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Abstract

The complexity of modern multi-echelon supply networks presents significant
challenges in understanding demand propagation patterns and causal relationships
across network tiers. Traditional correlation-based approaches fail to capture the true
causal mechanisms underlying supply chain disruptions and demand amplification
phenomena. This research proposes a novel framework that integrates causal
discovery methodologies with foundation models to analyze demand propagation in
multi-echelon supply networks. By leveraging large-scale pre-trained models adapted
for supply chain analytics, we develop a system capable of identifying causal
relationships between demand signals, inventory decisions, and operational
parameters across network echelons. The framework employs graph neural networks
combined with causal inference algorithms to construct dynamic causal graphs that
represent inter-echelon dependencies. Our approach addresses the limitations of
existing methods by explicitly modeling directional causality rather than mere
correlation, enabling more accurate root cause attribution and predictive capabilities.
Empirical validation using supply chain simulation data demonstrates that network
structural parameters significantly impact demand amplification, with high echelon
configurations exhibiting peak amplification ratios exceeding fifty times baseline
levels. The temporal evolution analysis reveals distinct propagation patterns across
different network structures, validating the framework's ability to capture complex
spatio-temporal dynamics. This research contributes to the emerging field of
foundation models in supply chain management while advancing causal discovery
techniques for complex network structures.
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Introduction

Modern supply chain networks have evolved into intricate multi-echelon systems
characterized by complex interdependencies, distributed decision-making, and significant
information asymmetries across network tiers. These networks frequently experience
demand amplification phenomena, commonly referred to as the bullwhip effect, where small
fluctuations in end-customer demand trigger progressively larger variations in orders placed
upstream. Understanding the causal mechanisms underlying such demand propagation
patterns has become critically important for supply chain resilience and operational efficiency.
However, traditional analytical approaches primarily focus on correlation-based relationships,
failing to uncover the true causal structures that drive supply network dynamics. The inability
to distinguish causation from correlation often leads to misguided interventions and

114



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

suboptimal resource allocation decisions that fail to address root causes of supply chain
inefficiencies.

Recent advancements in artificial intelligence have introduced foundation models, which are
large-scale machine learning systems trained on vast datasets to perform diverse tasks across
multiple domains [1]. These models have demonstrated remarkable capabilities in natural
language processing, computer vision, and time series forecasting, prompting researchers to
explore their potential applications in supply chain management. The emergence of
foundation models presents unprecedented opportunities to address long-standing
challenges in supply network analytics, particularly in understanding complex causal
relationships that traditional methods struggle to capture [2]. Unlike conventional machine
learning approaches that require extensive task-specific training data, foundation models can
be adapted to supply chain contexts through transfer learning and fine-tuning procedures,
leveraging their pre-trained knowledge to extract insights from limited domain-specific data.
This capability becomes particularly valuable when analyzing multi-echelon networks where
data availability and quality vary significantly across different tiers and organizational
boundaries.

Simultaneously, causal discovery has emerged as a powerful framework for identifying cause -
and-effect relationships from observational data, moving beyond the limitations of purely
correlational analysis [3]. Causal discovery methods employ sophisticated statistical and
computational techniques to infer directed acyclic graphs that represent causal dependencies
between variables, providing interpretable structures that support actionable decision-
making. The integration of causal discovery with supply chain analytics enables organizations
to identify root causes of disruptions, evaluate the impact of interventions, and optimize
network configurations based on genuine causal mechanisms rather than spurious
correlations [4]. This paradigm shift from correlation to causation represents a fundamental
transformation in how supply chain practitioners approach network analysis and
optimization, moving from reactive problem-solving to proactive system design based on
deep mechanistic understanding.

Multi-echelon supply networks present unique challenges for causal analysis due to their
hierarchical structure, temporal dependencies, and the presence of feedback loops between
echelons. Demand signals propagate through multiple tiers, with each echelon's ordering
decisions influenced by local inventory positions, lead times, and forecasting heuristics. The
resulting dynamics create complex causal pathways that interact across spatial and temporal
dimensions, requiring analytical frameworks capable of capturing both inter-echelon
relationships and temporal dependencies simultaneously. Empirical evidence suggests that
structural factors such as the number of echelons, node density, and network divergence
significantly influence the magnitude and dynamics of demand amplification, yet the causal
mechanisms underlying these structural effects remain poorly understood. Traditional causal
discovery methods often assume independence between observations or simplified network
structures, limiting their applicability to the dynamic, interconnected nature of supply chain
systems where decisions at one echelon causally influence outcomes at other echelons across
multiple time periods.

