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Abstract 

Root cause analysis (RCA) in complex distributed systems faces significant challenges 
when diagnostic models need to be transferred across heterogeneous infrastructure 
environments. Traditional machine learning approaches for fault localization suffer 
from substantial performance degradation when applied to systems with different 
architectures, monitoring configurations, or operational characteristics. This paper 
introduces a novel cross-system transfer learning framework that leverages domain-
invariant graph representations to enable effective knowledge transfer for RCA tasks. 
The proposed methodology constructs system behaviors as attributed graphs where 
nodes represent components and edges capture causal dependencies, then employs 
message passing neural networks to learn structural embeddings through adversarial 
feature alignment and graph contrastive learning. By disentangling system-agnostic 
causal patterns from domain-specific characteristics through domain-adversarial 
training with gradient reversal mechanisms, the framework maintains diagnostic 
accuracy when deploying models from well-instrumented source systems to target 
systems with limited training data. Experimental evaluations on production cloud 
infrastructure demonstrate that the approach achieves superior generalization 
performance compared to conventional transfer learning baselines, reducing 
diagnostic errors by 31% on average across heterogeneous system environments while 
maintaining computational efficiency suitable for real-time fault diagnosis. 
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Introduction 

Modern distributed systems comprise hundreds or thousands of interconnected 
microservices and infrastructure components that generate massive volumes of operational 
telemetry data. When performance anomalies or service disruptions occur, engineers must 
rapidly identify the root cause among complex cascading failure patterns to minimize 
downtime and maintain service level agreements [1]. RCA has emerged as a critical challenge 
in site reliability engineering, where diagnostic accuracy directly impacts system availability 
and operational efficiency. Traditional approaches to fault localization employ rule-based 
expert systems, statistical anomaly detection, or supervised machine learning models trained 
on historical incident data [2]. However, these methods encounter fundamental limitations 
when organizations operate multiple heterogeneous systems or when deploying diagnostic 
capabilities to newly launched services lacking sufficient incident history. 
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The challenge of cross-system knowledge transfer for RCA manifests across several 
dimensions. Infrastructure heterogeneity creates substantial domain gaps where production 
systems exhibit different architectural patterns, employ diverse technology stacks, and 
operate under varying workload characteristics [3]. Monitoring instrumentation varies 
significantly between environments, with metrics collection granularity, sampling rates, and 
observable signals differing based on deployment maturity and resource constraints [4]. 
Operational contexts introduce additional complexity where business logic, user behavior 
patterns, and traffic characteristics shape system behaviors in domain-specific ways. These 
factors collectively prevent direct application of diagnostic models trained on one system to 
analyze failures in different operational environments. 

Recent advances in Graph Neural Networks (GNNs) and domain adaptation techniques offer 
promising directions for addressing cross-system transfer learning challenges [5]. Graph-
structured representations naturally capture the topological dependencies and causal 
relationships inherent in distributed system architectures [6]. By modeling system 
components as nodes and their interactions as edges, GNNs can learn structural patterns that 
generalize across architectural variations through message passing mechanisms that 
propagate information along dependency paths [7]. Domain adaptation methodologies 
provide mechanisms to align feature distributions between source and target domains while 
preserving task-relevant information for classification objectives [8]. The convergence of 
these research directions motivates investigation into domain-invariant graph 
representations that encode system-agnostic causal patterns suitable for cross-system 
knowledge transfer. 

This paper presents a comprehensive framework for cross-system transfer learning in RCA 
that addresses three fundamental requirements. The approach must effectively capture causal 
dependencies in distributed system behaviors through expressive graph representations that 
encode both topological structure and temporal dynamics. The methodology must learn 
domain-invariant embeddings that disentangle system-agnostic diagnostic patterns from 
domain-specific characteristics through adversarial alignment with gradient reversal layers 
and contrastive learning objectives. The framework must demonstrate practical applicability 
by maintaining diagnostic accuracy when transferring knowledge from well-instrumented 
source systems to target environments with limited historical data or different architectural 
characteristics. The proposed framework integrates message passing neural networks for 
structural feature learning, domain-adversarial training for distribution alignment, and gated 
recurrent mechanisms for temporal pattern recognition, creating a unified architecture that 
addresses the unique challenges of cross-system fault diagnosis. 

