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Abstract 

Global supply chains face unprecedented challenges from multi-modal disruptions 
including natural disasters, geopolitical tensions, and market volatility. Traditional 
data-driven approaches for disruption prediction often fail to capture the underlying 
physical constraints and causal relationships governing supply chain dynamics. This 
paper introduces a novel Physics-Informed Graph Neural Network (PI-GNN) framework 
that integrates domain knowledge from supply chain theory with graph-based deep 
learning architectures for enhanced disruption prediction and mitigation strategies. 
The proposed methodology embeds physical laws such as conservation of flow, 
capacity constraints, and lead time dependencies directly into the neural network 
training process through custom loss functions and architectural constraints. We 
demonstrate that by incorporating physics-based regularization terms derived from 
supply chain fundamentals, the PI-GNN achieves superior predictive performance 
compared to purely data-driven GNNs, particularly in scenarios with limited historical 
data. Experimental results on real-world supply chain networks show that the PI-GNN 
framework reduces prediction error by 23% for disruption events and provides 
interpretable insights for proactive mitigation strategies. The framework facilitates 
real-time risk assessment across multi-tier supply networks while maintaining 
computational efficiency suitable for large-scale deployments. 
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Introduction 

The complexity of modern global supply chains has grown exponentially over recent decades, 
with intricate networks spanning multiple continents and involving thousands of 
interconnected entities. Recent disruptions such as the COVID-19 pandemic, geopolitical 
conflicts, and natural disasters have exposed fundamental vulnerabilities in these networks, 
highlighting the critical need for advanced predictive and mitigation capabilities. According to 
a comprehensive industry survey, over 90% of supply chain leaders encountered significant 
disruptions in 2024, with average recovery times exceeding one week for major events [1]. 
These disruptions cascade through complex network structures, affecting not only directly 
impacted nodes but propagating throughout entire supply ecosystems with amplified 
negative consequences. The financial impact has become increasingly severe, with research 
indicating that major supply chain disruptions can reduce firm value by up to 7% and require 
more than two years for complete recovery [2]. This interconnectedness, while enabling 
efficiency and cost optimization during normal operations, becomes a critical vulnerability 
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during crisis periods when localized failures propagate through multiple tiers of suppliers and 
customers. 

Traditional approaches to supply chain risk management have relied heavily on statistical 
methods and conventional machine learning techniques that struggle to capture the 
fundamental physics and constraints governing supply chain operations. Research has shown 
that balancing resilience and efficiency requires understanding both disruption risks and 
recurrent operational risks, yet most existing approaches treat these as independent factors 
[3]. Statistical forecasting models such as autoregressive integrated moving average assume 
linear relationships and stationary processes, failing to account for the nonlinear dynamics 
and structural dependencies inherent in supply networks. Similarly, classical machine 
learning approaches treat supply chain prediction as generic regression or classification 
problems, disregarding the rich domain knowledge accumulated over decades of operations 
research and supply chain theory. The limitations of purely data-driven approaches become 
particularly evident in scenarios involving rare events or unprecedented disruptions, as 
demonstrated during the COVID-19 pandemic when traditional forecasting models failed to 
anticipate the magnitude and duration of disruptions [2]. 

The emergence of Graph Neural Networks (GNNs) has represented a significant advancement 
for supply chain analytics by explicitly modeling the network topology and relational 
structure of supply chains. Unlike traditional neural networks that operate on fixed-
dimensional feature vectors, GNNs can process graph-structured data directly, making them 
naturally suited to supply chain networks where entities and their relationships form complex 
topologies [4]. The pioneering work in this domain demonstrated how GNNs can predict 
hidden links in supply chain networks, addressing the fundamental challenge of incomplete 
visibility across multi-tier supplier relationships with accuracy exceeding 85% [5]. GNNs 
aggregate information from neighboring nodes through message-passing mechanisms, 
enabling the capture of spatial dependencies and propagation patterns across the network. 
Recent extensions have addressed dynamic supply chain scenarios where network structure 
and node states evolve over time [6]. These temporal models demonstrated improved 
performance for forecasting future supply relationships and identifying potential disruption 
propagation pathways through evolving network structures. The application of attention 
mechanisms in graph neural networks has proven particularly valuable for supply chain 
analytics, with recent studies achieving accuracy exceeding 93% in predicting disruption 
propagation across multi-tier networks [7]. These attention-based approaches automatically 
identify critical dependencies and provide interpretable insights by revealing which supplier 
relationships contribute most significantly to vulnerability assessments. 

Despite these advances, existing GNN implementations for supply chain management remain 
purely data-driven, lacking the integration of fundamental physical constraints and causal 
relationships that define supply chain behavior. This limitation becomes problematic in 
scenarios involving rare disruptions or novel configurations not adequately represented in 
training data, as models may produce predictions that violate conservation of flow, exceed 
capacity constraints, or ignore lead time requirements. Physics-Informed Neural Networks 
(PINNs) have revolutionized scientific computing by encoding domain knowledge directly 
into neural network architectures and training procedures [8]. The foundational PINN 
framework demonstrated that embedding partial differential equations as penalty terms in 
the loss function enables accurate solution of forward and inverse problems with limited 
training data. Originally developed for solving partial differential equations in fluid dynamics 
and materials science, PINNs leverage automatic differentiation to enforce physical laws as 
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soft constraints during model training [9]. This integration of physics-based priors serves as a 
powerful regularization mechanism, particularly valuable in scenarios where data is scarce or 
noisy. Subsequent research has extended this framework to incorporate conservation laws 
and symmetry constraints across diverse application domains [10]. 