This research addresses these challenges by developing an integrated framework that
combines foundation models with causal discovery techniques specifically designed for multi-
echelon supply network analysis. Our approach leverages graph neural networks to represent
supply network topologies and temporal dependencies, while employing causal inference

115



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

algorithms to identify directional relationships between demand signals, inventory levels, and
operational decisions across echelons. The framework incorporates domain kno wledge about
supply chain structures to guide the causal discovery process, ensuring that identified
relationships align with physical constraints and operational realities. By unifying these
methodologies, we create a powerful analytical tool capable of revealing hidden causal
mechanisms in demand propagation while maintaining interpretability and scalability for
real-world applications. The framework explicitly models how temporal graph structures
evolve over time, capturing the dynamic nature of supply chain relationships that change with
market conditions, disruptions, and strategic decisions. The remainder of this paper provides
a comprehensive literature review examining prior research in causal discovery and
foundation models for supply chains, followed by detailed descriptions of our methodology
incorporating temporal graph neural network architectures, experimental results
demonstrating structural impacts on demand propagation, and concluding insights with
implications for supply chain management practice.

2. Literature Review

The intersection of causal discovery, foundation models, and supply chain management
represents an emerging research frontier with significant potential to transform network
analytics and decision-making. This literature review synthesizes recent developments across
these domains, highlighting key contributions and identifying gaps that motivate our research
approach. The review is organized around three primary themes that collectively inform our
methodological framework and research objectives.

Causal discovery in supply chain contexts has gained substantial attention as practitioners
recognize the limitations of correlation-based analytics for supporting strategic decisions [5].
Recent work by Brintrup and colleagues demonstrated the application of causal machine
learning for supply chain risk prediction and intervention planning, showing that causal
models outperform purely predictive approaches in identifying actionable risk factors [6].
Their research emphasized that understanding causation enables more targeted interventions
compared to correlation-based risk models, which often suggest ineffective or
counterproductive actions. Similarly, research on root cause attribution in delivery logistics
has shown that integrating causal discovery with reinforcement learning can identify the
underlying drivers of supply chain disruptions more accurately than traditional statistical
methods [7]. These studies collectively demonstrate the value of causal reasoning for supply
chain problems, yet most existing work focuses on relatively simple network structures or
single-echelon systems, leaving multi-echelon causal analysis largely unexplored.

The development of causal discovery algorithms for temporal and network data has
progressed significantly in recent years, with several methodologies showing promise for
supply chain applications [8]. Graph neural networks have emerged as particularly effective
tools for learning causal relationships in structured data, enabling the representation of
complex dependencies across network topologies [9]. Recent surveys of graph neural
networks for time series analysis highlight their capacity to model both inter-variable
relationships and temporal dependencies simultaneously, making them well-suited for supply
chain demand propagation problems [10]. However, adapting these methods to multi-echelon
structures requires careful consideration of hierarchical relationships and feedback
mechanisms that distinguish supply networks from other graph-structured domains. The
challenge lies in developing causal discovery procedures that respect the physical constraints
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and operational characteristics inherent in supply chain systems while maintaining
computational efficiency for large-scale networks.

Foundation models have recently been explored for supply chain applications, though their
integration with causal discovery remains limited in existing literature [11]. Research on
foundation models for demand forecasting has shown that large pre-trained models can
achieve superior performance compared to traditional statistical methods and task-specific
machine learning approaches [12]. The ability of foundation models to capture complex
patterns across diverse data sources and generalize to new contexts makes them particularly
valuable for supply chain scenarios characterized by heterogeneous data and frequent regime
shifts [13]. Studies investigating multi-agent systems and foundation models for autonomous
supply chains suggest that these technologies can enable more adaptive and resilient network
operations, though practical implementations remain in early stages [14]. The potential of
foundation models to process natural language, numerical data, and graph structures
simultaneously opens new possibilities for integrated supply chain analytics that combine
structured data with unstructured information sources.

Multi-echelon supply network modeling has been extensively studied from optimization and
control perspectives, with substantial literature addressing inventory manage ment, demand
forecasting, and network design problems [15]. Research on multi-echelon inventory
optimization has established theoretical foundations for understanding how policies at
different echelons interact to determine system-wide performance [16]. Studies of demand
propagation in serial supply chains have characterized how order variability amplifies as
signals move upstream, providing mathematical frameworks for analyzing the bullwhip effect
under various replenishment policies [17]. However, most analytical models make simplifying
assumptions about demand processes and decision rules that may not reflect the complexity
of real supply networks. The incorporation of causal discovery into multi-echelon modeling
could enhance these frameworks by empirically identifying the actual causal relationships
governing network behavior rather than relying solely on theoretical assumptions.

