Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

Physics-Informed Graph Neural Networks for Supply Chain
Disruption Prediction and Mitigation

Sofia Petrova*! and Martin Hughes!
1School of Computer Science, University of Leeds, United Kingdom

* Corresponding author: sofia.petrovaaa@gmail.com

Abstract

Global supply chains face unprecedented challenges from multi-modal disruptions
including natural disasters, geopolitical tensions, and market volatility. Traditional
data-driven approaches for disruption prediction often fail to capture the underlying
physical constraints and causal relationships governing supply chain dynamics. This
paper introduces a novel Physics-Informed Graph Neural Network (PI-GNN) framework
that integrates domain knowledge from supply chain theory with graph-based deep
learning architectures for enhanced disruption prediction and mitigation strategies.
The proposed methodology embeds physical laws such as conservation of flow,
capacity constraints, and lead time dependencies directly into the neural network
training process through custom loss functions and architectural constraints. We
demonstrate that by incorporating physics-based regularization terms derived from
supply chain fundamentals, the PI-GNN achieves superior predictive performance
compared to purely data-driven GNNs, particularly in scenarios with limited historical
data. Experimental results on real-world supply chain networks show that the PI-GNN
framework reduces prediction error by 23% for disruption events and provides
interpretable insights for proactive mitigation strategies. The framework facilitates
real-time risk assessment across multi-tier supply networks while maintaining
computational efficiency suitable for large-scale deployments.
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Introduction

The complexity of modern global supply chains has grown exponentially over recent decades,
with intricate networks spanning multiple continents and involving thousands of
interconnected entities. Recent disruptions such as the COVID-19 pandemic, geopolitical
conflicts, and natural disasters have exposed fundamental vulnerabilities in these networks,
highlighting the critical need for advanced predictive and mitigation capabilities. According to
a comprehensive industry survey, over 90% of supply chain leaders encountered significant
disruptions in 2024, with average recovery times exceeding one week for major events [1].
These disruptions cascade through complex network structures, affecting not only directly
impacted nodes but propagating throughout entire supply ecosystems with amplified
negative consequences. The financial impact has become increasingly severe, with research
indicating that major supply chain disruptions can reduce firm value by up to 7% and require
more than two years for complete recovery [2]. This interconnectedness, while enabling
efficiency and cost optimization during normal operations, becomes a critical vulnerability
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during crisis periods when localized failures propagate through multiple tiers of suppliers and
customers.

Traditional approaches to supply chain risk management have relied heavily on statistical
methods and conventional machine learning techniques that struggle to capture the
fundamental physics and constraints governing supply chain operations. Research has shown
that balancing resilience and efficiency requires understanding both disruption risks and
recurrent operational risks, yet most existing approaches treat these as independent factors
[3]. Statistical forecasting models such as autoregressive integrated moving average assume
linear relationships and stationary processes, failing to account for the nonlinear dynamics
and structural dependencies inherent in supply networks. Similarly, classical machine
learning approaches treat supply chain prediction as generic regression or classification
problems, disregarding the rich domain knowledge accumulated over decades of operations
research and supply chain theory. The limitations of purely data-driven approaches become
particularly evident in scenarios involving rare events or unprecedented disruptions, as
demonstrated during the COVID-19 pandemic when traditional forecasting models failed to
anticipate the magnitude and duration of disruptions [2].

The emergence of Graph Neural Networks (GNNs) has represented a significant advancement
for supply chain analytics by explicitly modeling the network topology and relational
structure of supply chains. Unlike traditional neural networks that operate on fixed-
dimensional feature vectors, GNNs can process graph-structured data directly, making them
naturally suited to supply chain networks where entities and their relationships form complex
topologies [4]. The pioneering work in this domain demonstrated how GNNs can predict
hidden links in supply chain networks, addressing the fundamental challenge of incomplete
visibility across multi-tier supplier relationships with accuracy exceeding 85% [5]. GNNs
aggregate information from neighboring nodes through message-passing mechanisms,
enabling the capture of spatial dependencies and propagation patterns across the network.
Recent extensions have addressed dynamic supply chain scenarios where network structure
and node states evolve over time [6]. These temporal models demonstrated improved
performance for forecasting future supply relationships and identifying potential disruption
propagation pathways through evolving network structures. The application of attention
mechanisms in graph neural networks has proven particularly valuable for supply chain
analytics, with recent studies achieving accuracy exceeding 93% in predicting disruption
propagation across multi-tier networks [7]. These attention-based approaches automatically
identify critical dependencies and provide interpretable insights by revealing which supplier
relationships contribute most significantly to vulnerability assessments.

Despite these advances, existing GNN implementations for supply chain management remain
purely data-driven, lacking the integration of fundamental physical constraints and causal
relationships that define supply chain behavior. This limitation becomes problematic in
scenarios involving rare disruptions or novel configurations not adequately represented in
training data, as models may produce predictions that violate conservation of flow, exceed
capacity constraints, or ignore lead time requirements. Physics-Informed Neural Networks
(PINNs) have revolutionized scientific computing by encoding domain knowledge directly
into neural network architectures and training procedures [8]. The foundational PINN
framework demonstrated that embedding partial differential equations as penalty terms in
the loss function enables accurate solution of forward and inverse problems with limited
training data. Originally developed for solving partial differential equations in fluid dynamics
and materials science, PINNs leverage automatic differentiation to enforce physical laws as
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soft constraints during model training [9]. This integration of physics-based priors serves as a
powerful regularization mechanism, particularly valuable in scenarios where data is scarce or
noisy. Subsequent research has extended this framework to incorporate conservation laws
and symmetry constraints across diverse application domains [10].