2. Literature Review 

GNNs have emerged as powerful tools for learning representations from structured data, with 
applications spanning molecular property prediction, social network analysis, and 
recommendation systems. Message Passing Neural Networks (MPNNs) unified various GNN 
architectures under a common framework where nodes iteratively update representations by 
aggregating transformed features from their neighbors [7]. The message passing formulation 
defines how information flows through graph edges during each layer of computation, 
enabling the network to capture multi-hop dependencies and complex relational patterns. 
This approach has proven particularly effective for tasks requiring understanding of graph 
topology and node relationships, making it naturally suited for modeling distributed system 
dependencies where component failures propagate through service call chains and resource 
dependencies [9]. 

Graph Attention Networks (GATs) introduced attention mechanisms to weight neighbor 
contributions dynamically based on learned importance scores rather than relying solely on 
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graph structure [10]. The attention mechanism allows the network to focus on relevant 
dependencies while filtering noisy or spurious connections that may appear in automatically 
constructed system dependency graphs. This selective aggregation proves valuable for RCA 
scenarios where not all observed correlations represent genuine causal relationships, and 
where the importance of different service dependencies varies based on operational context 
and failure modes [11]. Recent advances in GNNs address limitations including 
expressiveness constraints and scalability challenges through higher-order architectures, 
dynamic graph extensions for temporal settings, and heterogeneous graph neural networks 
that handle graphs with multiple node types and edge types [12]. 

Domain adaptation and transfer learning methodologies address the fundamental challenge of 
distribution shift between training and deployment environments. Adversarial domain 
adaptation employs domain discriminators that classify whether samples originate from 
source or target domains, with feature extractors trained to fool the discriminator through 
gradient reversal mechanisms [8]. The domain-adversarial neural network (DANN) 
architecture pioneered this approach by introducing a gradient reversal layer that inverts 
gradients during backpropagation, encouraging the feature extractor to produce 
representations that confound domain classification while maintaining discriminative power 
for the primary task [8]. This adversarial training strategy has demonstrated superior 
performance compared to earlier domain adaptation approaches based on distribution 
distance minimization, as it enables end-to-end learning of transferable features without 
requiring explicit distribution matching objectives [13]. 

Domain-invariant representation learning seeks feature transformations that remove 
domain-specific information while preserving task-relevant patterns. Theoretical analyses 
established conditions under which invariant features enable effective transfer, revealing 
fundamental trade-offs between learning perfectly invariant representations and maintaining 
discriminative information necessary for classification tasks [14]. These insights motivated 
development of conditional domain adaptation methods that align class-conditional 
distributions rather than marginal distributions, preventing misalignment of semantically 
different classes across domains [15]. For system fault diagnosis, this distinction proves 
critical as different failure types may exhibit varying degrees of domain shift, requiring class-
specific adaptation strategies rather than global distribution alignment [16]. 

Graph domain adaptation extends traditional domain adaptation to scenarios where both 
graph structure and node features exhibit domain shift. Adversarial graph domain adaptation 
applies adversarial training to graph-structured data by fooling domain discriminators 
operating on graph-level or node-level representations learned through graph neural 
networks [17]. Graph structure learning approaches infer latent graph structures that align 
better across domains rather than relying solely on observed connectivity, proving valuable 
when dependency inference methods produce different graph topologies across systems [18]. 
Domain-disentangled representations separate domain-invariant factors from domain-
specific attributes through multi-task learning or information bottleneck constraints, enabling 
the model to selectively leverage transferable patterns while ignoring system-specific 
idiosyncrasies [19]. 

RCA in distributed systems traditionally relied on rule-based expert systems, statistical 
anomaly detection, and manual log analysis performed by experienced engineers. Causal 
inference methods including Granger causality and transfer entropy extract directed 
dependencies from multivariate time series to construct causal graphs representing system 
behaviors [20]. Machine learning approaches train classifiers on labeled failure events to 
predict root causes from symptom patterns, with deep learning models processing raw 
monitoring data to extract features automatically [21]. Recent research applies GNNs to root 
cause localization by explicitly modeling system topology and propagation patterns, 
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demonstrating superior performance compared to feature-based methods by leveraging 
structural information inherent in distributed system architectures [1]. 