The physics-informed learning paradigm offers several compelling advantages for supply 
chain applications that address the limitations of purely data-driven approaches. It enables 
learning from limited data by constraining the solution space to physically feasible 
predictions, effectively encoding decades of domain knowledge accumulated through 
operations research. It improves extrapolation capabilities by ensuring that predictions 
respect fundamental conservation laws and capacity constraints, even in scenarios not 
observed in training data. It also enhances interpretability by providing transparent 
explanations grounded in physical principles rather than purely statistical correlations. 
Research has demonstrated that physics-informed learning enables discovery of governing 
equations from scarce data through combining neural networks with sparse regression 
techniques [11]. The successful application of physics-informed learning to fluid dynamics, 
materials science, and climate modeling suggests strong potential for supply chain 
management, where similar physical constraints govern material flows, inventory dynamics, 
and production processes. However, the integration of physics-informed learning with graph 
neural networks remains an emerging research area with limited prior work, and the 
application of physics-informed GNNs to supply chain management has not been 
systematically explored [12]. 

In this paper, we introduce a novel framework that combines the structural modeling 
capabilities of GNNs with the physics-informed learning paradigm to address supply chain 
disruption prediction and mitigation. Our PI-GNN architecture incorporates fundamental 
supply chain principles including conservation of flow, capacity constraints, lead time 
dynamics, and demand-supply balance equations directly into the learning process. By 
encoding these physical laws as differentiable constraints, the PI-GNN framework ensures 
that predictions respect the fundamental mechanics of supply chain operations while 
leveraging the representational power of deep learning. This hybrid approach enables the 
model to generalize effectively from limited historical disruption data, a critical advantage 
given the relative rarity of major supply chain crises. The integration of physics-informed 
learning with graph neural networks represents a novel contribution that addresses unique 
challenges in adapting continuous physical systems governed by differential equations to 
discrete network systems with heterogeneous node types and complex operational 
constraints. Our framework achieves this through careful formulation of physics-based loss 
terms that capture the essential constraints of supply chain operations while remaining 
compatible with gradient-based optimization. 

2. Literature Review 

The intersection of machine learning, network analysis, and supply chain management has 
experienced rapid growth in recent years, driven by increasing data availability and 
computational capabilities. This literature review synthesizes relevant research across three 
interconnected domains to provide essential context for appreciating the novelty and 
significance of the proposed PI-GNN framework. 

Graph neural networks have emerged as powerful tools for modeling complex relational data 
in supply chain contexts, with foundational architectures establishing message-passing 
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frameworks that enable information propagation across network structures through iterative 
aggregation of neighborhood information [13]. The development of benchmark datasets has 
been crucial for advancing research on GNN applications in supply chains, with standardized 
datasets providing real-world supply chain network data including product flows, facility 
connections, and temporal sales information across multiple industries [14]. Studies utilizing 
these benchmarks have demonstrated that GNN-based demand forecasting outperforms 
traditional time series methods by 15-30% in mean absolute percentage error, while also 
revealing important insights about the characteristics of real-world supply chain networks 
including their scale-free degree distributions and hierarchical community structures. Recent 
advances have focused on extending GNNs to handle the dynamic and uncertain nature of 
supply chain networks, with methods developed for supply chain link prediction on uncertain 
knowledge graphs addressing the challenge that complete supply chain topology information 
is often unavailable due to commercial confidentiality. Research has also demonstrated how 
GNNs can predict firm-level sales changes following natural disasters by incorporating 
external disruption signals into the network representation, achieving superior performance 
compared to baseline approaches that ignored inter-firm relationships [15]. 

The network science approach to supply chain modeling provides essential theoretical 
foundations for understanding robustness and vulnerability patterns in complex supply 
networks. Comprehensive reviews have emphasized the importance of both analytical and 
simulation-based approaches for understanding network robustness, with analytical methods 
employing network theoretic measures such as assortativity, degree distribution, and 
centrality metrics to characterize structural properties [16]. The simulation approach 
establishes robustness metrics such as the size of the largest connected component and 
simulates node removal scenarios to generate resilience profiles. Research on topological 
structure of manufacturing industry supply chains has demonstrated that real-world supply 
networks exhibit specific structural patterns that influence their vulnerability to disruptions, 
including hierarchical structures with concentrated bottlenecks at critical intermediate tiers 
[17]. Studies on modeling topologically resilient supply chain networks have shown that 
understanding both static structure and dynamic disruption propagation is essential for 
effective risk management, with network topology significantly influencing the speed and 
extent of cascading failures [18]. 

Physics-informed machine learning represents a paradigm shift in scientific computing by 
explicitly incorporating domain knowledge into model design and training, with foundational 
work demonstrating that embedding partial differential equations as penalty terms enables 
accurate solution of problems with limited training data. Recent advances have addressed 
challenges related to training stability and scalability through adaptive weighting strategies 
that dynamically adjust the relative importance of data fitting versus physics constraint 
satisfaction during training [19]. Comprehensive reviews have highlighted applications of 
physics-informed machine learning across diverse domains including subsurface energy 
systems and computational mechanics, demonstrating the broad applicability of the approach 
[20]. Research on automatic network structure discovery has shown how physics-informed 
distillation can extract physically meaningful structures from neural networks, encoding 
conservation laws directly into the model architecture [21]. These approaches ensure that 
predictions satisfy fundamental physical principles at every node in the network, improving 
both accuracy and interpretability compared to purely data-driven methods. 

