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Abstract

Microservice architectures exhibit highly dynamic behaviors where causal
relationships between services evolve continuously as system configurations change
and workload distributions shift. Existing causal discovery methods struggle with
autocorrelated observational data and distribution shifts simultaneously, leading to
unstable detection rates and spurious causal links. This paper proposes TDICD
(Temporal Distribution-Invariant Causal Discovery), a framework that combines
temporal dependency modeling, invariant pattern recognition across multiple system
environments, and graph neural networks to discover stable causal structures in
evolving microservice topologies. Our method addresses three key challenges:
handling strong autocorrelation in time-series metrics, detecting causal links that
remain invariant under environmental perturbations, and adapting to non-stationary
distributions as system configurations evolve. Experimental evaluation on synthetic
benchmarks and two real-world microservice applications demonstrates that TDICD
achieves detection rates exceeding 85% for both weakly and strongly autocorrelated
causal links while maintaining false positive rates below 8%. Compared to baseline
methods including PCMCI, DYNOTEARS, and standard GNN approaches, TDICD shows
23% improvement in Fl-score for contemporaneous link detection and 31% better
invariance to distribution shifts.
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Introduction

Modern cloud-native applications increasingly adopt microservice architectures, where
complex systems are decomposed into hundreds of loosely coupled services communicating
through network calls [1]. This architectural pattern enables independent development,
deployment, and scaling of individual services, but introduces significant challenges for
understanding system-wide behaviors and diagnosing performance issues [2]. Causal
relationships between microservices evolve continuously as deployment configurations
change, traffic patterns shift, and infrastructure scales dynamically [3]. Traditional monitoring
approaches that rely on correlation analysis fail to distinguish genuine causal dependencies
from spurious associations induced by common infrastructure effects or temporal
autocorrelation [4].

Causal discovery from time-series data has emerged as a principled approach to understand
these complex dependencies [5]. However, existing methods face three critical limitations
when applied to microservice environments. First, service metrics exhibit strong
autocorrelation due to persistent workload patterns and infrastructure behaviors, which
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inflates false positive rates in standard conditional independence tests [6]. Second,
microservice topologies undergo frequent changes through continuous deployment, auto-
scaling, and configuration updates, creating distribution shifts that violate stationarity
assumptions underlying most causal discovery algorithms [7]. Third, contemporaneous causal
relationships between services often occur within sampling intervals, making temporal
precedence insufficient for causal orientation [8].

Recent advances in temporal causal discovery have addressed autocorrelation through
momentary conditional independence tests and incorporated latent confounders using fast
causal inference variants [9]. However, these methods assume stationarity and struggle when
the underlying causal structure itself evolves over time [10]. Invariant learning approaches,
originally developed for domain adaptation, have shown promise for discovering causal
relationships that remain stable across different environments [11]. Yet their application to
temporal data with strong autocorrelation remains underexplored[12].

This paper proposes TDICD (Temporal Distribution-Invariant Causal Discovery), a framework
that integrates three complementary techniques to address these challenges. First, we employ
dynamic graph attention mechanisms to model temporal dependencies while selectively
attending to causally relevant variables, mitigating the curse of dimensionality in high-
autocorrelation regimes [13]. Second, we introduce an intervention-based invariant pattern
recognition module that identifies causal relationships remaining stable across multiple
deployment environments and system configurations [14]. Third, we leverage graph neural
networks to aggregate temporal information and detect both lagged and contemporaneous
causal links in evolving topologies [15].

Our contributions are fourfold. We formulate the temporal causal discovery problem under
distribution shift for microservice architectures, explicitly modeling how causal graphs evolve
while certain structural patterns remain invariant. We develop a dynamic graph attention
mechanism that improves detection power for autocorrelated variables by optimizing
conditioning sets based on causal sufficiency rather than statistical correlation. We design an
intervention-based invariant recognition approach that exploits natural experiments in
microservice deployments to distinguish genuine causal links from environment-specific
correlations. We demonstrate through extensive experiments on synthetic and real
microservice data that TDICD achieves superior performance compared to state-of-the-art
baselines, particularly for strongly autocorrelated links and under substantial distribution
shifts.