Hierarchical GNNs model both intra-level and inter-level causal relationships in systems 
monitoring to discover root causes across different architectural layers including application 
services, middleware components, and infrastructure resources [22]. Attention mechanisms 
highlight important neighbors during message passing to focus on relevant causal 
relationships while filtering noisy dependencies [23]. Temporal graph neural networks 
extend spatial architectures to capture evolution of system states over time windows 
preceding failure events, enabling the model to distinguish between transient fluctuations and 
sustained anomalies indicating genuine failures [24]. These graph-based approaches establish 
strong foundations for RCA but primarily focus on single-domain scenarios without 
addressing cross-system transfer challenges that arise when deploying diagnostic capabilities 
across heterogeneous infrastructure environments. 

Transfer learning for system fault diagnosis addresses practical challenges of data scarcity 
and distribution shift across operational environments. Domain adaptation techniques enable 
fault diagnosis models trained on simulation data or laboratory testbeds to generalize to 
production environments exhibiting different operating conditions [25]. Multi-task learning 
jointly trains models across multiple related systems to learn shared representations 
capturing common failure patterns while maintaining system-specific components for 
domain-unique characteristics [26]. Self-supervised pre-training on unlabeled system 
telemetry provides initialization for downstream diagnostic tasks reducing labeled data 
requirements, particularly valuable for newly deployed services where historical failure 
examples are limited [27]. These transfer learning paradigms demonstrate potential for 
improving diagnostic coverage across heterogeneous system portfolios but require careful 
integration with graph-structured representations to preserve topological information 
essential for understanding failure propagation in distributed architectures. 

The intersection of graph neural networks, domain adaptation, and root cause analysis 
remains relatively underexplored despite growing practical importance. Existing GNN 
applications to system diagnosis primarily focus on single-domain scenarios without 
addressing cross-system transfer challenges. Domain adaptation research for graph-
structured data concentrates mainly on social networks and citation graphs rather than 
system monitoring graphs with distinct characteristics including temporal dynamics, 
heterogeneous node types representing different component categories, and edge semantics 
encoding diverse dependency relationships. This research gap motivates development of 
specialized frameworks that integrate domain-invariant graph neural networks with root 
cause localization objectives to enable effective cross-system knowledge transfer for fault 
diagnosis applications in production environments. 

3. Methodology 

3.1 Problem Formulation and Message Passing Graph Construction 

The cross-system transfer learning problem for RCA involves learning from a source system 
with abundant labeled failure data to perform fault localization in a target system with limited 
or no labeled failures, where both systems exhibit different architectural characteristics, 
monitoring configurations, and operational patterns. We formalize this scenario by defining a 
source domain consisting of a set of attributed temporal graphs representing system states 
during historical failure events, where each graph is labeled with the ground-truth root cause 
component. The target domain similarly comprises system state graphs but lacks sufficient 
labeled examples for supervised training. The objective is to learn a diagnostic model from the 
source domain that generalizes effectively to identify root causes in the target domain despite 
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domain shift arising from architectural differences, metric distributions, and dependency 
patterns. 

System state graphs provide natural representations of distributed system behaviors that 
capture both topological structure and temporal dynamics. For a given observation window, 
we construct an attributed graph where nodes correspond to system components including 
microservices, databases, message queues, and infrastructure resources. Directed edges 
encode observed dependencies between components derived from service call traces, 
network flow patterns, or correlation analysis of metric time series. Node features consist of 
aggregated operational metrics over the observation window including resource utilization 
statistics, request rates, error rates, latency percentiles, and anomaly scores from individual 
metric monitoring. Edge features capture properties of component interactions such as 
request volumes, failure rates, and latency distributions along dependency paths. 

Message passing neural networks process these system graphs by iteratively updating node 
representations through neighborhood aggregation operations. Following the MPNN 
framework [7], each message passing iteration consists of a message function that computes 
edge-specific information, an aggregation function that combines messages from neighboring 
nodes, and an update function that transforms the aggregated messages along with the node's 
previous representation. Specifically, for node v at layer k, the update process follows the 
equations where the message function computes transformations based on source and target 
node features along with edge attributes, the aggregation function sums or averages messages 
from all incoming neighbors, and the update function applies a neural network 
transformation to produce updated node embeddings. This iterative refinement enables each 
node to incorporate information from increasingly distant neighbors as the number of layers 
increases. 