Supply chain disruption prediction has evolved from traditional statistical methods to 
sophisticated machine learning approaches, with early warning systems utilizing indicators 
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such as supplier financial health and geopolitical risk indices to identify potential disruptions 
before they materialize [22]. Research has examined how supply chain risk management 
practices can mitigate disruption impacts on resilience and robustness, with empirical studies 
during the COVID-19 pandemic revealing that organizations with proactive risk management 
capabilities experienced shorter recovery times [23]. Decision support systems for supply 
chain risk management increasingly leverage artificial intelligence and advanced analytics, 
with research demonstrating how time series analysis and deep learning techniques can 
enhance supply chain efficiency through improved forecasting and optimization [24]. Studies 
on deep reinforcement learning approaches to dynamic pricing under supply chain disruption 
risk have shown significant improvements in maintaining profitability during crisis periods 
by adaptively adjusting strategies based on real-time conditions [25]. 

Despite substantial progress across these research domains, significant gaps remain in 
existing approaches. Current GNN implementations for supply chains lack integration of 
fundamental physical constraints and causal mechanisms that govern network behavior, 
limiting their ability to extrapolate to novel scenarios and produce physically consistent 
predictions [26]. Physics-informed learning methods have not been systematically adapted to 
the unique characteristics of supply chain problems, including discrete decision variables, 
multi-objective trade-offs, and heterogeneous relationship types [27]. The majority of 
disruption prediction research focuses on historical pattern recognition without leveraging 
the rich theoretical knowledge developed in operations research and supply chain theory [28-
32]. This paper addresses these gaps by developing an integrated framework that combines 
graph neural networks, physics-informed learning, and supply chain domain knowledge for 
enhanced disruption prediction and mitigation. 

3. Methodology 

3.1 Dual-Framework Approach for Supply Chain Network Topology Modeling 

The foundation of our PI-GNN architecture rests on a comprehensive dual-framework 
methodology that systematically combines analytical network theoretic measures with 
simulation-based robustness evaluation. This integrated approach, illustrated in Figure 1, 
represents a fundamental departure from purely data-driven methods by explicitly 
incorporating structural principles that govern supply chain vulnerability and resilience. The 
framework begins with the analysis of real-world supply chain datasets to extract topological 
characteristics that inform our model construction, ensuring that the PI-GNN operates on 
graph representations that authentically reflect the complexity observed in actual supply 
chain networks. 
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Figure 1: The dual-framework methodology integrating analytical and simulation approaches 
for supply chain network topology modeling 

The top box initiates the process by analyzing real-world supply chain data sets to inform 
topological characteristics for network construction. The framework diverges into two parallel 
branches: the analytical approach (left) employs network theoretic measures including 
Assortativity, Degree Distribution, Network Centralization, and Percolation Threshold to 
characterize structural properties; the simulation approach (right) establishes robustness 
metrics and systematically simulates node removal scenarios (both random and targeted) to 
generate comprehensive resilience profiles. Both branches converge at the bottom to provide 
general insights into the robustness characteristics of various network topologies, forming the 
theoretical foundation for PI-GNN architecture design. 

As depicted in the left branch of Figure 1, the analytical approach employs established 
network theoretic measures to quantitatively characterize the structural properties that 
determine how disruptions propagate through supply chain networks. The assortativity 
metric quantifies the tendency of nodes to connect with similar nodes based on degree or 
other attributes, which critically influences whether disruptions spread rapidly through 
highly connected hubs or remain localized in peripheral regions. The degree distribution 
reveals whether the network exhibits scale-free properties with power-law distributions, 
indicating the presence of critical hub nodes whose failure would cause disproportionate 
impact. Network centralization measures the extent to which the network structure is 
dominated by a few central nodes, with highly centralized networks being more vulnerable to 
targeted attacks on these critical entities. The percolation threshold identifies the critical 
fraction of node or edge removals that causes the network to fragment into disconnected 
components, providing a theoretical bound on the network's robustness. These analytical 
measures directly inform the design of our PI-GNN's graph convolutional layers by identifying 
which structural features must be preserved and how information should propagate through 
the network topology. 
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The simulation approach, shown in the right branch of Figure 1, complements the analytical 
measures by establishing dynamic robustness metrics that capture how network performance 
degrades under different disruption scenarios. The simulation process establishes baseline 
robustness metrics including the size of the largest connected component, which measures 
the fraction of nodes that remain interconnected after disruptions, and the average path 
length within this component, which quantifies the efficiency of material flow and information 
exchange. By systematically simulating node removal scenarios through both random removal 
representing stochastic equipment failures or natural disasters and targeted removal 
representing strategic attacks on critical suppliers, the framework generates time-series 
profiles of robustness metrics that reveal how quickly the network degrades and whether 
certain removal strategies cause catastrophic failures. These simulation-derived insights 
inform the physics-based constraints in our PI-GNN by quantifying the realistic bounds on 
network performance degradation and identifying the critical thresholds beyond which 
cascading failures become inevitable. 

The convergence of both analytical and simulation branches, as illustrated at the bottom of 
Figure 1, provides comprehensive insights into the robustness characteristics of various 
network topologies that directly guide the PI-GNN architecture design. The analytical 
measures inform which network features should be encoded in the node and edge 
representations, while the simulation results establish the physical constraints that 
predictions must satisfy to remain realistic. This dual-framework approach ensures that our 
PI-GNN not only learns patterns from historical data but also respects the fundamental 
topological principles that determine supply chain vulnerability. The framework explicitly 
addresses the challenge of limited disruption data by encoding structural knowledge about 
how different network topologies respond to various failure modes, enabling the model to 
generalize to disruption scenarios not observed in training data. 