2. Literature Review

Causal discovery from observational time-series data has been extensively studied across
multiple disciplines [16]. Constraint-based methods, exemplified by the PC algorithm and its
temporal variant PCMC], identify causal relationships through conditional independence tests.
The key innovation in PCMCI is the use of momentary conditional independence tests that
condition on lagged parents, improving detection power for autocorrelated variables [17].
Extensions like PCMCI+ incorporate contemporaneous links through optimized conditioning
sets, but assume causal stationarity throughout the observation period [18]. Score-based
approaches, including NOTEARS and its dynamic extension DYNOTEARS, formulate causal
discovery as a continuous optimization problem with acyclicity constraints [19]. These
methods excel at handling mixed contemporaneous and lagged dependencies but are
sensitive to distribution shifts and hyperparameter choices.
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Microservice-specific causal discovery methods have emerged to address the unique
challenges of cloud-native systems [20]. CloudRanger employs PageRank-based algorithms on
service dependency graphs derived from distributed traces, but relies on predefined
topologies rather than discovering causal structure from observational data [21]. MicroCause
applies Granger causality tests to service metrics, augmented with anomaly detection to filter
spurious links [22]. However, Granger causality's assumptions of linearity and stationarity
limit its applicability to the highly nonlinear and dynamic behaviors exhibited by
microservices. Recent work has explored graph neural networks for root cause localization,
representing services as nodes and their interactions as edges [23]. While effective for
propagation-based reasoning, these approaches require known causal graphs and do not
address the discovery problem under evolving topologies.

Distribution shift poses fundamental challenges for causal discovery, as the joint distribution
of observed variables changes even when the underlying causal structure remains constant
[24]. Invariant learning principles suggest that causal mechanisms exhibit invariance across
different environments, whereas spurious correlations vary [25]. Invariant causal prediction
exploits this property by identifying predictor sets whose conditional distributions remain
stable across environments [26]. However, invariant causal prediction was originally
developed for independent and identically distributed data, and its extension to time-series
with strong autocorrelation requires careful adaptation. Recent work on out-of-distribution
generalization for graph neural networks has incorporated invariance principles to learn
stable graph representations [27], but has not addressed the temporal causal discovery
problem where the graph structure itself evolves.

Dynamic graph learning methods model time-varying networks through recurrent
architectures, temporal attention, or discrete event processes. These methods demonstrate
the feasibility of discovering stable graph structures under distribution shift, but focus
primarily on link prediction rather than causal discovery with theoretical guarantees [28].
Temporal causal discovery in settings with unmeasured confounding has been studied
through extensions of the FCI algorithm, including SVAR-FCI which incorporates stationarity
assumptions and allows for both contemporaneous causal relations and arbitrary latent
confounding [29]. These constraint-based approaches provide consistency guarantees but
suffer from low detection power in the presence of strong autocorrelation.

Our work bridges these research streams by developing a temporal causal discovery
framework that explicitly accounts for both autocorrelation and distribution shift. Unlike
PCMCI variants that assume stationarity, our approach models how certain causal
relationships remain invariant even as the overall distribution evolves. Unlike pure invariant
learning methods, we incorporate temporal dependencies and optimize conditioning sets for
autocorrelated data. Unlike GNN-based root cause analysis, we provide a principled causal
discovery procedure with consistency guarantees under clearly stated assumptions [30].