 
Figure 1: Message Passing Neural Network Architecture for Efficient Graph-Based Prediction 

The message passing architecture illustrated in Figure 1 demonstrates how graph neural 
networks process molecular structures through iterative neighbor aggregation, a principle 
directly applicable to system dependency graphs in distributed architectures. Just as 
molecular graphs encode atoms and chemical bonds, system monitoring graphs represent 
service components and their dependencies, enabling message passing to propagate 
diagnostic signals along failure propagation paths. The computational efficiency of message 
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passing proves essential for RCA applications, as the framework processes graphs with 
hundreds of nodes in tens of milliseconds, meeting real-time requirements for production 
fault diagnosis where rapid root cause identification minimizes service disruption duration. 

Temporal evolution of system states requires extending static graphs to capture dynamic 
behaviors preceding failure events. We employ temporal graph sequences where each time 
step corresponds to a fixed-duration observation window, typically ranging from one to five 
minutes depending on system characteristics and failure manifestation timescales. 
Consecutive temporal graphs share the same node set representing persistent system 
components, while edges and features evolve over time reflecting changing workload patterns 
and propagating anomalies. Graph augmentation strategies generate diverse training samples 
while preserving semantic properties critical for root cause analysis. Feature augmentation 
applies noise injection, temporal jittering, or feature masking to node attributes, simulating 
measurement uncertainty and monitoring gaps common in production environments. 
Topology augmentation performs edge dropout or edge addition based on learned attention 
weights, capturing uncertainty in dependency inference and enabling robustness to 
incomplete observability. 

3.2 Domain-Invariant Graph Neural Network Architecture 

The proposed graph neural network architecture processes temporal graph sequences 
through spatial message passing layers followed by temporal aggregation mechanisms to 
produce node-level embeddings capturing both local neighborhood context and temporal 
evolution patterns. The spatial component employs a stack of message passing layers where 
each layer updates node representations by aggregating transformed features from incoming 
neighbors as described in Section 3.1. The message function computes edge-specific 
transformations based on source node features, target node features, and edge attributes, 
enabling the model to learn heterogeneous relationships between different component types. 
The aggregation function combines messages from all incoming edges using permutation-
invariant operations such as summation, mean pooling, or attention-weighted combinations 
that assign learned importance scores to different neighbors. 

Temporal dynamics require additional architectural components to model how system states 
evolve over observation windows preceding failure events. We employ gated recurrent 
mechanisms that treat temporal graph sequences as inputs where hidden states propagate 
information across time steps while spatial graph neural network layers process each 
timestamp's graph structure. The gated architecture employs update gates and reset gates to 
control information flow across temporal steps, enabling the model to selectively retain 
relevant historical context while adapting to new observations. This temporal processing 
proves critical for distinguishing between transient fluctuations and sustained anomalies 
indicating genuine failures, as causal patterns often manifest through temporal progressions 
rather than instantaneous snapshots. 

Graph-level representations aggregate node-level embeddings into fixed-size vectors suitable 
for domain classification and root cause prediction objectives. Global pooling operations 
including summation, mean, and maximum pooling provide permutation-invariant graph-
level features but may lose important structural information. Attention-based readout 
mechanisms compute weighted combinations of node embeddings where attention weights 
indicate node importance for the downstream task, enabling the model to focus on potentially 
faulty components. For root cause localization, we extract node-level embeddings from 
intermediate layers rather than graph-level representations, allowing subsequent 
classification layers to identify specific components responsible for failures based on their 
learned feature representations and topological context within the system dependency graph. 
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3.3 Adversarial Domain Adaptation with Gradient Reversal 

Domain-invariant representation learning removes domain-specific characteristics from 
learned embeddings while preserving diagnostic information necessary for root cause 
identification. We employ adversarial training where a domain discriminator attempts to 
classify whether graph representations originate from source or target domains, while the 
feature extractor learns representations that fool the discriminator. The domain discriminator 
consists of fully connected layers that process graph-level embeddings and output domain 
classification probabilities. The feature extractor corresponding to the graph neural network 
backbone receives gradient signals from both task-specific classification loss and adversarial 
domain confusion loss, creating a minimax optimization objective where the feature extractor 
minimizes task loss while maximizing domain discriminator error. 