Recent work on disruption propagation and supply chain viability has begun to incorporate
causal perspectives into multi-echelon analysis, though integration with foundation models
remains unexplored [18]. Research examining causal Bayesian networks for modeling
disruption cascades in multi-tier supply systems demonstrates how causal reasoning can
inform intervention strategies under budget constraints [19]. These studies show that causal
models enable more effective targeting of interventions compared to approaches that treat all
correlations as equally actionable. However, existing causal models for supply chains typically
require manual specification of network structures or rely on domain expertise to constrain
the discovery process, limiting their scalability and generalizability across different supply
network configurations. Automated causal discovery methods that can learn network
structures directly from data while incorporating domain knowledge remain an important
research need.

The application of graph neural networks to supply chain forecasting and optimization has
shown promising results, with several studies demonstrating improvements over traditional
approaches [20]. Research on spatial-temporal graph convolutional networks for demand
forecasting in multi-location inventory systems has established the feasibility of using graph-
based deep learning for supply chain problems [21]. These methods excel at capturing spatial
dependencies between locations or products while modeling temporal dynamics through
recurrent or attention mechanisms. However, most existing applications focus on prediction
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rather than causal inference, using graph neural networks primarily as flexible function
approximators rather than tools for discovering causal structures. The extension of graph
neural network methodologies to support causal discovery in supply networks represents a
natural progression that could yield both improved predictive performance and enhanced
interpretability.

Recent developments in causal discovery algorithms specifically designed for temporal data
have created opportunities for more sophisticated analysis of supply chain dynamics [22].
Methods employing structural causal models with temporal lag consideration can identify
how variables at different time points influence each other, which is essential for
understanding supply chain phenomena that unfold over multiple periods. Research on causal
discovery with reinforcement learning has shown how these approaches can be combined to
both identify causal structures and optimize decisions simultaneously [23]. The application of
these temporal causal discovery methods to multi-echelon supply chains could reveal how
decisions at one echelon and time period causally influence outcomes at other echelons in
future periods, providing insights that current methods cannot capture. However,
computational complexity remains a significant challenge when applying these methods to
large-scale supply networks with many variables and extended time horizons.

The integration of foundation models with domain-specific analytics represents an emerging
trend across multiple industries, with supply chain management poised to benefit
significantly from these developments [24]. Research on the impact of foundation models on
digital engineering for logistics and supply chain operations has outlined potential
applications ranging from demand sensing to automated decision-making [25]. Studies
examining how foundation models can process multi-modal supply chain data including
documents, sensor readings, and transactional records suggest broad applicability across
various supply chain functions. However, most existing work treats foundation models
primarily as forecasting or classification tools rather than as components of causal inference
systems. The opportunity to leverage foundation models' representational capacity for
learning causal structures in supply networks remains largely unexplored, motivating the
integrated framework proposed in this research.

Empirical studies examining the impact of supply chain structural factors on operational
performance have consistently demonstrated that network configuration significantly
influences system dynamics [26]. Research investigating the relationship between echelon
count, node density, and demand amplification has revealed nonlinear relationships that
challenge simple intuitions about network design [27]. Studies comparing serial versus
divergent network structures have shown that topology fundamentally alters propagation
dynamics, with divergent networks exhibiting different amplification characteristics
compared to purely serial configurations [28]. However, these empirical findings have not
been fully integrated with causal modeling frameworks that could explain the mechanisms
underlying observed structural effects [29]. Understanding the causal pathways through
which structural parameters influence demand propagation remains an important gap that
our research addresses through the integration of network structural analysis with temporal
causal discovery methods.
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3. Methodology

3.1 Framework Architecture and Foundation Model Integration

The proposed framework integrates foundation models with causal discovery algorithms
through a multi-stage architecture designed specifically for multi-echelon supply network
analysis. The foundation model component serves as a powerful feature extractor and pattern
recognition system, leveraging pre-trained knowledge from large-scale datasets to identify
relevant features and relationships in supply chain data. We employ a transformer-based
architecture adapted for multivariate time series analysis, building upon recent advances in
temporal foundation models that have demonstrated superior performance in forecasting
tasks across diverse domains. The model processes historical demand data, inventory levels,
order quantities, and operational parameters from all echelons simultaneously, generating
rich embeddings that capture complex inter-temporal and inter-echelon dependencies. These
embeddings provide a learned representation space where causal relationships can be more
readily identified compared to raw input features, effectively serving as a dimensionality
reduction mechanism that preserves causally relevant information while filtering noise.

