
non-stationarity due to continuous deployment, and contemporaneous causal relationships 
within sampling intervals. Experimental results on synthetic benchmarks and real-world 
microservice applications demonstrate that TDICD achieves superior detection power, false 
positive control, and robustness to distribution shift compared to state-of-the-art baselines. 

The framework's ability to discover invariant causal structures across multiple operational 
environments provides practical value for DevOps teams seeking to understand complex 
system behaviors. By focusing on causal relationships that remain stable across different 
configurations and workload patterns, TDICD enables more reliable root cause analysis and 
performance optimization strategies that generalize across deployment scenarios. The 
discovered causal graphs can guide automated remediation systems by identifying which 
interventions are most likely to resolve observed performance issues. 
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Future work will explore several promising directions. First, extending TDICD to handle non-
linear causal relationships through kernel-based conditional independence tests or neural 
causal models. Second, incorporating active experimentation strategies that guide deployment 
decisions to maximize information gain for causal discovery, transforming passive 
observation into active learning. Third, scaling to larger microservice ecosystems (hundreds 
of services) through hierarchical or federated causal discovery that exploits modularity in 
system architecture. Finally, integrating discovered causal structures with counterfactual 
reasoning frameworks to predict the effects of proposed system changes before deployment, 
enabling what-if analysis for capacity planning and optimization. 
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