3. Methodology

3.1 Problem Formulation and Temporal Causal Graph Representation

Consider a microservice system comprising N services monitored through time-series metrics
such as response time, throughput, error rate, and resource utilization. Let X_t = (X_{1,t}, ..,

X_{N,t}) represent the observed metric values at discrete time step t, where each X {i,t} is a
univariate time series. Our goal is to discover the temporal causal graph G that encodes both
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lagged dependencies X {it-t} — X ({jt} (where Tt > 0 represents time lag) and
contemporaneous dependencies X_{i,t} = X_{j,t} (occurring within the same time step).

i

Xit—2 > X1 —> Xy Xit—1 —> Xt
b A7) b7 4
Xjt—2 = Xji1 —> Xy Xjt—1 —> Xj
Xpt—2 > X1 —> Xiy Xit—1 —> Xy

(a) (b)

Figure 1: Window Causal Graph Representations: Full-Time Graph versus Summary Graph

As shown in Figure 1, we represent the temporal causal structure using a window causal
graph (WCG) defined over a time window of maximum lag tT_max. The WCG G = (V, E) consists
of vertices V = {X_ {i,t-t} : i € [N], T € [0, T_max]} and directed edges E encoding causal
relationships. An edge X {i,t-t} — X {j,t} indicates that variable i at lag T causally influences
variable j at the current time. This representation is more tractable than the full-time causal
graph while preserving essential causal information under temporal stationarity assumptions.

The challenge in microservice environments is that the causal graph G itself evolves over time
due to system reconfigurations, deployment updates, and workload pattern changes. We
model this evolution through a collection of environment-specific graphs {G*(e) : e € E},
where each environment e corresponds to a distinct system configuration or operational
regime. Our objective is to identify the invariant causal structure G_inv € G that remains
stable across all environments, representing genuine causal dependencies that are robust to
distributional shifts.

We adopt the structural equation model (SEM) framework to formalize causal relationships.
For each variable X _{j,t}, we assume a structural equation of the form: X {j,t} = fj(PA_jt,
€_{j,t}), where PA_j,t denotes the set of causal parents of X {j,t} (including both lagged and
contemporaneous parents), f j is an arbitrary measurable function, and ¢_{j,t} represents
exogenous noise. The key assumptions include causal sufficiency within the observed time
window, consistency throughout time (temporal stationarity within each environment), and
faithfulness (no fine-tuned cancellations between causal effects).

3.2 Dynamic Graph Attention for Autocorrelated Time Series
Autocorrelation in microservice metrics poses a fundamental challenge for causal discovery,
as standard conditional independence tests lose power when variables exhibit strong

temporal dependencies. We address this through a dynamic graph attention mechanism that
adaptively selects conditioning sets to maximize the effective sample size and test power.
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The core idea is to condition on the minimal set of variables that d-separates potential cause
and effect, rather than conditioning on all past values up to t_max. This is achieved through a
two-stage procedure. In the condition selection stage, we use partial correlation with
optimized lag structure to identify the most relevant lagged parents for each variable.
Specifically, for each pair (X_i, X_j), we compute the momentary conditional independence
(MCI) statistic by conditioning only on the lagged parents of both variables, rather than the
entire past history. This dramatically reduces the effective dimensionality of the conditioning
set, especially for autocorrelated variables where past values provide redundant information.

The MCI test for the link X _{i,t-t} — X _{j,t} evaluates whether X_i at lag T provides additional
predictive information about X j after conditioning on the lagged parents of X,j.
Mathematically, we test the null hypothesis H_0: X_{i,t-t} L1 X _{j,t} | PA*-{j,t}, where PA"-{j,t}
denotes the lagged parents of X_j (excluding contemporaneous parents). The conditioning set
is constructed iteratively by adding parents in order of decreasing effect size, which
prioritizes the most causally relevant variables.

Our dynamic attention mechanism further enhances this by learning attention weights
a_{ij}(t) that quantify the importance of variable i at lag t for predicting variable j. These
weights are computed using a multi-head attention architecture applied to the embedded
metric trajectories. The attention scores guide both the condition selection process and the
subsequent invariance testing, ensuring that we focus computational resources on the most
causally informative relationships. For strongly autocorrelated links, this adaptive
conditioning leads to larger effective sample sizes and higher detection power compared to
standard approaches that condition on fixed-size windows.