The physics-informed learning paradigm offers several compelling advantages for supply
chain applications that address the limitations of purely data-driven approaches. It enables
learning from limited data by constraining the solution space to physically feasible
predictions, effectively encoding decades of domain knowledge accumulated through
operations research. It improves extrapolation capabilities by ensuring that predictions
respect fundamental conservation laws and capacity constraints, even in scenarios not
observed in training data. It also enhances interpretability by providing transparent
explanations grounded in physical principles rather than purely statistical correlations.
Research has demonstrated that physics-informed learning enables discovery of governing
equations from scarce data through combining neural networks with sparse regression
techniques [11]. The successful application of physics-informed learning to fluid dynamics,
materials science, and climate modeling suggests strong potential for supply chain
management, where similar physical constraints govern material flows, inventory dynamics,
and production processes. However, the integration of physics-informed learning with graph
neural networks remains an emerging research area with limited prior work, and the
application of physics-informed GNNs to supply chain management has not been
systematically explored [12].

In this paper, we introduce a novel framework that combines the structural modeling
capabilities of GNNs with the physics-informed learning paradigm to address supply chain
disruption prediction and mitigation. Our PI-GNN architecture incorporates fundamental
supply chain principles including conservation of flow, capacity constraints, lead time
dynamics, and demand-supply balance equations directly into the learning process. By
encoding these physical laws as differentiable constraints, the PI-GNN framework ensures
that predictions respect the fundamental mechanics of supply chain operations while
leveraging the representational power of deep learning. This hybrid approach enables the
model to generalize effectively from limited historical disruption data, a critical advantage
given the relative rarity of major supply chain crises. The integration of physics-informed
learning with graph neural networks represents a novel contribution that addresses unique
challenges in adapting continuous physical systems governed by differential equations to
discrete network systems with heterogeneous node types and complex operational
constraints. Our framework achieves this through careful formulation of physics-based loss
terms that capture the essential constraints of supply chain operations while remaining
compatible with gradient-based optimization.

2. Literature Review

The intersection of machine learning, network analysis, and supply chain management has
experienced rapid growth in recent years, driven by increasing data availability and
computational capabilities. This literature review synthesizes relevant research across three
interconnected domains to provide essential context for appreciating the novelty and
significance of the proposed PI-GNN framework.

Graph neural networks have emerged as powerful tools for modeling complex relational data
in supply chain contexts, with foundational architectures establishing message-passing
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frameworks that enable information propagation across network structures through iterative
aggregation of neighborhood information [13]. The development of benchmark datasets has
been crucial for advancing research on GNN applications in supply chains, with standardized
datasets providing real-world supply chain network data including product flows, facility
connections, and temporal sales information across multiple industries [14]. Studies utilizing
these benchmarks have demonstrated that GNN-based demand forecasting outperforms
traditional time series methods by 15-30% in mean absolute percentage error, while also
revealing important insights about the characteristics of real-world supply chain networks
including their scale-free degree distributions and hierarchical community structures. Recent
advances have focused on extending GNNs to handle the dynamic and uncertain nature of
supply chain networks, with methods developed for supply chain link prediction on uncertain
knowledge graphs addressing the challenge that complete supply chain topology information
is often unavailable due to commercial confidentiality. Research has also demonstrated how
GNNs can predict firm-level sales changes following natural disasters by incorporating
external disruption signals into the network representation, achieving superior performance
compared to baseline approaches that ignored inter-firm relationships [15].

The network science approach to supply chain modeling provides essential theoretical
foundations for understanding robustness and vulnerability patterns in complex supply
networks. Comprehensive reviews have emphasized the importance of both analytical and
simulation-based approaches for understanding network robustness, with analytical methods
employing network theoretic measures such as assortativity, degree distribution, and
centrality metrics to characterize structural properties [16]. The simulation approach
establishes robustness metrics such as the size of the largest connected component and
simulates node removal scenarios to generate resilience profiles. Research on topological
structure of manufacturing industry supply chains has demonstrated that real-world supply
networks exhibit specific structural patterns that influence their vulnerability to disruptions,
including hierarchical structures with concentrated bottlenecks at critical intermediate tiers
[17]. Studies on modeling topologically resilient supply chain networks have shown that
understanding both static structure and dynamic disruption propagation is essential for
effective risk management, with network topology significantly influencing the speed and
extent of cascading failures [18].

Physics-informed machine learning represents a paradigm shift in scientific computing by
explicitly incorporating domain knowledge into model design and training, with foundational
work demonstrating that embedding partial differential equations as penalty terms enables
accurate solution of problems with limited training data. Recent advances have addressed
challenges related to training stability and scalability through adaptive weighting strategies
that dynamically adjust the relative importance of data fitting versus physics constraint
satisfaction during training [19]. Comprehensive reviews have highlighted applications of
physics-informed machine learning across diverse domains including subsurface energy
systems and computational mechanics, demonstrating the broad applicability of the approach
[20]. Research on automatic network structure discovery has shown how physics-informed
distillation can extract physically meaningful structures from neural networks, encoding
conservation laws directly into the model architecture [21]. These approaches ensure that
predictions satisfy fundamental physical principles at every node in the network, improving
both accuracy and interpretability compared to purely data-driven methods.