 
Figure 2: Domain-Adversarial Neural Network Architecture with Gradient Reversal Layer for 
Cross-System Transfer Learning 

Figure 2 illustrates the domain-adversarial neural network architecture that forms the 
foundation of our cross-system transfer learning framework. The gradient reversal layer 
implements the adversarial training procedure by reversing gradients flowing from the 
domain discriminator during backpropagation. During forward propagation, representations 
pass through the gradient reversal layer unchanged, allowing the domain discriminator to 
receive actual embeddings for domain classification. During backward propagation, gradients 
from the domain discriminator are multiplied by negative one before flowing to the graph 
neural network parameters, encouraging the feature extractor to produce representations 
that minimize domain distinguishability. This gradient reversal mechanism automatically 
balances adversarial and task-specific objectives without requiring careful tuning of loss 
weight hyperparameters. 

The feature extractor in our framework corresponds to the message passing graph neural 
network described in Section 3.2, processing system monitoring graphs through spatial and 
temporal layers to extract node-level and graph-level representations. The label predictor 
operates on these representations to classify which component caused the observed failure, 
trained using labeled source domain data. The domain classifier attempts to distinguish 
source and target domain representations, receiving gradients during backpropagation that 
encourage better domain discrimination. However, these gradients are reversed before 
reaching the feature extractor, causing it to learn representations that confound domain 
classification. This adversarial game between feature extractor and domain classifier drives 
the emergence of domain-invariant features that transfer effectively across heterogeneous 
systems. 

Conditional domain adaptation extends basic adversarial training to align class-conditional 
distributions rather than marginal distributions, addressing scenarios where source and 
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target domains exhibit different class proportions. The conditional domain discriminator 
receives concatenated inputs of graph representations and one-hot class labels, predicting 
domain labels conditioned on the predicted root cause class. This conditioning ensures that 
adversarial alignment occurs separately for each failure type, preventing feature alignment 
across semantically different failure modes that would harm diagnostic accuracy. Class-
conditional adaptation proves particularly important for root cause analysis where failure 
types exhibit varying frequencies across systems and where diagnostic patterns may differ 
substantially between unrelated failure modes. 

3.4 Graph Contrastive Learning and Training Procedure 

Contrastive learning objectives maximize agreement between different augmented views of 
the same system state while pushing apart representations of different states, encouraging 
the model to learn features invariant to augmentation transformations while preserving 
discriminative information. We construct positive pairs by applying two different 
augmentations to each system state graph, generating semantically equivalent but 
superficially different graph instances. Negative pairs consist of augmented graphs from 
different system states either within the same domain or across source and target domains. 
The contrastive loss employs cosine similarity in the embedding space, maximizing similarity 
between positive pairs while minimizing similarity between negative pairs through InfoNCE 
formulation. 

Cross-domain contrastive learning extends traditional contrastive objectives to explicitly 
encourage alignment between source and target domain representations. We construct 
positive pairs by pairing semantically similar system states from source and target domains 
based on proximity in the embedding space or predicted failure types. This cross-domain 
pairing encourages the model to learn representations where corresponding failure patterns 
from different systems map to similar embedding regions despite domain-specific variations 
in features or topology. Negative samples include both within-domain and cross-domain 
instances ensuring the model maintains discriminative boundaries between different failure 
types while aligning semantically equivalent patterns across domains. 

The complete training procedure integrates adversarial domain adaptation and contrastive 
learning objectives through multi-task optimization. The overall loss function combines three 
components including the source domain classification loss that trains the model to accurately 
predict root causes on labeled source data, the adversarial domain confusion loss that 
encourages domain-invariant representations through gradient reversal, and the contrastive 
learning loss that aligns semantically similar states across domains. Training alternates 
between updating the domain discriminator to better distinguish domains and updating the 
feature extractor and label predictor to minimize classification error while fooling the domain 
discriminator and maximizing contrastive agreement. 

Hyperparameter selection balances the relative importance of different loss components. The 
adversarial loss weight controls the strength of domain confusion pressure, with typical 
values ranging from 0.1 to 1.0 depending on the severity of domain shift. The contrastive loss 
weight determines how strongly the model enforces cross-domain alignment, usually set 
between 0.5 and 2.0. The gradient reversal scaling factor increases gradually during training 
following a schedule that allows the model to first learn discriminative features on source 
domain before enforcing domain invariance. This curriculum-style training prevents 
premature convergence to trivial solutions where the model produces uninformative 
representations that achieve domain invariance by discarding all useful information. 
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4. Results and Discussion 

4.1 Experimental Setup and Evaluation Metrics 

Experimental validation of the proposed cross-system transfer learning framework employs 
datasets collected from production cloud infrastructure environments spanning multiple 
organizations and architectural patterns. The source domain dataset comprises monitoring 
data from a mature microservices platform with 156 services and comprehensive 
instrumentation including distributed tracing, detailed metrics, and structured logs. This 
source system accumulated 847 labeled failure events over eighteen months of operation 
across twelve distinct root cause categories including database saturation, memory leaks, 
configuration errors, and cascading failures. The target domains include three different 
production systems with varying maturity levels and architectural characteristics, designated 
as Target-A with 89 services, Target-B with 124 services, and Target-C with 203 services. 