3.3 Intervention-based Invariant Pattern Recognition

The key insight underlying our invariant pattern recognition module is that genuine causal
relationships exhibit stability across different system environments, while spurious
correlations induced by confounders vary with environmental conditions. In microservice
systems, natural experiments occur frequently through deployment practices such as canary
releases, blue-green deployments, configuration changes, and auto-scaling events. These

interventions create multiple environments with different distributional properties, which we
exploit for causal discovery.

environment e = 1: environment e = 2: environment e = 3:
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Figure 2: Invariant Causal Structure Discovery Across Multiple System Environments
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As shown in Figure 2, let E = {e_1, e_2, .., e_K} denote a collection of K environments
corresponding to different system configurations. For each environment e_k, we observe
time-series data X*{(k)} = {X*{(k)}1, X*{(k)}2, ... X {(k){T_k}} where T_k is the number of time
steps. Our goal is to identify a predictor set S @ {1, ..., N} such that the conditional distribution
P(X{j,t} | X_{S,t-1}, e) remains invariant across all environments. This invariance condition can
be tested through distributional tests that compare conditional distributions across
environments.

We implement this through an intervention-aware testing procedure that explicitly accounts
for the type of interventions occurring in the system. Soft interventions, such as gradual load
increases or configuration parameter tuning, shift the distribution of parent variables but
preserve the causal mechanism. Hard interventions, such as service restarts or network
failures, may directly modify the structural equations. Our method distinguishes between
these scenarios by analyzing the stability of residuals after conditioning on candidate parent
sets. For a candidate parent set S, we compute environment-specific residuals r*{(k)}{j t} =
X{j,t} - E[X{j,t} | X*{(k)}_{S,t-t}] and test whether these residuals have identical distributions
across environments using two-sample tests such as the Kolmogorov-Smirnov statistic or
maximum mean discrepancy.

The invariance criterion is particularly powerful for handling confounding in microservice
systems. Infrastructure-level confounders, such as shared resource contention or network
congestion, affect multiple services simultaneously and create spurious correlations. However,
these confounding effects typically vary across deployment environments due to changes in
resource allocation, routing policies, or load distribution. By requiring that causal links
remain stable across such environmental variations, we effectively filter out confounding-
induced correlations while retaining genuine causal dependencies. The identified invariant set
G_inv provides a causally interpretable foundation for downstream tasks such as root cause
analysis and performance optimization.

3.4 Temporal Aggregation through Graph Neural Networks

To effectively integrate information across multiple time lags and handle both lagged and
contemporaneous causal links, we employ a graph neural network architecture that operates
on the discovered temporal causal graph. The GNN serves two purposes in our framework.
First, it aggregates evidence about causal relationships from multiple time lags, producing a
unified representation of each service's causal neighborhood. Second, it enables end-to-end
learning of causal graph structures through differentiable message passing, allowing joint
optimization with the attention and invariance modules.

Our GNN architecture consists of multiple temporal graph convolutional layers that propagate
information along discovered causal edges. For each layer 1, the hidden representation
h™{(D}{it} of service i at time t is updated through message passing from its temporal neighbors.
Specifically, we compute h*{(I+1)}{it} = o(W™{()} h"{(D}{it} + Z{jeN(i)} o_{ji} W*{(1)}msg
h{(D)}{j,t-t_{ji}}), where N(i) denotes the causal neighbors of service i, T_{ji} is the time lag for
the edge j — i, a_{ji} are learned attention weights, and o is a nonlinear activation function.
This allows the model to capture multi-hop causal dependencies and distinguish between
direct and indirect effects.

For contemporaneous link detection, we augment the GNN with a parallel pathway that
processes same-timestamp neighbors. Since contemporaneous edges lack temporal
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precedence for orientation, we leverage the invariance property to determine directionality.
Specifically, we test whether P(X_i | X_j, PA*-_i) or P(Xj | X.i, PA"-_j) exhibits greater
invariance across environments, orienting the edge accordingly. This intervention-based
orientation resolves the fundamental challenge of contemporaneous causal discovery in
settings where time resolution is insufficient to observe the true causal ordering.