Supply chain disruption prediction has evolved from traditional statistical methods to
sophisticated machine learning approaches, with early warning systems utilizing indicators
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such as supplier financial health and geopolitical risk indices to identify potential disruptions
before they materialize [22]. Research has examined how supply chain risk management
practices can mitigate disruption impacts on resilience and robustness, with empirical studies
during the COVID-19 pandemic revealing that organizations with proactive risk management
capabilities experienced shorter recovery times [23]. Decision support systems for supply
chain risk management increasingly leverage artificial intelligence and advanced analytics,
with research demonstrating how time series analysis and deep learning techniques can
enhance supply chain efficiency through improved forecasting and optimization [24]. Studies
on deep reinforcement learning approaches to dynamic pricing under supply chain disruption
risk have shown significant improvements in maintaining profitability during crisis periods
by adaptively adjusting strategies based on real-time conditions [25].

Despite substantial progress across these research domains, significant gaps remain in
existing approaches. Current GNN implementations for supply chains lack integration of
fundamental physical constraints and causal mechanisms that govern network behavior,
limiting their ability to extrapolate to novel scenarios and produce physically consistent
predictions [26]. Physics-informed learning methods have not been systematically adapted to
the unique characteristics of supply chain problems, including discrete decision variables,
multi-objective trade-offs, and heterogeneous relationship types [27]. The majority of
disruption prediction research focuses on historical pattern recognition without leveraging
the rich theoretical knowledge developed in operations research and supply chain theory [28-
32]. This paper addresses these gaps by developing an integrated framework that combines
graph neural networks, physics-informed learning, and supply chain domain knowledge for
enhanced disruption prediction and mitigation.

3. Methodology
3.1 Dual-Framework Approach for Supply Chain Network Topology Modeling

The foundation of our PI-GNN architecture rests on a comprehensive dual-framework
methodology that systematically combines analytical network theoretic measures with
simulation-based robustness evaluation. This integrated approach, illustrated in Figure 1,
represents a fundamental departure from purely data-driven methods by explicitly
incorporating structural principles that govern supply chain vulnerability and resilience. The
framework begins with the analysis of real-world supply chain datasets to extract topological
characteristics that inform our model construction, ensuring that the PI-GNN operates on
graph representations that authentically reflect the complexity observed in actual supply
chain networks.

134



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

Analyse real world data sets of SCNs

nstruct a distinct network
o ::p:ICoga” bsa;ecc o:ta 9 in order to inform the topological
Y < ; ¢
B . charcateristcs which should be
neralised growth mechanism
SMALARG0C. I oLnarny mimicked through thethecretical

r tic network |
O uatc nawerkmode network growth models

I—Analytlcal approach— ——simulation approacj

Use established network theoretic Establish robustness metrics for the
measures such as Assortativity, Degree etwork, such as the largest connected

Exponent. Network Centralisation and component (LCC) and the average or
Percolation Threshold the maximum path length in the LCC

Y

Simulate node removal scenarios
(random and targeted removal) and

record the robustness metric at each
time step to generate a profile

Y Y
[Ootaln general Insights Into the robustness character of various network :cpolcg:es]

Figure 1: The dual-framework methodology integrating analytical and simulation approaches
for supply chain network topology modeling

The top box initiates the process by analyzing real-world supply chain data sets to inform
topological characteristics for network construction. The framework diverges into two parallel
branches: the analytical approach (left) employs network theoretic measures including
Assortativity, Degree Distribution, Network Centralization, and Percolation Threshold to
characterize structural properties; the simulation approach (right) establishes robustness
metrics and systematically simulates node removal scenarios (both random and targeted) to
generate comprehensive resilience profiles. Both branches converge at the bottom to provide
general insights into the robustness characteristics of various network topologies, forming the
theoretical foundation for PI-GNN architecture design.

As depicted in the left branch of Figure 1, the analytical approach employs established
network theoretic measures to quantitatively characterize the structural properties that
determine how disruptions propagate through supply chain networks. The assortativity
metric quantifies the tendency of nodes to connect with similar nodes based on degree or
other attributes, which critically influences whether disruptions spread rapidly through
highly connected hubs or remain localized in peripheral regions. The degree distribution
reveals whether the network exhibits scale-free properties with power-law distributions,
indicating the presence of critical hub nodes whose failure would cause disproportionate
impact. Network centralization measures the extent to which the network structure is
dominated by a few central nodes, with highly centralized networks being more vulnerable to
targeted attacks on these critical entities. The percolation threshold identifies the critical
fraction of node or edge removals that causes the network to fragment into disconnected
components, providing a theoretical bound on the network's robustness. These analytical
measures directly inform the design of our PI-GNN's graph convolutional layers by identifying
which structural features must be preserved and how information should propagate through
the network topology.
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The simulation approach, shown in the right branch of Figure 1, complements the analytical
measures by establishing dynamic robustness metrics that capture how network performance
degrades under different disruption scenarios. The simulation process establishes baseline
robustness metrics including the size of the largest connected component, which measures
the fraction of nodes that remain interconnected after disruptions, and the average path
length within this component, which quantifies the efficiency of material flow and information
exchange. By systematically simulating node removal scenarios through both random removal
representing stochastic equipment failures or natural disasters and targeted removal
representing strategic attacks on critical suppliers, the framework generates time-series
profiles of robustness metrics that reveal how quickly the network degrades and whether
certain removal strategies cause catastrophic failures. These simulation-derived insights
inform the physics-based constraints in our PI-GNN by quantifying the realistic bounds on
network performance degradation and identifying the critical thresholds beyond which
cascading failures become inevitable.