Graph construction parameters require careful configuration to balance expressiveness with 
computational efficiency. Observation windows of three minutes duration proved effective for 
capturing failure manifestations while limiting graph sizes to manageable scales. System 
component inventories determine node sets with services, databases, message brokers, and 
infrastructure resources represented as distinct nodes. Dependency inference employs 
distributed tracing data when available, with fallback to correlation-based edge construction 
when tracing coverage is incomplete. Node features aggregate metrics including CPU 
utilization, memory usage, request rates, error rates, and 99th percentile latencies over 
observation windows. Temporal sequences span fifteen time steps representing the forty-
five-minute period preceding failure identification. 

Performance evaluation employs multiple metrics capturing different aspects of diagnostic 
accuracy and transfer effectiveness. Top-k accuracy measures the fraction of test cases where 
the ground-truth root cause appears among the k components with highest fault probabilities, 
with k values of 1, 3, and 5 reflecting practical scenarios where engineers investigate multiple 
candidates. Mean reciprocal rank quantifies the average inverse position of the correct root 
cause in the ranked prediction list. Domain discrepancy metrics including maximum mean 
discrepancy and adversarial accuracy assess the degree of feature alignment achieved 
between source and target domains. Ablation studies isolate contributions of individual 
components by comparing the full framework against variants removing adversarial 
adaptation, contrastive learning, or temporal modeling. 

4.2 Cross-System Transfer Performance and Architecture Analysis 

Quantitative evaluation demonstrates that the proposed domain-invariant graph neural 
network framework achieves substantial improvements over baseline transfer learning 
approaches across all three target domains. For Target-A, the full framework attains 73.2% 
top-1 accuracy compared to 55.7% for direct transfer without adaptation, 61.3% for feature-
based domain adaptation, and 64.8% for adversarial adaptation without graph structure. 
Target-B exhibits similar trends with 68.9% accuracy for the proposed method versus 51.2% 
for direct transfer, 58.6% for feature adaptation, and 61.7% for adversarial methods. Target-C 
presents the most challenging scenario due to substantial architectural differences yielding 
61.5% accuracy for the framework compared to 42.8% direct transfer performance. 
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Figure 3: Gated Graph Sequence Neural Network Architecture for Temporal System State 
Modeling 

Figure 3 illustrates the gated graph sequence neural network architecture that enables our 
framework to model temporal evolution of system states preceding failure events. The left 
panel shows a simple graph structure, while the middle panel demonstrates how node hidden 
states evolve across time steps through gated recurrent updates. The right panel depicts the 
adjacency matrix representation that captures both outgoing and incoming edges for efficient 
message passing computation. This temporal modeling capability proves essential for RCA 
applications where failures manifest through progressive degradation patterns rather than 
instantaneous state changes. The gated mechanism selectively retains relevant historical 
information while adapting to new observations, enabling the model to distinguish transient 
anomalies from genuine failure signatures. 

Analysis of failure type-specific performance reveals interesting patterns regarding 
transferability of different diagnostic patterns. Database-related failures including connection 
pool exhaustion and query timeouts demonstrate excellent transfer performance with over 
80% accuracy across all target systems, likely due to consistent failure signatures involving 
elevated database latency and request queueing. Memory leaks and resource exhaustion 
failures achieve moderate transfer performance around 70% accuracy, benefiting from 
temporal modeling that captures gradual resource consumption patterns. Configuration 
errors and dependency failures exhibit more variable performance ranging from 55% to 75% 
accuracy depending on architectural similarity. Cascading failures present the greatest 
challenge with 50-60% accuracy, reflecting the complex and system-specific nature of failure 
propagation through service meshes. 