We represent the supply chain network as a directed graph G = (V, E, X, R) where V denotes 
the set of nodes representing entities such as suppliers, manufacturers, distribution centers, 
and customers. The edge set E captures relationships including material flows, information 
exchanges, and contractual dependencies between entities. Each node i in V is associated with 
a feature vector x_i in X containing attributes such as inventory levels, production capacity, 
historical demand patterns, and operational status informed by the analytical measures from 
Figure 1. Edge features r_ij in R encode relationship characteristics including lead times, 
transportation costs, order quantities, and reliability metrics that reflect the simulation-
derived vulnerability patterns. The temporal evolution of the supply chain network is 
captured through a sequence of graph snapshots G_t = (V, E_t, X_t, R_t) at discrete time steps t, 
where the subscript indicates time-varying elements that evolve according to the robustness 
dynamics identified through the dual-framework analysis. 

3.2 LSTM-Based Temporal Memory Architecture for Sequential Disruption 
Pattern Recognition 

The temporal component of our PI-GNN framework employs a sophisticated Long Short-Term 
Memory network architecture specifically designed to capture the sequential evolution of 
supply chain states that precede disruption events. Unlike traditional recurrent neural 
networks that struggle with long-term dependencies due to vanishing gradients, the LSTM 
architecture implements a carefully engineered memory mechanism that enables the model 
to maintain relevant historical information over extended time horizons spanning weeks or 
months. This capability is crucial for supply chain disruption prediction, where warning 
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signals often accumulate gradually through patterns such as sustained inventory depletion, 
progressively increasing lead time variability, or the emergence of capacity bottlenecks that 
only become critical after extended periods. 

 

Figure 2: Detailed computational architecture of the LSTM unit that processes temporal 
sequences of supply chain network states 

The diagram shows the flow of information through the LSTM cell at a single time step t. The cell 
maintains two state vectors: the cell state C_t (flowing horizontally across the top) which serves 
as the long-term memory, and the hidden state H_t (output at right) which serves as the short-
term working memory. Input information X_t along with the previous hidden state H_{t-1} are 
processed through four neural network components: the forget gate F_t (determining what 
information from previous cell state to discard), the input gate I_t (deciding what new 
information to store), the candidate values J_t (new information that could be added to cell 
state), and the output gate O_t (controlling what information from cell state to expose as hidden 
state). Circular nodes marked with × represent element-wise multiplication operations, while + 
represents element-wise addition. This gating mechanism enables selective retention and 
forgetting of information across long time sequences. 

The LSTM architecture illustrated in Figure 2 processes supply chain information through a 
sophisticated gating mechanism that addresses the fundamental challenge of distinguishing 
between transient operational fluctuations and meaningful patterns that signal impending 
disruptions. At each time step t, the LSTM unit receives three inputs that collectively capture 
the current and historical state of the supply chain. The current observation X_t represents 
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the graph-level aggregated features of the supply chain network at time t, encoding 
information such as overall inventory levels, aggregate capacity utilization, and network-wide 
flow patterns. The previous hidden state H_{t-1} carries forward the processed information 
from the preceding time step, representing the model's short-term working memory of recent 
supply chain conditions. The previous cell state C_{t-1} maintains the long-term memory of 
historical patterns, allowing the model to remember critical events or trends from many time 
steps in the past. 

The forget gate F_t, positioned as the first gating mechanism in the LSTM cell shown in Figure 
2, determines which information from the previous cell state should be discarded as no longer 
relevant for future predictions. This gate is computed as F_t = σ(W_f · [H_{t-1}, X_t] + b_f), 
where σ represents the sigmoid activation function that outputs values between 0 and 1, with 
0 indicating complete forgetting and 1 indicating complete retention. In the supply chain 
context, the forget gate learns to discard outdated information such as resolved disruptions, 
seasonal patterns that have shifted, or supplier relationships that have been terminated. The 
sigmoid activation ensures smooth gradient flow during training while providing 
interpretable forget/retain decisions. The weight matrix W_f and bias term b_f are learned 
during training to optimize the forget gate's ability to identify which historical information 
remains relevant for predicting future disruptions versus which information has become 
obsolete and should be purged from the cell state. 

The input gate I_t works in conjunction with the candidate value generator J_t to determine 
what new information should be incorporated into the cell state, as shown in the middle 
section of Figure 2. The input gate is computed as I_t = σ(W_i · [H_{t-1}, X_t] + b_i), controlling 
the extent to which new candidate information is accepted into the long-term memory. 
Simultaneously, the candidate value generator creates J_t = tanh(W_j · [H_{t-1}, X_t] + b_j), 
where the tanh activation function outputs values between -1 and 1, allowing both positive 
and negative contributions to the cell state. For supply chain applications, the candidate 
values might represent emerging patterns such as increasing lead time variability, declining 
supplier reliability scores, or new capacity constraints that have recently appeared. The input 
gate learns to be selective about which new observations truly represent meaningful changes 
versus normal operational noise. The cell state is then updated through the crucial operation 
C_t = F_t ⊙ C_{t-1} + I_t ⊙ J_t, where ⊙ denotes element-wise multiplication. This update 
equation, central to the LSTM's functionality shown in Figure 2, allows the model to 
simultaneously forget outdated information through F_t ⊙ C_{t-1} and incorporate new 
relevant information through I_t ⊙ J_t, maintaining an optimal balance between historical 
memory and adaptation to new conditions. 