The convergence of both analytical and simulation branches, as illustrated at the bottom of
Figure 1, provides comprehensive insights into the robustness characteristics of various
network topologies that directly guide the PI-GNN architecture design. The analytical
measures inform which network features should be encoded in the node and edge
representations, while the simulation results establish the physical constraints that
predictions must satisfy to remain realistic. This dual-framework approach ensures that our
PI-GNN not only learns patterns from historical data but also respects the fundamental
topological principles that determine supply chain vulnerability. The framework explicitly
addresses the challenge of limited disruption data by encoding structural knowledge about
how different network topologies respond to various failure modes, enabling the model to
generalize to disruption scenarios not observed in training data.

We represent the supply chain network as a directed graph G = (V, E, X, R) where V denotes
the set of nodes representing entities such as suppliers, manufacturers, distribution centers,
and customers. The edge set E captures relationships including material flows, information
exchanges, and contractual dependencies between entities. Each node i in V is associated with
a feature vector x_i in X containing attributes such as inventory levels, production capacity,
historical demand patterns, and operational status informed by the analytical measures from
Figure 1. Edge features r_ij in R encode relationship characteristics including lead times,
transportation costs, order quantities, and reliability metrics that reflect the simulation-
derived vulnerability patterns. The temporal evolution of the supply chain network is
captured through a sequence of graph snapshots G_t = (V, E_t, X_t, R_t) at discrete time steps t,
where the subscript indicates time-varying elements that evolve according to the robustness
dynamics identified through the dual-framework analysis.

3.2 LSTM-Based Temporal Memory Architecture for Sequential Disruption
Pattern Recognition

The temporal component of our PI-GNN framework employs a sophisticated Long Short-Term
Memory network architecture specifically designed to capture the sequential evolution of
supply chain states that precede disruption events. Unlike traditional recurrent neural
networks that struggle with long-term dependencies due to vanishing gradients, the LSTM
architecture implements a carefully engineered memory mechanism that enables the model
to maintain relevant historical information over extended time horizons spanning weeks or
months. This capability is crucial for supply chain disruption prediction, where warning
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signals often accumulate gradually through patterns such as sustained inventory depletion,
progressively increasing lead time variability, or the emergence of capacity bottlenecks that
only become critical after extended periods.

Ht—l Ft It Jt Ot Ht

Figure 2: Detailed computational architecture of the LSTM unit that processes temporal
sequences of supply chain network states

The diagram shows the flow of information through the LSTM cell at a single time step t. The cell
maintains two state vectors: the cell state C_t (flowing horizontally across the top) which serves
as the long-term memory, and the hidden state H_t (output at right) which serves as the short-
term working memory. Input information X_t along with the previous hidden state H_{t-1} are
processed through four neural network components: the forget gate F_t (determining what
information from previous cell state to discard), the input gate It (deciding what new
information to store), the candidate values ] t (new information that could be added to cell
state), and the output gate O_t (controlling what information from cell state to expose as hidden
state). Circular nodes marked with x represent element-wise multiplication operations, while +
represents element-wise addition. This gating mechanism enables selective retention and
forgetting of information across long time sequences.

The LSTM architecture illustrated in Figure 2 processes supply chain information through a
sophisticated gating mechanism that addresses the fundamental challenge of distinguishing
between transient operational fluctuations and meaningful patterns that signal impending
disruptions. At each time step t, the LSTM unit receives three inputs that collectively capture
the current and historical state of the supply chain. The current observation X_t represents

137



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

the graph-level aggregated features of the supply chain network at time t, encoding
information such as overall inventory levels, aggregate capacity utilization, and network-wide
flow patterns. The previous hidden state H_{t-1} carries forward the processed information
from the preceding time step, representing the model's short-term working memory of recent
supply chain conditions. The previous cell state C_{t-1} maintains the long-term memory of
historical patterns, allowing the model to remember critical events or trends from many time
steps in the past.

The forget gate F_t, positioned as the first gating mechanism in the LSTM cell shown in Figure
2, determines which information from the previous cell state should be discarded as no longer
relevant for future predictions. This gate is computed as F_t = o(W_f - [H_{t-1}, X_t] + b_f),
where o represents the sigmoid activation function that outputs values between 0 and 1, with
0 indicating complete forgetting and 1 indicating complete retention. In the supply chain
context, the forget gate learns to discard outdated information such as resolved disruptions,
seasonal patterns that have shifted, or supplier relationships that have been terminated. The
sigmoid activation ensures smooth gradient flow during training while providing
interpretable forget/retain decisions. The weight matrix W_f and bias term b_f are learned
during training to optimize the forget gate's ability to identify which historical information
remains relevant for predicting future disruptions versus which information has become
obsolete and should be purged from the cell state.

The input gate I_t works in conjunction with the candidate value generator J_t to determine
what new information should be incorporated into the cell state, as shown in the middle
section of Figure 2. The input gate is computed as [_t = 6(W_i - [H_{t-1}, X_t] + b_i), controlling
the extent to which new candidate information is accepted into the long-term memory.
Simultaneously, the candidate value generator creates J_t = tanh(W_j - [H_{t-1}, X_t] + b_j),
where the tanh activation function outputs values between -1 and 1, allowing both positive
and negative contributions to the cell state. For supply chain applications, the candidate
values might represent emerging patterns such as increasing lead time variability, declining
supplier reliability scores, or new capacity constraints that have recently appeared. The input
gate learns to be selective about which new observations truly represent meaningful changes
versus normal operational noise. The cell state is then updated through the crucial operation
Ct=FtQ® C{t-1} + I_.t © J_t, where © denotes element-wise multiplication. This update
equation, central to the LSTM's functionality shown in Figure 2, allows the model to
simultaneously forget outdated information through F_t ©® C_{t-1} and incorporate new
relevant information through I_t © ]_t, maintaining an optimal balance between historical
memory and adaptation to new conditions.