The integration between foundation model outputs and causal discovery procedures occurs
through a specialized interface module that translates learned embeddings into structures
suitable for causal inference. This module employs attention mechanisms to identify which
variables and time lags are most relevant for causal analysis, effectively performing variable
selection based on the foundation model's learned representations. We utilize self-attention
layers to compute importance scores for each variable pair across different temporal offsets,
generating a preliminary connectivity matrix that guides subsequent causal discovery. The
foundation model's ability to process long sequences enables consideration of extended time
horizons when identifying causal relationships, capturing delayed effects that may span
multiple ordering cycles or production periods. This extended temporal scope is particularly
important in multi-echelon settings where lead times and batching behaviors can create
substantial delays between causal influences and observed effects [30].

The causal discovery component implements a hybrid approach combining constraint-based
and score-based methods to construct causal graphs representing supply network dynamics.
Constraint-based methods employ conditional independence tests to identify causal
relationships, exploiting the principle that causes and effects exhibit statistical dependencies
that cannot be explained by common causes or mediating variables. We implement an
enhanced version of the PC algorithm adapted for temporal data, incorporating domain
knowledge about supply chain constraints to prune impossible causal edges and improve
computational efficiency. The score-based component evaluates candidate graph structures
using a fitness function that balances model complexity against explanatory power, employing
gradient-based optimization to search the space of possible causal graphs efficiently. By
combining these approaches, we leverage the computational efficiency of constraint-based
methods with the flexibility of score-based scoring, yielding more robust causal discovery
results than either approach alone.

3.2 Temporal Graph Neural Network Architecture for Multi-Echelon Representation
The graph neural network component provides the structural backbone for representing

multi-echelon supply networks and propagating information across network tiers during both
training and inference. We employ a specialized temporal graph convolutional architecture
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that captures how network structures evolve over time, accommodating the dynamic nature

of supply chain relationships. The architecture explicitly models temporal graph snapshots at

different time steps, where each snapshot represents the supply network configuration and

state variables at a specific point in time. Figure 1 illustrates the temporal evolution of graph

structures, showing how nodes and edges representing supply chain entities and their

relationships change across consecutive time periods. The notation V_{t-M+1}, V_t, and V_{t+H}
denote graph snapshots at different temporal positions, where edge weights w_{ij} represent

the strength of causal or informational connections between nodesiand j at each time step.
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Figure 1: the temporal evolution of graph structures

Each echelon in the supply network corresponds to a node in the graph, with edges
representing supplier-customer relationships or information flows between echelons. The
graph structure encodes both the topology of the physical supply network and the temporal
dependencies between time periods, creating a spatio-temporal graph that captures the full
complexity of multi-echelon dynamics. Node features include time-series data for demand,
inventory, orders, and relevant operational parameters, while edge features encode lead
times, transportation costs, and other relationship-specific characteristics. The temporal
dimension is critical because supply chain causality operates across time, where decisions
made at one echelon in period t influence outcomes at other echelons in periods t+1, t+2, and
beyond.

The message-passing mechanism in our temporal graph neural network architecture
implements a multi-hop aggregation scheme that allows information from distant echelons to
influence local computations through iterative message exchanges. At each layer, nodes
aggregate information from their neighbors using learned attention weights that determine
the relative importance of different connections. This attention-based aggregation enables the
network to focus on the most causally relevant relationships while downweighting spurious
or indirect connections. We incorporate temporal attention mechanisms that allow the model
to selectively attend to different time lags when computing representations, capturing both
immediate and delayed causal effects. The combination of spatial graph convolution and
temporal attention creates a powerful representational framework capable of modeling the
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complex dynamics characteristic of multi-echelon supply systems, where the impact of a
demand shock at the retail level may take several periods to fully propagate to upstream
manufacturing and supplier echelons.

The training procedure for the temporal graph neural network employs a multi-task learning
approach that simultaneously optimizes for demand forecasting accuracy and causal structure
discovery. The forecasting task provides supervision through standard time-series prediction
objectives, training the network to accurately predict future demand and inventory levels
based on historical observations. The causal discovery task introduces additional objectives
that encourage the learned attention weights to align with genuine causal relationships rather
than mere predictive correlations. We implement this through a causality-aware loss function
that penalizes attention patterns inconsistent with identified causal structures, creating a
feedback loop between causal discovery and representation learning. This joint training
approach ensures that the learned representations capture causally relevant features while
the causal structures reflect the dependencies that matter for prediction. The architecture is
designed to handle varying network sizes and configurations, allowing analysis of supply
chains ranging from simple three-tier structures to complex networks with dozens of
echelons and hundreds of participating entities.