Domain discrepancy analysis quantifies the degree of feature alignment achieved through the 
proposed adversarial and contrastive training objectives. Maximum mean discrepancy in the 
learned embedding space decreases from 0.428 for the baseline graph neural network to 
0.156 for the full framework on Target-A, indicating substantial distribution alignment while 
maintaining task-relevant information. Domain discriminator accuracy deteriorates from 
94.3% for baseline embeddings to 62.1% for domain-adapted representations, approaching 
random guessing performance and confirming that learned features successfully confound 
domain classification. Visualization of embeddings through t-SNE dimensionality reduction 
illustrates how the framework intermingles source and target domain samples in the 
representation space while maintaining separation between different failure types. 

4.3 Ablation Studies and Component Contributions 

Systematic ablation studies isolate the contributions of individual framework components 
including adversarial domain adaptation, contrastive learning objectives, and temporal graph 
modeling. Removing adversarial adaptation while retaining contrastive learning yields 67.8% 
accuracy on Target-A compared to 73.2% for the full framework, indicating that adversarial 
alignment contributes approximately 5.4 percentage points of improvement. Removing 
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contrastive learning while maintaining adversarial adaptation results in 69.5% accuracy, 
suggesting that contrastive objectives provide 3.7 percentage points of improvement. The 
combination of both techniques achieves super-additive gains of 9.1 percentage points over 
the baseline graph neural network, demonstrating complementary benefits from the two 
domain adaptation strategies. 

Temporal modeling proves essential for distinguishing genuine failures from transient 
anomalies and capturing causal propagation patterns. Replacing temporal graph neural 
networks with static snapshot-based approaches that process only the final time step before 
failure identification degrades accuracy by 7.8 percentage points on Target-A. The gated 
recurrent architecture shown in Figure 3 enables selective retention of relevant temporal 
context through learned gate activations. Analysis of learned temporal patterns reveals that 
the model focuses primarily on middle time steps in the observation window rather than the 
most recent timestamps, suggesting that early manifestations of failures provide more 
distinctive diagnostic signals than fully developed cascading effects. 

Message passing depth analysis evaluates the impact of multi-hop neighborhood aggregation 
on diagnostic accuracy. Experiments with varying numbers of message passing layers from 
one to five demonstrate that three layers achieve optimal performance, corresponding to 
aggregation of information from three-hop neighborhoods in the dependency graph. Fewer 
layers fail to capture sufficient topological context, while additional layers provide 
diminishing returns and increase risk of over-smoothing where node representations become 
too similar. The three-layer configuration aligns with typical architectural depths in 
microservice systems where failures propagate through two to four service hops before 
manifesting as observable symptoms. 

Graph augmentation strategy comparison evaluates different approaches to generating 
positive pairs for contrastive learning. Pure feature augmentation through noise injection and 
masking achieves 70.4% accuracy, while topology augmentation through edge dropout yields 
68.9% accuracy. Combined feature and topology augmentation employed in the full 
framework reaches 73.2% accuracy, indicating complementary benefits from augmenting 
both modalities. Overly aggressive augmentation that removes more than 30% of edges or 
masks more than 40% of features begins to degrade performance by disrupting causal 
relationships, highlighting the importance of semantic-preserving augmentation design. 

4.4 Computational Efficiency and Deployment Considerations 

Computational requirements present both training-time and inference-time considerations 
for production deployments. Training the full framework requires approximately 6-8 hours 
on a system with four NVIDIA V100 GPUs processing datasets containing 800 source domain 
failures and 150 target domain failures for semi-supervised adaptation scenarios. The 
message passing neural network architecture demonstrated in Figure 1 achieves 
computational efficiency through sparse graph operations that scale linearly with the number 
of edges rather than quadratically with the number of nodes. Memory consumption scales 
primarily with graph size, requiring approximately 12GB for the largest graphs containing 
200 nodes and 500 edges across 15 temporal steps. 