The output gate O_t, illustrated in the right portion of Figure 2, determines what information
from the updated cell state should be exposed as the hidden state output for the current time
step. This gate is computed as O_t = 6(W_o - [H_{t-1}, X_t] + b_o), and the final hidden state is
calculated as H_t = O_t O tanh(C_t). The tanh activation applied to the cell state normalizes its
values before the output gate selectively filters which components to expose. In supply chain
disruption prediction, the hidden state H_t represents the model's current assessment of
supply chain conditions, encoding both the immediate state and relevant historical context.
This hidden state serves dual purposes: it provides the input to the next time step H_{t+1},
maintaining temporal continuity, and it contributes to the final disruption prediction when
aggregated across time steps. The output gate learns to emphasize information most relevant
for near-term disruption prediction while suppressing less critical details, effectively
implementing an attention mechanism over the cell state components.
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The integration of the LSTM architecture shown in Figure 2 with our graph neural network
layers creates a powerful framework for capturing spatio-temporal patterns in supply chain
networks. At each time step, after the graph convolutional layers process the network
topology to generate node-level embeddings, a readout function aggregates these embeddings
into a graph-level representation X_t that captures the overall network state. This
representation feeds into the LSTM as the current observation, allowing the temporal model
to track how network-level conditions evolve over time. The LSTM processes sequences of
these graph-level representations spanning multiple weeks or months, learning to recognize
patterns such as gradual inventory depletion across multiple distribution centers, progressive
deterioration of supplier performance metrics, or the slow buildup of capacity constraints
that collectively signal impending disruptions. This spatio-temporal modeling capability,
enabled by the sophisticated gating mechanisms illustrated in Figure 2, represents a key
advantage of our PI-GNN framework over purely spatial or purely temporal models.

3.3 Sequential Processing for Multi-Horizon Disruption Forecasting

The temporal sequence processing mechanism of our PI-GNN framework enables prediction
of supply chain disruptions across multiple future time horizons through an unrolled
recurrent computation structure. This sequential architecture processes historical supply
chain network states to extract temporal patterns and dependencies that accumulate over
extended periods before disruptions manifest. The unrolled structure, illustrated in Figure 3,
explicitly shows how information flows through consecutive time steps and how historical
patterns inform future predictions.

Figure 3: Unrolled representation of the temporal sequence processing mechanism showing six
consecutive time steps in the PI-GNN framework

At each time step, the model receives an input x_t (represented by green boxes) corresponding to
the graph-level representation of the supply chain network state. Each input is processed by a
recurrent unit (shown as light blue boxes with rounded corners) that implements the LSTM
architecture from Figure 2. The recurrent units maintain and update internal hidden states
based on both the current input and the previous hidden state, with horizontal arrows indicating
temporal propagation of these hidden states across time steps. Vertical arrows show how each
time-step input feeds into its corresponding recurrent unit. At the final time step (rightmost), the
accumulated temporal information from all previous steps is used to generate predictions
(Targets, shown in pink box) for future disruption events across multiple forecast horizons.

As illustrated in Figure 3, the temporal processing begins at the leftmost time step with input
x_1, representing the earliest historical state of the supply chain network in the observation

139



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

window. This initial input contains graph-level features aggregated from the entire network
topology, including metrics such as total network inventory levels, average capacity
utilization across production facilities, overall demand patterns, and aggregate supplier
performance indicators. The first recurrent unit processes x_1 using the LSTM architecture
detailed in Figure 2, initializing its internal cell state and hidden state based solely on this
earliest observation. Since no previous hidden state exists at this initial step, the model
typically initializes H_0 and C_0 to zero vectors or learned initial embeddings that encode
typical baseline supply chain conditions.

The horizontal arrows in Figure 3 represent the critical temporal propagation mechanism that
distinguishes recurrent architectures from feedforward networks. As time progresses from
step 1 to step 2, the hidden state H_1 computed at the first recurrent unit is passed forward to
the second unit along with the new input x_2. This hidden state carries compressed
information about the supply chain conditions observed at time step 1, effectively serving as a
summary of historical context. The second recurrent unit processes both the new observation
x_2 and the historical summary H_1 through its LSTM gating mechanisms, updating its
internal cell state C_2 to incorporate this new information while selectively retaining or
forgetting aspects of the previous state. This process continues sequentially through steps 3, 4,
5, and 6, with each recurrent unit receiving both the current network state observation and
the processed historical information from all previous time steps encoded in the hidden state.

The sequential accumulation of information illustrated in Figure 3 enables the model to
recognize complex temporal patterns that unfold over extended periods. For example, a
gradual inventory depletion pattern might begin at time step 1 with slightly below-target
inventory levels, progress through steps 2-4 with continuing decline despite normal
replenishment orders, and reach critical levels by step 5 that strongly predict a stockout
disruption at step 6. Similarly, an emerging capacity bottleneck might manifest as
progressively increasing utilization rates across steps 1-5, with the pattern only becoming
clear when viewed across the full temporal sequence. The recurrent processing structure
allows information from early warning signals at step 1 to influence the final prediction at
step 6, even though dozens of intermediate network state changes have occurred. This long-
range temporal dependency modeling, enabled by the LSTM gating mechanisms shown in
Figure 2, represents a crucial capability for supply chain disruption prediction where warning
signals often accumulate gradually over weeks or months.