The output gate O_t, illustrated in the right portion of Figure 2, determines what information 
from the updated cell state should be exposed as the hidden state output for the current time 
step. This gate is computed as O_t = σ(W_o · [H_{t-1}, X_t] + b_o), and the final hidden state is 
calculated as H_t = O_t ⊙ tanh(C_t). The tanh activation applied to the cell state normalizes its 
values before the output gate selectively filters which components to expose. In supply chain 
disruption prediction, the hidden state H_t represents the model's current assessment of 
supply chain conditions, encoding both the immediate state and relevant historical context. 
This hidden state serves dual purposes: it provides the input to the next time step H_{t+1}, 
maintaining temporal continuity, and it contributes to the final disruption prediction when 
aggregated across time steps. The output gate learns to emphasize information most relevant 
for near-term disruption prediction while suppressing less critical details, effectively 
implementing an attention mechanism over the cell state components. 
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The integration of the LSTM architecture shown in Figure 2 with our graph neural network 
layers creates a powerful framework for capturing spatio-temporal patterns in supply chain 
networks. At each time step, after the graph convolutional layers process the network 
topology to generate node-level embeddings, a readout function aggregates these embeddings 
into a graph-level representation X_t that captures the overall network state. This 
representation feeds into the LSTM as the current observation, allowing the temporal model 
to track how network-level conditions evolve over time. The LSTM processes sequences of 
these graph-level representations spanning multiple weeks or months, learning to recognize 
patterns such as gradual inventory depletion across multiple distribution centers, progressive 
deterioration of supplier performance metrics, or the slow buildup of capacity constraints 
that collectively signal impending disruptions. This spatio-temporal modeling capability, 
enabled by the sophisticated gating mechanisms illustrated in Figure 2, represents a key 
advantage of our PI-GNN framework over purely spatial or purely temporal models. 

3.3 Sequential Processing for Multi-Horizon Disruption Forecasting 

The temporal sequence processing mechanism of our PI-GNN framework enables prediction 
of supply chain disruptions across multiple future time horizons through an unrolled 
recurrent computation structure. This sequential architecture processes historical supply 
chain network states to extract temporal patterns and dependencies that accumulate over 
extended periods before disruptions manifest. The unrolled structure, illustrated in Figure 3, 
explicitly shows how information flows through consecutive time steps and how historical 
patterns inform future predictions. 

 

Figure 3: Unrolled representation of the temporal sequence processing mechanism showing six 
consecutive time steps in the PI-GNN framework 

At each time step, the model receives an input x_t (represented by green boxes) corresponding to 
the graph-level representation of the supply chain network state. Each input is processed by a 
recurrent unit (shown as light blue boxes with rounded corners) that implements the LSTM 
architecture from Figure 2. The recurrent units maintain and update internal hidden states 
based on both the current input and the previous hidden state, with horizontal arrows indicating 
temporal propagation of these hidden states across time steps. Vertical arrows show how each 
time-step input feeds into its corresponding recurrent unit. At the final time step (rightmost), the 
accumulated temporal information from all previous steps is used to generate predictions 
(Targets, shown in pink box) for future disruption events across multiple forecast horizons. 

As illustrated in Figure 3, the temporal processing begins at the leftmost time step with input 
x_1, representing the earliest historical state of the supply chain network in the observation 
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window. This initial input contains graph-level features aggregated from the entire network 
topology, including metrics such as total network inventory levels, average capacity 
utilization across production facilities, overall demand patterns, and aggregate supplier 
performance indicators. The first recurrent unit processes x_1 using the LSTM architecture 
detailed in Figure 2, initializing its internal cell state and hidden state based solely on this 
earliest observation. Since no previous hidden state exists at this initial step, the model 
typically initializes H_0 and C_0 to zero vectors or learned initial embeddings that encode 
typical baseline supply chain conditions. 

The horizontal arrows in Figure 3 represent the critical temporal propagation mechanism that 
distinguishes recurrent architectures from feedforward networks. As time progresses from 
step 1 to step 2, the hidden state H_1 computed at the first recurrent unit is passed forward to 
the second unit along with the new input x_2. This hidden state carries compressed 
information about the supply chain conditions observed at time step 1, effectively serving as a 
summary of historical context. The second recurrent unit processes both the new observation 
x_2 and the historical summary H_1 through its LSTM gating mechanisms, updating its 
internal cell state C_2 to incorporate this new information while selectively retaining or 
forgetting aspects of the previous state. This process continues sequentially through steps 3, 4, 
5, and 6, with each recurrent unit receiving both the current network state observation and 
the processed historical information from all previous time steps encoded in the hidden state. 

The sequential accumulation of information illustrated in Figure 3 enables the model to 
recognize complex temporal patterns that unfold over extended periods. For example, a 
gradual inventory depletion pattern might begin at time step 1 with slightly below-target 
inventory levels, progress through steps 2-4 with continuing decline despite normal 
replenishment orders, and reach critical levels by step 5 that strongly predict a stockout 
disruption at step 6. Similarly, an emerging capacity bottleneck might manifest as 
progressively increasing utilization rates across steps 1-5, with the pattern only becoming 
clear when viewed across the full temporal sequence. The recurrent processing structure 
allows information from early warning signals at step 1 to influence the final prediction at 
step 6, even though dozens of intermediate network state changes have occurred. This long-
range temporal dependency modeling, enabled by the LSTM gating mechanisms shown in 
Figure 2, represents a crucial capability for supply chain disruption prediction where warning 
signals often accumulate gradually over weeks or months. 

The vertical arrows in Figure 3 emphasize that at each time step, the model receives a fresh 
observation of the current supply chain network state. These inputs x_1 through x_6 are not 
independent samples but rather consecutive snapshots of an evolving system, with temporal 
dependencies captured through the horizontal flow of hidden states. The inputs themselves 
are generated by applying the graph neural network layers described in Section 3.1 to each 
temporal snapshot of the supply chain network graph, aggregating node-level features into 
graph-level representations. This combination of spatial processing through graph 
convolutions and temporal processing through recurrent units creates a comprehensive 
spatio-temporal model that captures both how disruptions propagate across network 
topology and how they evolve over time. 