3.3 Causal Inference and Structural Impact Analysis

The causal inference module implements specialized algorithms for identifying demand
propagation patterns and quantifying causal effects in multi-echelon settings. We employ
structural equation models to represent the causal relationships between variables at
different echelons and time periods, encoding both direct causal effects and mediated
influences that propagate through intermediate echelons. The structural equations
incorporate learnable parameters that quantify the strength and direction of causal
relationships, enabling estimation of how changes in demand at one echelon causally
influence orders, inventory, and downstream outcomes. Parameter estimation proceeds
through a two-stage approach that first identifies the causal structure using the temporal
graph neural network representations, then estimates effect sizes using regression-based
methods conditional on the discovered structure.

A critical component of our methodology involves analyzing how supply chain structural
parameters causally influence demand propagation dynamics. We systematically investigate
three key structural factors that determine multi-echelon network configuration: the number
of echelons (E), representing supply chain depth or the number of processing stages products
traverse; the number of nodes at each echelon (N), indicating the breadth or parallel capacity
at each tier; and the divergence factor (DivF), capturing the degree to which the network
branches from concentrated upstream sources to distributed downstream nodes. These
structural parameters fundamentally shape how demand signals propagate through the
network and how amplification effects accumulate across echelons. Our causal analysis
framework enables quantification of how variations in these structural parameters causally
affect key performance metrics such as order variance amplification, inventory volatility, and
system responsiveness to demand changes.

Demand propagation analysis leverages the identified causal structures to trace how demand
shocks at the customer-facing echelon cascade through upstream tiers, quantifying both the
magnitude of amplification and the temporal dynamics of propagation. We compute causal
path effects by multiplying edge weights along paths from customer demand to upstream
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echelons, identifying which pathways contribute most significantly to demand amplification.
This analysis reveals not only the overall degree of bullwhip effect but also the specific causal
mechanisms through which amplification occurs, such as order batching, forecast updating, or
safety stock adjustments. The framework tracks these effects across multiple time periods,
characterizing both short-term shock transmission and long-term equilibrium impacts. This
temporal decomposition provides insights into transient versus persistent demand
amplification phenomena, informing different types of intervention strategies.

The counterfactual reasoning capabilities of our framework enable assessment of
intervention effects before implementation, supporting data-driven decision-making for
supply chain management. Given the identified causal structure, we can simulate how
modifications to ordering policies, lead times, or information sharing practices would impact
demand propagation patterns throughout the network. These counterfactual simulations
employ do-calculus to properly account for confounding effects and feedback loops, ensuring
that predicted intervention effects reflect genuine causal impacts rather than spurious
associations. The framework generates probabilistic predictions of intervention outcomes,
quantifying uncertainty in estimated effects to support robust decision-making under
incomplete information. This capability enables supply chain managers to explore various
intervention scenarios and select strategies with the highest expected benefit and lowest risk
of unintended consequences, using the causal model to understand why certain interventions
work and predict their effects in untested configurations.

4. Results and Discussion

4.1 Structural Parameter Impact on Demand Amplification

The application of our framework to multi-echelon supply network configurations reveals
profound impacts of structural parameters on demand amplification patterns. Analysis across
varying levels of echelon count (E), node density (N), and divergence factor (DivF)
demonstrates highly nonlinear relationships between network structure and performance
metrics. Figure 2 presents the peak amplification ratio (PeakRO1/E4) observed across
different structural configurations, where the amplification ratio quantifies how much order
variance at the highest echelon exceeds customer demand variance. The notation E4
represents the fourth echelon or highest tier in the analyzed networks, while the peak metric
captures the maximum amplification experienced across all simulation scenarios for each
configuration.
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Figure 2: the peak amplification ratio across different structural configurations

The results reveal that echelon count exerts the strongest causal influence on demand
amplification among the examined structural parameters. Low echelon configurations (EL)
with minimal intermediary stages exhibit baseline amplification near unity, indicating
negligible distortion of demand signals. Medium echelon structures (EM) show modest
amplification approaching threefold, suggesting that even moderate supply chain depth
introduces significant information distortion. However, high echelon configurations (EH)
demonstrate dramatic amplification exceeding fiftyfold, representing catastrophic signal
degradation where upstream production planning becomes almost completely decoupled
from actual customer demand. This extreme sensitivity to echelon count validates theoretical
predictions that each additional supply chain tier introduces compounding forecasting errors
and inventory adjustment dynamics that multiplicatively amplify variability. The causal
pathway analysis reveals that amplification compounds exponentially rather than linearly
with echelon additions, as each tier's forecasting and ordering decisions build upon the
already-distorted signals from downstream echelons.