Inference latency averages 180 milliseconds per test case, meeting typical requirements for 
root cause analysis where sub-second response times are acceptable. The domain-adversarial 
architecture shown in Figure 2 adds minimal computational overhead during inference since 
only the feature extractor and label predictor are required, while the domain discriminator is 
used exclusively during training. Model compression techniques including knowledge 
distillation and quantization reduce inference latency to 65 milliseconds while maintaining 
over 95% of full model accuracy, enabling real-time diagnostic capabilities for high-frequency 
monitoring scenarios. 
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The framework exhibits several limitations that motivate future research directions. Extreme 
architectural differences beyond the evaluated heterogeneity ranges may exceed the 
adaptation capacity of adversarial and contrastive training, potentially requiring hierarchical 
domain adaptation or multi-source transfer learning approaches. The method assumes 
availability of service-level monitoring and dependency information, limiting applicability to 
systems lacking comprehensive instrumentation. Rare failure modes with fewer than five 
labeled examples in either domain demonstrate reduced transfer effectiveness, suggesting 
that few-shot learning techniques or meta-learning could improve performance on tail failure 
types. Dynamic system evolution including service additions, removals, and architectural 
refactoring requires periodic model retraining, though the framework exhibits reasonable 
robustness to moderate changes within the fifteen percent service churn observed during 
evaluation periods. 

5. Conclusion 

This research introduced a comprehensive framework for cross-system transfer learning in 
root cause analysis that addresses fundamental challenges of knowledge transfer across 
heterogeneous distributed system environments. The proposed methodology constructs 
system behaviors as attributed temporal graphs that naturally encode causal dependencies 
and topological properties, then employs message passing neural networks to learn structural 
representations suitable for diagnostic reasoning. Domain-invariant representation learning 
through adversarial training with gradient reversal and contrastive objectives effectively 
removes domain-specific characteristics while preserving diagnostic information, enabling 
model transfer across systems with different architectures, monitoring configurations, and 
operational patterns. Experimental validation across production cloud infrastructure 
environments demonstrated substantial improvements over conventional transfer learning 
baselines, achieving 31% average error reduction when deploying diagnostic models from 
source systems to heterogeneous target environments. 

The technical contributions advance both theoretical understanding and practical capabilities 
at the intersection of graph neural networks, domain adaptation, and system fault diagnosis. 
The formalization of cross-system root cause analysis as domain-invariant graph 
representation learning provides theoretical foundations for analyzing generalization across 
distributed system domains. The proposed graph neural network architecture integrating 
message passing mechanisms, temporal gated recurrent units, adversarial alignment through 
gradient reversal, and contrastive learning represents a unified framework that leverages 
complementary domain adaptation techniques. The message passing architecture illustrated 
in Figure 1 demonstrates computational efficiency suitable for real-time fault diagnosis, while 
the domain-adversarial framework shown in Figure 2 provides principled mechanisms for 
learning transferable representations. The temporal modeling capabilities depicted in Figure 
3 enable accurate capture of failure progression patterns essential for distinguishing genuine 
faults from transient anomalies. 

Future research directions extend these contributions along several promising trajectories. 
Multi-source domain adaptation could leverage knowledge from multiple well-instrumented 
source systems to improve transfer performance through ensemble learning or meta-learning 
approaches that identify transferable patterns common across diverse system types. 
Hierarchical domain adaptation might address extreme architectural differences by 
decomposing transfer learning into multiple stages targeting different levels of system 
hierarchy, from infrastructure components through middleware layers to application 
services. Causal inference integration could enhance the framework by explicitly modeling 
causal relationships between components rather than relying solely on learned correlations, 
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improving interpretability and transfer effectiveness through incorporation of domain 
knowledge about failure propagation mechanisms. 

Few-shot learning techniques would enable rapid adaptation to rare failure modes with 
minimal labeled examples through metric learning or prototype-based approaches that 
leverage rich representations learned from abundant common failure types. Continual 
learning extensions could enable models to adapt incrementally as target systems evolve over 
time, accumulating knowledge from encountered failures while preventing catastrophic 
forgetting of previously learned diagnostic patterns. Federated learning approaches could 
enable collaborative diagnostic model training across organizations without sharing sensitive 
operational data, expanding the scope of available training data while preserving privacy 
through distributed optimization and differential privacy mechanisms. 

The broader implications of this research extend beyond technical contributions to impact 
organizational practices in site reliability engineering and incident management. Cross-
system transfer learning capabilities enable smaller organizations or newly launched services 
to leverage diagnostic knowledge accumulated by more mature systems, democratizing 
access to advanced fault localization capabilities. Reduced dependence on extensive labeled 
failure histories accelerates deployment of automated diagnostics to new environments, 
improving operational efficiency and reducing time-to-resolution for service disruptions. 
Domain-invariant representations facilitate knowledge sharing across engineering teams and 
organizational boundaries, enabling best practices and diagnostic patterns to transfer more 
effectively between different infrastructure domains and technology stacks. 
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