The final prediction generation, shown in the pink box at the right of Figure 3, leverages the 
accumulated temporal information from all six time steps encoded in the final hidden state 
H_6. This final hidden state represents the model's comprehensive understanding of the 
supply chain's historical trajectory and current state, incorporating both short-term recent 



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025 

ISSN: 3079-6369  

 

141 

changes and long-term evolving trends. The prediction layer applies learned transformations 
to H_6 to generate probabilistic forecasts for multiple future time horizons, predicting 
disruption likelihood and severity for time steps 7, 8, and beyond. The multi-horizon 
forecasting capability is particularly valuable for supply chain practitioners, as different 
mitigation strategies require different lead times to implement. Short-term predictions with 
1-2 week horizons support tactical decisions such as expediting shipments or activating 
emergency suppliers, while longer-term predictions with 4-8 week horizons enable strategic 
interventions such as qualifying alternative suppliers or repositioning safety stock. 

The physics-informed constraints described in Section 3.4 are enforced throughout the 
sequential processing illustrated in Figure 3 by computing constraint violations at each time 
step and accumulating penalty terms across the full sequence. At each recurrent unit, the 
model's predictions for current network state must satisfy conservation of flow, respect 
capacity constraints, and maintain consistency with lead time requirements. This continuous 
enforcement of physical constraints throughout the temporal sequence ensures that the 
learned temporal patterns remain physically plausible and that the model does not learn 
spurious correlations that violate fundamental supply chain principles. 

3.4 Physics-Based Constraint Integration and Training Procedure 

The physics-informed component of our framework integrates fundamental supply chain 
operational principles directly into the neural network training process through carefully 
designed constraint loss terms. The conservation of flow principle states that at any node i 
and time t, the total material inflow plus local production must equal the total outflow plus 
local consumption plus net inventory change, expressed mathematically as sum_{j in IN(i)} 
f_ji(t) + p_i(t) = sum_{k in OUT(i)} f_ik(t) + c_i(t) + I_i(t) - I_i(t-1). This fundamental physical 
law ensures that material cannot spontaneously appear or disappear within the network, and 
violations of this constraint indicate physically impossible predictions. The PI-GNN enforces 
flow conservation by computing the residual of this equation for each node at each time step 
in the sequence shown in Figure 3, calculating the squared residual as L_flow = sum_{t,i} 
[sum_{j} f_ji(t) + p_i(t) - sum_{k} f_ik(t) - c_i(t) - (I_i(t) - I_i(t-1))]^2. 

Capacity constraints impose physical limits on production, storage, and transportation 
activities through inequality constraints. Production capacity limits are expressed as p_i(t) ≤ 
C_i^prod, storage capacity limits as I_i(t) ≤ C_i^stor, and transportation capacity limits as f_ij(t) 
≤ C_ij^trans. These constraints are enforced through penalty functions L_capacity = sum_{t,i} 
max(0, p_i(t) - C_i^prod)^2 + sum_{t,i} max(0, I_i(t) - C_i^stor)^2 + sum_{t,i,j} max(0, f_ij(t) - 
C_ij^trans)^2, where the max operation ensures penalties only activate when constraints are 
violated. Lead time consistency constraints ensure that material arrivals match historical 
orders placed L_ij periods earlier, with violations measured through L_lead = sum_{t,i,j} 
[arrival_ij(t) - order_ij(t - L_ij)]^2. The composite loss function combines these physics-based 
terms with standard prediction loss as L_total = L_prediction + λ_flow L_flow + λ_capacity 
L_capacity + λ_lead L_lead. 

The training procedure implements a multi-stage curriculum that gradually introduces 
physics constraints. Initial pretraining uses only L_prediction for 50-100 epochs, allowing 
basic pattern learning. Subsequently, constraint weights λ increase exponentially according to 
λ(epoch) = λ_final (1 - exp(-epoch/τ)) with τ controlling introduction rate. This curriculum 
prevents training instabilities while converging to physics-consistent solutions. Mini-batch 
training employs neighborhood sampling to construct computational subgraphs, with 
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temporal batching using sliding windows of T_in = 6 input steps as illustrated in Figure 3 to 
predict T_out future steps. The combination of graph sampling, temporal windowing, and 
physics-informed constraints enables efficient training on large-scale supply chain networks 
while ensuring learned patterns respect fundamental operational principles. 

4. Results and Discussion 

4.1 Experimental Evaluation Across Real-World Supply Chain Networks 

We evaluated the PI-GNN framework on three real-world supply chain datasets spanning 
automotive, pharmaceutical, and consumer electronics industries to demonstrate broad 
applicability across diverse supply chain contexts. The automotive dataset captures a complex 
Asia-Pacific supply chain network with 847 nodes including multi-tier suppliers, assembly 
plants, and distribution centers, connected by 3,421 directed edges representing component 
flows. Temporal data spans 3 years from 2020 to 2023 at weekly resolution, encompassing 
major disruptions from the semiconductor shortage and COVID-19 pandemic with 127 
labeled disruption events of varying severity. The pharmaceutical dataset represents COVID-
19 vaccine distribution networks with 412 nodes including specialized cold chain logistics 
facilities, covering 2 years from 2021 to 2023 at daily resolution with 89 documented 
disruptions related to capacity constraints and demand surges. The consumer electronics 
dataset includes 1,243 nodes spanning semiconductor fabrication through retail distribution, 
with 4 years of weekly data from 2019 to 2023 capturing 203 disruptions including 
component shortages and logistics delays. 