The vertical arrows in Figure 3 emphasize that at each time step, the model receives a fresh
observation of the current supply chain network state. These inputs x_1 through x_6 are not
independent samples but rather consecutive snapshots of an evolving system, with temporal
dependencies captured through the horizontal flow of hidden states. The inputs themselves
are generated by applying the graph neural network layers described in Section 3.1 to each
temporal snapshot of the supply chain network graph, aggregating node-level features into
graph-level representations. This combination of spatial processing through graph
convolutions and temporal processing through recurrent units creates a comprehensive
spatio-temporal model that captures both how disruptions propagate across network
topology and how they evolve over time.

The final prediction generation, shown in the pink box at the right of Figure 3, leverages the
accumulated temporal information from all six time steps encoded in the final hidden state
H_6. This final hidden state represents the model's comprehensive understanding of the
supply chain's historical trajectory and current state, incorporating both short-term recent
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changes and long-term evolving trends. The prediction layer applies learned transformations
to H_6 to generate probabilistic forecasts for multiple future time horizons, predicting
disruption likelihood and severity for time steps 7, 8, and beyond. The multi-horizon
forecasting capability is particularly valuable for supply chain practitioners, as different
mitigation strategies require different lead times to implement. Short-term predictions with
1-2 week horizons support tactical decisions such as expediting shipments or activating
emergency suppliers, while longer-term predictions with 4-8 week horizons enable strategic
interventions such as qualifying alternative suppliers or repositioning safety stock.

The physics-informed constraints described in Section 3.4 are enforced throughout the
sequential processing illustrated in Figure 3 by computing constraint violations at each time
step and accumulating penalty terms across the full sequence. At each recurrent unit, the
model's predictions for current network state must satisfy conservation of flow, respect
capacity constraints, and maintain consistency with lead time requirements. This continuous
enforcement of physical constraints throughout the temporal sequence ensures that the
learned temporal patterns remain physically plausible and that the model does not learn
spurious correlations that violate fundamental supply chain principles.

3.4 Physics-Based Constraint Integration and Training Procedure

The physics-informed component of our framework integrates fundamental supply chain
operational principles directly into the neural network training process through carefully
designed constraint loss terms. The conservation of flow principle states that at any node i
and time t, the total material inflow plus local production must equal the total outflow plus
local consumption plus net inventory change, expressed mathematically as sum_{j in IN(i)}
fji(t) + p_i(t) = sum_{k in OUT(i)} f_ik(t) + c_i(t) + L_i(t) - LLi(t-1). This fundamental physical
law ensures that material cannot spontaneously appear or disappear within the network, and
violations of this constraint indicate physically impossible predictions. The PI-GNN enforces
flow conservation by computing the residual of this equation for each node at each time step
in the sequence shown in Figure 3, calculating the squared residual as L_flow = sum_{t,i}
[sum_{j} f ji(t) + p_i(t) - sum_{k} f_ik(t) - c_i(t) - (L_i(t) - Li(t-1))]"2.

Capacity constraints impose physical limits on production, storage, and transportation
activities through inequality constraints. Production capacity limits are expressed as p_i(t) <
C_i*prod, storage capacity limits as L_i(t) < C_i"stor, and transportation capacity limits as f_ij(t)
< C_ij*trans. These constraints are enforced through penalty functions L_capacity = sum_{t,i}
max(0, p_i(t) - C_i*prod)”*2 + sum_{t,i} max(0, L_i(t) - C_i*stor)*2 + sum_{t,i,j} max(0, f_ij(t) -
C_ij*trans)”2, where the max operation ensures penalties only activate when constraints are
violated. Lead time consistency constraints ensure that material arrivals match historical
orders placed L_ij periods earlier, with violations measured through L_lead = sum_{t;,;j}
[arrival_ij(t) - order_ij(t - L_ij)]*2. The composite loss function combines these physics-based
terms with standard prediction loss as L_total = L_prediction + A_flow L_flow + A_capacity
L_capacity + A_lead L_lead.

The training procedure implements a multi-stage curriculum that gradually introduces
physics constraints. Initial pretraining uses only L_prediction for 50-100 epochs, allowing
basic pattern learning. Subsequently, constraint weights A increase exponentially according to
A(epoch) = A _final (1 - exp(-epoch/t)) with T controlling introduction rate. This curriculum
prevents training instabilities while converging to physics-consistent solutions. Mini-batch
training employs neighborhood sampling to construct computational subgraphs, with
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temporal batching using sliding windows of T_in = 6 input steps as illustrated in Figure 3 to
predict T_out future steps. The combination of graph sampling, temporal windowing, and
physics-informed constraints enables efficient training on large-scale supply chain networks
while ensuring learned patterns respect fundamental operational principles.

4. Results and Discussion

4.1 Experimental Evaluation Across Real-World Supply Chain Networks

We evaluated the PI-GNN framework on three real-world supply chain datasets spanning
automotive, pharmaceutical, and consumer electronics industries to demonstrate broad
applicability across diverse supply chain contexts. The automotive dataset captures a complex
Asia-Pacific supply chain network with 847 nodes including multi-tier suppliers, assembly
plants, and distribution centers, connected by 3,421 directed edges representing component
flows. Temporal data spans 3 years from 2020 to 2023 at weekly resolution, encompassing
major disruptions from the semiconductor shortage and COVID-19 pandemic with 127
labeled disruption events of varying severity. The pharmaceutical dataset represents COVID-
19 vaccine distribution networks with 412 nodes including specialized cold chain logistics
facilities, covering 2 years from 2021 to 2023 at daily resolution with 89 documented
disruptions related to capacity constraints and demand surges. The consumer electronics
dataset includes 1,243 nodes spanning semiconductor fabrication through retail distribution,
with 4 years of weekly data from 2019 to 2023 capturing 203 disruptions including
component shortages and logistics delays.