The final output of our framework is a partially directed graph where lagged edges are
oriented by temporal precedence and contemporaneous edges are oriented by invariance
testing. Edges that appear in at least k out of K environments are retained as stable causal
relationships, where k is a robustness threshold. This produces a pruned graph G_stable that
represents the most reliable causal structure across varying operational conditions. The
discovered graph can be directly used for root cause analysis by tracing causal paths from
observed anomalies backward to potential root causes, weighted by the strength and stability
of causal effects.

4. Results and Discussion

4.1 Synthetic Benchmark Evaluation

We evaluated TDICD on synthetic benchmarks designed to mimic the characteristics of real
microservice systems, including strong autocorrelation, contemporaneous dependencies, and
distribution shifts. The synthetic data generation process follows a structural vector
autoregression (SVAR) model with time-varying coefficients to simulate evolving causal
structures. Each synthetic dataset contains N = 10 variables observed over T = 1000 time
steps, divided into K = 4 environments with distinct distributional properties. We vary the
autocorrelation strength (weak: 0.3-0.5, strong: 0.7-0.9) and the degree of distribution shift
(measured by KL divergence between environment-specific marginals) to assess robustness
across diverse scenarios.

Detection rate for links
with autocorrelation:
Weak Strong

¢
Q X 75%
6 X1

Median
X Mean
25%
X8 p e—

1%

Figure 3: Detection Rate Distribution for Causal Links Under Weak and Strong Autocorrelation

Figure 3 illustrates the detection rate distribution for causal links under varying
autocorrelation strengths. The violin plots demonstrate that TDICD maintains high detection
power (median > 75%) even for strongly autocorrelated links, whereas baseline methods
show substantial degradation. For weakly autocorrelated links, TDICD achieves detection
rates exceeding 85% at the median, with tight interquartile ranges indicating consistent

168



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
p-ISSN: 3079-6369

performance across different network topologies. The strong autocorrelation regime reveals a
more nuanced picture, where detection rates vary more widely (1st to 99th percentile range
of approximately 40% to 90%) due to the increased difficulty of distinguishing genuine causal
effects from autocorrelation-induced dependencies. Nevertheless, TDICD's adaptive
conditioning strategy ensures that the median detection rate remains above 70%,
substantially outperforming methods that use fixed conditioning sets.

We further analyze performance across different levels of distribution shift by varying the
strength of environmental interventions. Under mild distribution shift (KL divergence < 0.5
nats), all methods perform comparably, achieving F1l-scores above 0.80. However, as
distribution shift intensifies (KL divergence > 1.5 nats), performance diverges sharply. TDICD
maintains an F1-score of 0.78, while PCMCI drops to 0.61 and DYNOTEARS to 0.54. This
demonstrates the critical importance of explicit invariance modeling for causal discovery in
non-stationary environments. The false positive rate remains well-controlled for TDICD
(mean 0.07) across all shift intensities, whereas baseline methods show inflated false positive
rates (0.15-0.22) under strong distribution shift.

4.2 Real-World Microservice Applications

We applied TDICD to two production-scale microservice benchmarks: Train Ticket (a railway
booking system with 41 services) and Sock Shop (an e-commerce platform with 14 services).
Both systems were deployed on Kubernetes clusters and monitored through Prometheus,
collecting metrics at 15-second granularity over a 24-hour period encompassing multiple
deployment events and traffic pattern shifts. We identified three distinct environments in
each system corresponding to low-load (overnight), high-load (peak hours), and deployment
transition periods.

For Train Ticket, TDICD discovered 127 causal edges, of which 89 were validated as ground
truth through distributed tracing analysis. This yields a precision of 0.70 and recall of 0.78,
substantially outperforming PCMCI (precision 0.52, recall 0.65) and DYNOTEARS (precision
0.48, recall 0.61). Notably, TDICD correctly identified several critical causal chains, including
the path from authentication service — order service — payment service that explains end-to-
end latency degradation during peak hours. Many spurious edges identified by baseline
methods, such as direct links between unrelated services sharing infrastructure resources,
were correctly filtered out through invariance testing.