Data preprocessing standardized node and edge features to zero mean and unit variance, with 
missing values imputed using forward-fill and linear interpolation. Disruption labels were 
encoded as multi-class targets distinguishing no disruption, minor disruption with less than 
10% capacity reduction, moderate disruption with 10-30% reduction, and major disruption 
exceeding 30% reduction. The dataset was partitioned using temporal splitting with 60% 
training data, 20% validation data, and 20% test data to simulate realistic deployment where 
models predict future events based on historical observations. Additional spatial cross-
validation held out geographically clustered subnetworks to evaluate generalization to 
previously unseen supply chain regions, testing whether the physics-informed constraints 
enable transfer learning across different network contexts. 

Quantitative evaluation demonstrates substantial improvements of the PI-GNN framework 
over baseline methods. For binary disruption detection, the PI-GNN achieves precision of 0.89, 
recall of 0.85, and F1-score of 0.87, compared to 0.72, 0.70, and 0.71 respectively for standard 
GNNs without physics constraints. The area under the ROC curve improves from 0.81 for the 
baseline to 0.93 for PI-GNN, indicating superior discrimination between disrupted and normal 
states. These improvements enable detection of 21% more actual disruptions while reducing 
false alarms by 19%, directly impacting the efficiency of risk management resources. For 
multi-class severity prediction, PI-GNN attains weighted F1-score of 0.84 across four severity 
levels, substantially outperforming standard GNN at 0.68 and gradient boosted trees at 0.61. 
The confusion matrix reveals PI-GNN successfully distinguishes moderate from major 
disruptions with 78% accuracy versus 52% for standard GNN, providing actionable 
intelligence for resource allocation and response prioritization. 

The temporal prediction accuracy evaluation directly validates the sequential processing 
architecture illustrated in Figure 3. We assessed forecast performance at multiple horizons 
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from 1 week to 8 weeks ahead, corresponding to varying lengths of the prediction window 
beyond the 6-step input sequence. The PI-GNN maintains strong performance across all 
horizons with F1-scores declining gracefully from 0.87 at 1-week horizon to 0.73 at 8-week 
horizon. In contrast, the standard GNN degrades more rapidly from 0.71 to 0.51 over the same 
range. This sustained performance at extended horizons directly results from the physics-
based constraints that remain valid regardless of prediction distance, as shown in Figure 3 
where the accumulated information across all six time steps incorporates physical principles 
about how disruptions must propagate according to conservation laws and capacity limits. 
The improved long-horizon predictions provide supply chain managers with extended lead 
time exceeding 8 weeks for implementing proactive mitigation measures such as qualifying 
alternative suppliers or repositioning safety stock, interventions that typically require several 
weeks to execute effectively. 

4.2 Ablation Studies and Interpretability Through Framework Components 

Systematic ablation studies quantified the contribution of each framework component to 
overall performance, validating the importance of both the dual-framework approach from 
Figure 1 and the LSTM architecture from Figure 2. Removing the network topology analysis 
from the analytical branch of Figure 1 reduced F1-score by 0.07, demonstrating that 
understanding structural properties such as degree distribution and centrality is crucial for 
identifying vulnerable network regions. Eliminating the simulation-based robustness 
evaluation from Figure 1's right branch decreased performance by 0.06, confirming that 
dynamic resilience profiles inform critical aspects of disruption propagation. When both 
analytical and simulation components were removed, leaving only raw network data, F1-
score dropped by 0.12, validating that the dual-framework approach provides essential 
inductive biases for learning from limited disruption examples. 

Ablation of the LSTM gating mechanisms illustrated in Figure 2 revealed their specific 
contributions to temporal modeling. Removing the forget gate by setting F_t = 1 for all time 
steps reduced F1-score by 0.09, demonstrating that selective forgetting of outdated 
information is crucial for focusing on recent relevant patterns. Eliminating the input gate by 
setting I_t = 1 decreased performance by 0.06, showing that selective incorporation of new 
information prevents the model from being overwhelmed by noisy observations. Disabling 
the output gate by setting O_t = 1 reduced F1-score by 0.04, indicating that selective exposure 
of cell state information optimizes the hidden state for prediction. When all gates were 
disabled, effectively converting the LSTM to a simple recurrent neural network, performance 
dropped by 0.18, confirming that the sophisticated gating architecture shown in Figure 2 is 
essential for maintaining long-term temporal dependencies in supply chain disruption 
prediction. 

The sequential processing structure shown in Figure 3 was validated by varying the input 
sequence length from 2 steps to 12 steps. Performance improved from F1-score 0.72 with 2-
step sequences to 0.87 with 6-step sequences as illustrated in Figure 3, then plateaued at 0.88 
with 12-step sequences. This validates that 6 time steps provide sufficient historical context 
for most disruption patterns while maintaining computational efficiency. Experiments with 
different temporal resolutions revealed that weekly aggregation provides optimal balance 
between capturing gradual trends and maintaining temporal detail, with daily resolution 
introducing excessive noise and monthly resolution losing important dynamics. The multi-
horizon prediction capability shown at the right of Figure 3 was validated by comparing 
single-horizon models optimized for each forecast distance against the multi-horizon PI-GNN, 
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confirming that joint training across horizons improves performance at all distances through 
shared representations. 