Data preprocessing standardized node and edge features to zero mean and unit variance, with
missing values imputed using forward-fill and linear interpolation. Disruption labels were
encoded as multi-class targets distinguishing no disruption, minor disruption with less than
10% capacity reduction, moderate disruption with 10-30% reduction, and major disruption
exceeding 30% reduction. The dataset was partitioned using temporal splitting with 60%
training data, 20% validation data, and 20% test data to simulate realistic deployment where
models predict future events based on historical observations. Additional spatial cross-
validation held out geographically clustered subnetworks to evaluate generalization to
previously unseen supply chain regions, testing whether the physics-informed constraints
enable transfer learning across different network contexts.

Quantitative evaluation demonstrates substantial improvements of the PI-GNN framework
over baseline methods. For binary disruption detection, the PI-GNN achieves precision of 0.89,
recall of 0.85, and F1-score of 0.87, compared to 0.72, 0.70, and 0.71 respectively for standard
GNNs without physics constraints. The area under the ROC curve improves from 0.81 for the
baseline to 0.93 for PI-GNN, indicating superior discrimination between disrupted and normal
states. These improvements enable detection of 21% more actual disruptions while reducing
false alarms by 19%, directly impacting the efficiency of risk management resources. For
multi-class severity prediction, PI-GNN attains weighted F1-score of 0.84 across four severity
levels, substantially outperforming standard GNN at 0.68 and gradient boosted trees at 0.61.
The confusion matrix reveals PI-GNN successfully distinguishes moderate from major
disruptions with 78% accuracy versus 52% for standard GNN, providing actionable
intelligence for resource allocation and response prioritization.

The temporal prediction accuracy evaluation directly validates the sequential processing
architecture illustrated in Figure 3. We assessed forecast performance at multiple horizons
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from 1 week to 8 weeks ahead, corresponding to varying lengths of the prediction window
beyond the 6-step input sequence. The PI-GNN maintains strong performance across all
horizons with F1-scores declining gracefully from 0.87 at 1-week horizon to 0.73 at 8-week
horizon. In contrast, the standard GNN degrades more rapidly from 0.71 to 0.51 over the same
range. This sustained performance at extended horizons directly results from the physics-
based constraints that remain valid regardless of prediction distance, as shown in Figure 3
where the accumulated information across all six time steps incorporates physical principles
about how disruptions must propagate according to conservation laws and capacity limits.
The improved long-horizon predictions provide supply chain managers with extended lead
time exceeding 8 weeks for implementing proactive mitigation measures such as qualifying
alternative suppliers or repositioning safety stock, interventions that typically require several
weeks to execute effectively.

4.2 Ablation Studies and Interpretability Through Framework Components

Systematic ablation studies quantified the contribution of each framework component to
overall performance, validating the importance of both the dual-framework approach from
Figure 1 and the LSTM architecture from Figure 2. Removing the network topology analysis
from the analytical branch of Figure 1 reduced Fl-score by 0.07, demonstrating that
understanding structural properties such as degree distribution and centrality is crucial for
identifying vulnerable network regions. Eliminating the simulation-based robustness
evaluation from Figure 1's right branch decreased performance by 0.06, confirming that
dynamic resilience profiles inform critical aspects of disruption propagation. When both
analytical and simulation components were removed, leaving only raw network data, F1-
score dropped by 0.12, validating that the dual-framework approach provides essential
inductive biases for learning from limited disruption examples.

Ablation of the LSTM gating mechanisms illustrated in Figure 2 revealed their specific
contributions to temporal modeling. Removing the forget gate by setting F_t = 1 for all time
steps reduced Fl-score by 0.09, demonstrating that selective forgetting of outdated
information is crucial for focusing on recent relevant patterns. Eliminating the input gate by
setting I_t = 1 decreased performance by 0.06, showing that selective incorporation of new
information prevents the model from being overwhelmed by noisy observations. Disabling
the output gate by setting O_t = 1 reduced F1-score by 0.04, indicating that selective exposure
of cell state information optimizes the hidden state for prediction. When all gates were
disabled, effectively converting the LSTM to a simple recurrent neural network, performance
dropped by 0.18, confirming that the sophisticated gating architecture shown in Figure 2 is
essential for maintaining long-term temporal dependencies in supply chain disruption
prediction.

The sequential processing structure shown in Figure 3 was validated by varying the input
sequence length from 2 steps to 12 steps. Performance improved from F1-score 0.72 with 2-
step sequences to 0.87 with 6-step sequences as illustrated in Figure 3, then plateaued at 0.88
with 12-step sequences. This validates that 6 time steps provide sufficient historical context
for most disruption patterns while maintaining computational efficiency. Experiments with
different temporal resolutions revealed that weekly aggregation provides optimal balance
between capturing gradual trends and maintaining temporal detail, with daily resolution
introducing excessive noise and monthly resolution losing important dynamics. The multi-
horizon prediction capability shown at the right of Figure 3 was validated by comparing
single-horizon models optimized for each forecast distance against the multi-horizon PI-GNN,
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confirming that joint training across horizons improves performance at all distances through
shared representations.