The Sock Shop evaluation revealed particularly strong benefits for contemporaneous link
detection. Among 34 discovered contemporaneous edges, TDICD achieved 85% accuracy in
causal orientation (validated against system design documentation), compared to 62% for
GNN-based methods that rely solely on statistical dependencies. This improvement stems
from our intervention-based orientation strategy, which exploits natural experiments like
canary releases to determine causal directionality. For example, during a canary deployment
of the cart service affecting 10% of traffic, TDICD correctly oriented the edge cart — checkout
based on the asymmetric response to this intervention, whereas correlation-based methods
remained ambiguous.
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4.3 Ablation Study and Comparative Analysis

To understand the contribution of individual components, we conducted an ablation study
comparing TDICD against variants with specific modules disabled. Removing the dynamic
attention mechanism (TDICD-NoAttn) reduces detection power for strongly autocorrelated
links by 18%, confirming that adaptive conditioning is crucial for handling temporal
dependencies. Removing the invariance testing module (TDICD-Nolnv) increases false
positive rates by 31% under distribution shift, demonstrating that invariance is essential for
robustness. Removing the GNN aggregation (TDICD-NoGNN) degrades contemporaneous link
detection by 22%, indicating that graph-based message passing effectively integrates multi-
hop causal information.

We compared TDICD against several state-of-the-art baselines across multiple metrics. PCMCI
with CMI (conditional mutual information) tests serves as the primary constraint-based
baseline, representing the current best practice for autocorrelated time series. DYNOTEARS
with continuous optimization provides a score-based comparison point that handles mixed
lagged and contemporaneous dependencies. Standard GCN (Graph Convolutional Networks)
trained on temporal graph snapshots represents pure learning-based approaches without
explicit causal modeling. Across all metrics and datasets, TDICD demonstrates consistent
improvements, with particularly large gains under challenging conditions (strong
autocorrelation and high distribution shift) where baseline methods struggle.

The runtime analysis reveals that TDICD's computational overhead is modest. For the Train
Ticket dataset (41 services, 86,400 time points), TDICD requires approximately 12 minutes on
a standard workstation (Intel Xeon, 32GB RAM), compared to 8 minutes for PCMCI and 15
minutes for DYNOTEARS. The additional cost stems primarily from the multi-environment
invariance testing, but this is well-justified by the substantial accuracy improvements. The
GNN component adds minimal overhead due to the sparse graph structure typical of
microservice systems.

5. Conclusion

This paper presented TDICD, a temporal causal discovery framework designed for evolving
microservice architectures under distribution shift. By integrating dynamic graph attention,
intervention-based invariance testing, and graph neural networks, TDICD addresses
fundamental challenges that limit existing methods: strong autocorrelation in service metrics,
non-stationarity due to continuous deployment, and contemporaneous causal relationships
within sampling intervals. Experimental results on synthetic benchmarks and real-world
microservice applications demonstrate that TDICD achieves superior detection power, false
positive control, and robustness to distribution shift compared to state-of-the-art baselines.

The framework's ability to discover invariant causal structures across multiple operational
environments provides practical value for DevOps teams seeking to understand complex
system behaviors. By focusing on causal relationships that remain stable across different
configurations and workload patterns, TDICD enables more reliable root cause analysis and
performance optimization strategies that generalize across deployment scenarios. The
discovered causal graphs can guide automated remediation systems by identifying which
interventions are most likely to resolve observed performance issues.
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Future work will explore several promising directions. First, extending TDICD to handle non-
linear causal relationships through kernel-based conditional independence tests or neural
causal models. Second, incorporating active experimentation strategies that guide deployment
decisions to maximize information gain for causal discovery, transforming passive
observation into active learning. Third, scaling to larger microservice ecosystems (hundreds
of services) through hierarchical or federated causal discovery that exploits modularity in
system architecture. Finally, integrating discovered causal structures with counterfactual
reasoning frameworks to predict the effects of proposed system changes before deployment,
enabling what-if analysis for capacity planning and optimization.
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