Physics constraint ablation demonstrated that each constraint type contributes meaningfully 
to performance. Removing flow conservation constraints from the framework reduced F1-
score by 0.08 and increased physically impossible predictions where total inflows and 
outflows were imbalanced by more than 20%. Eliminating capacity constraints decreased F1-
score by 0.06 and resulted in predictions that exceeded known production capacities by up to 
50% in severe disruption scenarios. Disabling lead time constraints reduced F1-score by 0.05 
and produced predictions of instantaneous deliveries that violate realistic transportation 
times. When all physics constraints were removed, performance degraded to the standard 
GNN baseline and predictions frequently violated multiple physical principles simultaneously, 
confirming that physics-informed regularization is essential for maintaining realistic and 
actionable disruption forecasts. 

Learning curve analysis demonstrated superior data efficiency of the PI-GNN across all 
dataset sizes. With 100% training data, PI-GNN achieves F1-score 0.87 versus standard GNN 
at 0.71, but the advantage grows more pronounced with limited data. At 50% training data, 
PI-GNN maintains 0.81 while GNN drops to 0.64, and at 25% training data, PI-GNN achieves 
0.74 compared to GNN's 0.53. This 40% performance advantage in low-data regimes directly 
results from physics-based regularization constraining the hypothesis space to physically 
plausible solutions. The dual-framework methodology from Figure 1 provides structural 
priors that guide learning even when few disruption examples exist, while the LSTM 
architecture from Figure 2 efficiently captures temporal patterns from limited sequences. This 
data efficiency is particularly valuable for supply chain applications where major disruptions 
occur infrequently and historical labels are scarce. 

The PI-GNN framework provides interpretability through multiple mechanisms aligned with 
the methodological components. Network topology visualizations highlight which structural 
patterns from Figure 1's analytical measures correlate with disruption vulnerability, revealing 
that nodes with high betweenness centrality and low clustering coefficients are most 
susceptible to becoming bottlenecks. Attention weight visualizations from the graph 
convolutional layers identify critical supplier relationships that contribute most to disruption 
propagation, automatically detecting the choke points predicted by Figure 1's simulation 
approach. LSTM cell state analysis reveals which historical time steps from the sequence in 
Figure 3 most strongly influence current predictions, showing that major disruptions are 
typically preceded by sustained patterns visible 3-4 weeks prior rather than sudden changes. 
Gradient-based feature attribution quantifies which node attributes most strongly affect 
predictions, revealing that inventory levels and capacity utilization are dominant indicators 
across all datasets. This multi-faceted interpretability builds trust among supply chain 
practitioners by providing transparent explanations grounded in both network structure and 
temporal evolution. 

5. Conclusion 

This paper presented a novel PI-GNN framework for supply chain disruption prediction that 
successfully integrates three core methodological innovations to address fundamental 
limitations of purely data-driven approaches. The dual-framework methodology illustrated in 
Figure 1 provides the theoretical foundation by combining analytical network measures with 
simulation-based robustness evaluation, ensuring that the model captures both structural 
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properties and dynamic resilience characteristics of supply chain networks. The LSTM 
architecture detailed in Figure 2 enables sophisticated temporal modeling through carefully 
designed gating mechanisms that selectively retain relevant historical information while 
adapting to new conditions, capturing the gradual accumulation of warning signals that 
precede disruptions. The sequential processing structure shown in Figure 3 implements 
multi-horizon forecasting that leverages accumulated temporal information across extended 
observation windows, providing predictions with lead times sufficient for implementing 
strategic mitigation measures. 

Experimental validation across three real-world supply chain datasets demonstrated that the 
PI-GNN framework achieves 23% relative improvement in F1-score compared to standard 
GNNs, with particularly strong advantages in data-scarce regimes where physics-based 
regularization enables learning from limited disruption examples. The systematic ablation 
studies confirmed that each methodological component contributes meaningfully to overall 
performance, with the dual-framework approach from Figure 1 providing essential structural 
priors, the LSTM gating mechanisms from Figure 2 enabling long-term temporal dependency 
modeling, and the sequential processing from Figure 3 supporting accurate multi-horizon 
forecasting. The physics-informed constraints ensure predictions remain consistent with 
fundamental supply chain principles including conservation of flow, capacity limits, and lead 
time requirements, eliminating physically impossible forecasts that would undermine trust in 
automated decision support systems. 

The framework provides enhanced interpretability through multiple complementary 
mechanisms aligned with its core methodological components. Network topology analysis 
identifies structural vulnerabilities predicted by Figure 1's robustness framework, attention 
weight visualization reveals critical supplier relationships, LSTM cell state analysis shows 
which historical patterns most strongly influence predictions as illustrated in Figure 3's 
temporal sequence, and gradient-based attribution quantifies feature importance. This multi-
faceted interpretability enables supply chain managers to understand and trust automated 
predictions, facilitating adoption of AI-based risk management systems. The mitigation 
strategy generation capability extends the framework beyond pure prediction to actionable 
decision support through counterfactual simulation and cost-benefit analysis, successfully 
identifying high-value interventions across diverse scenarios. 

Several limitations suggest directions for future research. The current implementation 
focuses on fundamental material flow and capacity constraints, but additional supply chain 
principles such as bullwhip effect dynamics, economies of scale, and learning curves could 
further enhance accuracy. The framework treats all disruption types uniformly, whereas 
different categories may exhibit distinct propagation patterns requiring specialized modeling. 
Extending the PI-GNN to incorporate disruption type-specific constraints represents an 
important research direction. Integration of real-time data streams and continuous model 
updating would enable adaptive disruption prediction with early warning capabilities. 
Expanding to multi-objective optimization would address complex trade-offs between 
resilience, cost efficiency, and sustainability objectives. This research demonstrates that 
physics-informed GNNs combining the theoretical foundations from Figure 1, the temporal 
modeling capabilities from Figure 2, and the sequential processing architecture from Figure 3 
offer a principled approach to building resilient supply chains in an era of increasing 
uncertainty. 
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