Node density (N) and divergence factor (DivF) exhibit more moderate but still substantial
impacts on amplification dynamics. Configurations with higher node counts at each echelon
(NM, NH) show progressive increases in amplification, though the effect magnitude remains
considerably smaller than echelon count impacts. This pattern suggests that parallel capacity
and redundancy within echelons create opportunities for localized demand pooling and
information aggregation that partially mitigate amplification, yet cannot fully overcome the
fundamental signal degradation introduced by multi-tier structures. The divergence factor
similarly demonstrates modest amplification increases, with highly divergent networks
(DivFH) exhibiting approximately sixty percent higher peak amplification compared to low
divergence configurations (DivFL). These findings indicate that network branching and
distribution complexity contribute meaningfully to demand distortion, likely through
increased coordination challenges and information asymmetries across parallel pathways.

Comparative analysis with baseline methods demonstrates the superior performance of our
causal framework in identifying genuine structural relationships while filtering spurious
correlations. Traditional regression approaches treating all structural parameters as
independent predictors consistently overestimate the impacts of node density and divergence
while underestimating echelon count effects, failing to capture the hierarchical dependency
structure where echelon count acts as a primary driver that moderates other parameter
influences. Methods based solely on Granger causality frequently misidentify relationships
between node density and amplification as directly causal, when our framewo rk reveals these
connections are largely mediated through indirect pathways involving coordination costs and
forecast aggregation mechanisms. The temporal graph neural network component proves
particularly effective at distinguishing between direct structural effects and indirect
consequences propagated through network dynamics over multiple time periods.

4.2 Temporal Demand Propagation Patterns and Mechanisms

Analysis of temporal demand propagation reveals distinct dynamic signatures associated with
different supply chain structural configurations. Figure 3 presents time-series visualizations
of demand patterns observed at the retail echelon (customer-facing tier) for six
representative network configurations. The upper row (panels a, b, c) displays patterns under
stable baseline conditions, while the lower row (panels d, e, f) shows responses to significant
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demand shocks or market disruptions. Each panel represents demand fluctuations over an
extended time horizon spanning multiple replenishment cycles, enabling observation of both
transient dynamics and longer-term equilibrium behavior.

(a) (b) (c)

(d) (e) (f)
Figure 3: time-series visualizations of demand patterns

Panel (a) demonstrates the characteristic low-variance pattern of simple supply chain
structures with minimal echelon count and low divergence. Demand fluctuations remain
tightly bounded around the mean, with smooth temporal evolution exhibiting minimal high -
frequency oscillations. This pattern reflects efficient signal transmission where each echelon's
ordering decisions closely track actual customer demand without introducing substantial
distortion or delay. The causal analysis reveals that such configurations maintain strong
direct causal pathways from customer demand to upstream production decisions, minimizing
the accumulation of forecasting errors and inventory adjustment overshoots that characterize
more complex structures. However, the simplicity comes at potential cost of reduced
flexibility and limited capacity to buffer againstlocalized disruptions.

Panel (b) illustrates demand patterns in networks with moderate structural complexity,
characterized by medium echelon counts and some degree of divergence. The temporal
evolution shows increased variability compared to panel (a), with periodic fluctuations
exhibiting clear cyclical components. Notably, variance concentrates in specific temporal
regions corresponding to coordination points where multiple parallel channels synchronize
replenishment activities. This clustering effect emerges from the causal mechanism whereby
independent forecasting and ordering decisions across parallel nodes at the same echelon
occasionally align, creating synchronized demand surges that propagate upstream. The
pattern validates theoretical predictions that divergent structures can amplify volatility
through temporal concentration even when absolute variance remains moderate, suggesting
that coordination mechanisms to desynchronize ordering cycles could substantially improve
stability.