Physics constraint ablation demonstrated that each constraint type contributes meaningfully
to performance. Removing flow conservation constraints from the framework reduced F1-
score by 0.08 and increased physically impossible predictions where total inflows and
outflows were imbalanced by more than 20%. Eliminating capacity constraints decreased F1-
score by 0.06 and resulted in predictions that exceeded known production capacities by up to
50% in severe disruption scenarios. Disabling lead time constraints reduced F1-score by 0.05
and produced predictions of instantaneous deliveries that violate realistic transportation
times. When all physics constraints were removed, performance degraded to the standard
GNN baseline and predictions frequently violated multiple physical principles simultaneously,
confirming that physics-informed regularization is essential for maintaining realistic and
actionable disruption forecasts.

Learning curve analysis demonstrated superior data efficiency of the PI-GNN across all
dataset sizes. With 100% training data, PI-GNN achieves F1-score 0.87 versus standard GNN
at 0.71, but the advantage grows more pronounced with limited data. At 50% training data,
PI-GNN maintains 0.81 while GNN drops to 0.64, and at 25% training data, PI-GNN achieves
0.74 compared to GNN's 0.53. This 40% performance advantage in low-data regimes directly
results from physics-based regularization constraining the hypothesis space to physically
plausible solutions. The dual-framework methodology from Figure 1 provides structural
priors that guide learning even when few disruption examples exist, while the LSTM
architecture from Figure 2 efficiently captures temporal patterns from limited sequences. This
data efficiency is particularly valuable for supply chain applications where major disruptions
occur infrequently and historical labels are scarce.

The PI-GNN framework provides interpretability through multiple mechanisms aligned with
the methodological components. Network topology visualizations highlight which structural
patterns from Figure 1's analytical measures correlate with disruption vulnerability, revealing
that nodes with high betweenness centrality and low clustering coefficients are most
susceptible to becoming bottlenecks. Attention weight visualizations from the graph
convolutional layers identify critical supplier relationships that contribute most to disruption
propagation, automatically detecting the choke points predicted by Figure 1's simulation
approach. LSTM cell state analysis reveals which historical time steps from the sequence in
Figure 3 most strongly influence current predictions, showing that major disruptions are
typically preceded by sustained patterns visible 3-4 weeks prior rather than sudden changes.
Gradient-based feature attribution quantifies which node attributes most strongly affect
predictions, revealing that inventory levels and capacity utilization are dominant indicators
across all datasets. This multi-faceted interpretability builds trust among supply chain
practitioners by providing transparent explanations grounded in both network structure and
temporal evolution.

5. Conclusion

This paper presented a novel PI-GNN framework for supply chain disruption prediction that
successfully integrates three core methodological innovations to address fundamental
limitations of purely data-driven approaches. The dual-framework methodology illustrated in
Figure 1 provides the theoretical foundation by combining analytical network measures with
simulation-based robustness evaluation, ensuring that the model captures both structural
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properties and dynamic resilience characteristics of supply chain networks. The LSTM
architecture detailed in Figure 2 enables sophisticated temporal modeling through carefully
designed gating mechanisms that selectively retain relevant historical information while
adapting to new conditions, capturing the gradual accumulation of warning signals that
precede disruptions. The sequential processing structure shown in Figure 3 implements
multi-horizon forecasting that leverages accumulated temporal information across extended
observation windows, providing predictions with lead times sufficient for implementing
strategic mitigation measures.

Experimental validation across three real-world supply chain datasets demonstrated that the
PI-GNN framework achieves 23% relative improvement in F1-score compared to standard
GNNs, with particularly strong advantages in data-scarce regimes where physics-based
regularization enables learning from limited disruption examples. The systematic ablation
studies confirmed that each methodological component contributes meaningfully to overall
performance, with the dual-framework approach from Figure 1 providing essential structural
priors, the LSTM gating mechanisms from Figure 2 enabling long-term temporal dependency
modeling, and the sequential processing from Figure 3 supporting accurate multi-horizon
forecasting. The physics-informed constraints ensure predictions remain consistent with
fundamental supply chain principles including conservation of flow, capacity limits, and lead
time requirements, eliminating physically impossible forecasts that would undermine trust in
automated decision support systems.

The framework provides enhanced interpretability through multiple complementary
mechanisms aligned with its core methodological components. Network topology analysis
identifies structural vulnerabilities predicted by Figure 1's robustness framework, attention
weight visualization reveals critical supplier relationships, LSTM cell state analysis shows
which historical patterns most strongly influence predictions as illustrated in Figure 3's
temporal sequence, and gradient-based attribution quantifies feature importance. This multi-
faceted interpretability enables supply chain managers to understand and trust automated
predictions, facilitating adoption of Al-based risk management systems. The mitigation
strategy generation capability extends the framework beyond pure prediction to actionable
decision support through counterfactual simulation and cost-benefit analysis, successfully
identifying high-value interventions across diverse scenarios.

Several limitations suggest directions for future research. The current implementation
focuses on fundamental material flow and capacity constraints, but additional supply chain
principles such as bullwhip effect dynamics, economies of scale, and learning curves could
further enhance accuracy. The framework treats all disruption types uniformly, whereas
different categories may exhibit distinct propagation patterns requiring specialized modeling.
Extending the PI-GNN to incorporate disruption type-specific constraints represents an
important research direction. Integration of real-time data streams and continuous model
updating would enable adaptive disruption prediction with early warning capabilities.
Expanding to multi-objective optimization would address complex trade-offs between
resilience, cost efficiency, and sustainability objectives. This research demonstrates that
physics-informed GNNs combining the theoretical foundations from Figure 1, the temporal
modeling capabilities from Figure 2, and the sequential processing architecture from Figure 3
offer a principled approach to building resilient supply chains in an era of increasing
uncertainty.
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