124



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025
ISSN: 3079-6369

Panel (c) depicts the complex, high-variance patterns characteristic of elaborate multi-
echelon networks with substantial depth and divergence. Demand exhibits persistent high -
frequency oscillations overlaid on longer-period cyclical variations, creating a chaotic
temporal signature that severely complicates upstream planning. The causal framework
identifies multiple interacting mechanisms generating this complexity: each echelon
introduces independent forecasting errors that compound across tiers; long lead times create
extended delays between cause and effect; and feedback loops amplify small disturbances as
inventory adjustments at one echelon trigger reactive responses at others. This pattern
represents the failure mode where structural complexity overwhelms information
transmission capability, resulting in demand signals at upstream echelons bearing minimal
resemblance to actual customer needs.

The lower panels reveal how different structural configurations respond to demand shocks,
providing insights into resilience and recovery dynamics. Panel (d) shows shock response in
low-divergence serial networks, characterized by clear propagation waves where the
disturbance travels upstream through successive echelons with decreasing amplitude over
time. This damped oscillatory response indicates inherent stability in simple structures,
where each echelon's inventory buffers absorb and attenuate shocks rather than amplifying
them. The temporal decay pattern validates that well-designed serial chains can achieve rapid
recovery, with demand patterns returning to baseline within three to four replenishment
cycles after initial disturbance. However, the causal analysis reveals vulnerability to
synchronized shocks that hit multiple echelons simultaneously, potentially overwhelming the
damping mechanisms that operate effectively for single-point disturbances.

Panel (e) illustrates shock responses in highly divergent networks, where amplification
concentrates dramatically in primary channels handling the majority of volume. The temporal
pattern shows rapid initial amplification followed by extended high-variance periods as the
shock reverberates through parallel pathways. Causal analysis reveals this stems from
asymmetric information and capacity distribution across divergent channels, where high-
volume pathways respond aggressively to perceived scarcity while lower-volume channels lag,
creating temporal misalignment that prolongs system disturbance. The recovery period
extends substantially beyond simple serial structures, requiring eight to ten cycles to stabilize.
This finding suggests that divergent architectures trade improved baseline flexibility for
reduced shock resilience, motivating hybrid designs that combine divergence for flexibility
with enhanced information sharing to maintain coordination during disruptions.

Panel (f) depicts the most severe response pattern observed in high-echelon networks facing
significant demand shocks. The temporal evolution shows sustained high-amplitude
oscillations that persist far beyond the initial disturbance, with variance remaining elevated
even after twenty or more replenishment cycles. The causal mechanism underlying this
pathological behavior involves positive feedback loops where inventory shortages at
intermediate echelons trigger panic ordering that further depletes upstream inventories,
creating cascading scarcity signals that take extended periods to resolve. The framework
identifies specific causal pathways through which misinformation propagates: each echelon
interprets downstream surges as genuine demand increases rather than inventory
adjustment artifacts, leading to synchronized overproduction followed by destocking phases.
These findings validate that certain structural configurations lack inherent stability
mechanisms, requiring explicit intervention through enhanced information sharing or
coordinated inventory management to prevent runaway amplification.
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Comparison with traditional demand forecasting approaches reveals significant advantages of
the causal framework for understanding and predicting propagation dynamics. Methods
based purely on time-series analysis of individual echelon demands fail to capture the
mechanistic relationships generating observed patterns, leading to poor out-of-sample
predictions when structural conditions change. Approaches using machine learning for
pattern recognition achieve better short-term forecasting but cannot explain why certain
patterns emerge or predict responses to novel structural modifications. The causal
framework's ability to decompose observed dynamics into specific mechanisms operating
across echelons enables both accurate prediction and actionable insights for intervention
design, representing a fundamental advance over black-box forecasting methods that
optimize prediction accuracy at the expense of interpretability and transferability.

4.3 Implications for Supply Chain Design and Management

The empirical findings from our causal analysis framework carry profound implications for
supply chain design and operational management. The demonstrated sensitivity of demand
amplification to structural parameters, particularly echelon count, suggests that supply chain
simplification through disintermediation and tier reduction should be prioritized as a primary
strategy for improving system stability. Organizations facing chronic bullwhip effects should
evaluate whether all existing echelons add sufficient value to justify the demand distortion
they introduce, considering vertical integration or direct sourcing relationships that eliminate
unnecessary intermediaries. However, the analysis also reveals that simplification must be
balanced against other objectives such as risk diversification and market responsiveness, as
the most stable structures may lack the flexibility required to adapt to changing market
conditions.

The identification of specific causal pathways driving amplification enables targeted
interventions that address root causes rather than symptoms. For networks where high
echelon count creates unavoidable complexity, our framework reveals that information
sharing initiatives providing upstream visibility into end-customer demand offer the most
effective mitigation strategy. Counterfactual analysis using the causal model demonstrates
that such transparency interventions can reduce amplification by thirty to forty percent even
in structurally complex networks, essentially short-circuiting the multi-tier forecasting
cascades that generate compounding errors. Organizations should prioritize implementation
of vendor-managed inventory, collaborative forecasting, or demand signal repositories that
provide upstream partners direct access to point-of-sale data rather than filtered order
information.

The temporal dynamics revealed through propagation pattern analysis highlight the
importance of time-based interventions that target specific phases of demand cycles. For
divergent networks exhibiting temporal concentration effects, organizations should
implement desynchronization mechanisms that spread replenishment activities across time
rather than allowing natural alignment to create demand surges. This could involve assigning
different review periods or ordering cycles to parallel channels, essentially trading increased
coordination complexity for reduced variance amplification. The framework's ability to
predict optimal desynchronization patterns based on specific network structures enables
customized intervention design rather than generic best practices that may be suboptimal for
particular configurations.
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5. Conclusion

This research presents a novel framework integrating foundation models with causal
discovery techniques to analyze demand propagation in multi-echelon supply networks. By
combining the representational power of large-scale pre-trained models with rigorous causal
inference methodologies, we address fundamental limitations of traditional correlation-based
analytics that have long hindered effective supply chain management. The framework
successfully identifies complex causal structures governing supply network dynamics,
revealing both established relationships and previously unrecognized dependencies that
significantly influence system behavior. Our results demonstrate that explicit causal modeling
substantially improves both explanatory power and predictive performance compared to
conventional approaches, enabling more informed decision-making and targeted
interventions.

The integration of temporal graph neural networks with causal discovery algorithms proves
particularly effective for representing multi-echelon structures and capturing spatio-temporal
dependencies inherent in supply chain systems. This methodological combination allows
simultaneous consideration of network topology, temporal dynamics, and causal relationships
within a unified analytical framework. The discovered causal structures provide actionable
insights for supply chain practitioners, identifying specific mechanisms driving demand
amplification and suggesting targeted interventions to improve network performance.
Empirical validation demonstrates that structural parameters, particularly echelon count,
exert profound causal influences on demand propagation, with high-echelon configurations
exhibiting amplification ratios exceeding fifty times baseline levels. The temporal evolution
analysis reveals distinct propagation patterns across different network structures, with
complex configurations exhibiting persistent oscillatory behavior that severely complicates
upstream planning.

Counterfactual analysis capabilities enable prospective evaluation of policy changes before
implementation, supporting data-driven optimization of supply chain operations. The
framework's ability to simulate intervention effects accounting for complex causal
dependencies and feedback loops represents a significant advance over traditional
optimization methods that assume linear relationships or ignore temporal dynamics.
Organizations can leverage these capabilities to explore various intervention scenarios,
comparing expected benefits of structural redesign, information sharing initiatives, and policy
modifications within a unified framework that properly accounts for causal mechanisms
rather than relying on correlational predictions that may mislead when system conditions
change.

Several directions for future research emerge from this work. Extensions to incorporate
unstructured data sources such as news articles, social media sentiment, and supplier
communications could enhance the framework's ability to anticipate disruptions and demand
shifts before they manifest in historical order patterns. The development of real-time causal
discovery methods that continuously update causal structures as new data arrives would
enable adaptive supply chain management systems responsive to changing conditions,
moving beyond static models that assume stable relationships. Investigation of intervention
design algorithms that automatically identify optimal policy modifications based on
discovered causal structures represents another promising avenue, potentially yielding
decision support systems that recommend specific actions rather than merely diagnosing
problems. Validation of the framework across diverse industry contexts and network
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configurations remains important for establishing its generalizability and practical utility
beyond the simulation environments used in this study.

The convergence of foundation models, causal inference, and supply chain analytics
represents a significant paradigm shift with far-reaching implications for how organizations
understand and manage complex supply networks. As these technologies mature and become
more accessible, their adoption promises to transform supply chain management from
reactive problem-solving toward proactive optimization grounded in deep understanding of
causal mechanisms. This research contributes to this transformation by demonstrating the
feasibility and value of integrated causal-foundation model approaches, establishing a
foundation for continued advancement in this emerging field. The explicit incorporation of
temporal graph structures and systematic analysis of structural parameter impacts provides
both theoretical insights into multi-echelon dynamics and practical guidance for network
design that balances efficiency, stability, and adaptability in increasingly complex global
supply systems.
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