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Abstract 

The complexity of modern multi-echelon supply networks presents significant 
challenges in understanding demand propagation patterns and causal relationships 
across network tiers. Traditional correlation-based approaches fail to capture the true 
causal mechanisms underlying supply chain disruptions and demand amplification 
phenomena. This research proposes a novel framework that integrates causal 
discovery methodologies with foundation models to analyze demand propagation in 
multi-echelon supply networks. By leveraging large-scale pre-trained models adapted 
for supply chain analytics, we develop a system capable of identifying causal 
relationships between demand signals, inventory decisions, and operational 
parameters across network echelons. The framework employs graph neural networks 
combined with causal inference algorithms to construct dynamic causal graphs that 
represent inter-echelon dependencies. Our approach addresses the limitations of 
existing methods by explicitly modeling directional causality rather than mere 
correlation, enabling more accurate root cause attribution and predictive capabilities. 
Empirical validation using supply chain simulation data demonstrates that network 
structural parameters significantly impact demand amplification, with high echelon 
configurations exhibiting peak amplification ratios exceeding fifty times baseline 
levels. The temporal evolution analysis reveals distinct propagation patterns across 
different network structures, validating the framework's ability to capture complex 
spatio-temporal dynamics. This research contributes to the emerging field of 
foundation models in supply chain management while advancing causal discovery 
techniques for complex network structures. 
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Introduction 

Modern supply chain networks have evolved into intricate multi-echelon systems 
characterized by complex interdependencies, distributed decision-making, and significant 
information asymmetries across network tiers. These networks frequently experience 
demand amplification phenomena, commonly referred to as the bullwhip effect, where small 
fluctuations in end-customer demand trigger progressively larger variations in orders placed 
upstream. Understanding the causal mechanisms underlying such demand propagation 
patterns has become critically important for supply chain resilience and operational efficiency. 
However, traditional analytical approaches primarily focus on correlation-based relationships, 
failing to uncover the true causal structures that drive supply network dynamics. The inability 
to distinguish causation from correlation often leads to misguided interventions and 
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suboptimal resource allocation decisions that fail to address root causes of supply chain 
inefficiencies. 

Recent advancements in artificial intelligence have introduced foundation models, which are 
large-scale machine learning systems trained on vast datasets to perform diverse tasks across 
multiple domains [1]. These models have demonstrated remarkable capabilities in natural 
language processing, computer vision, and time series forecasting, prompting researchers to 
explore their potential applications in supply chain management. The emergence of 
foundation models presents unprecedented opportunities to address long-standing 
challenges in supply network analytics, particularly in understanding complex causal 
relationships that traditional methods struggle to capture [2]. Unlike conventional machine 
learning approaches that require extensive task-specific training data, foundation models can 
be adapted to supply chain contexts through transfer learning and fine-tuning procedures, 
leveraging their pre-trained knowledge to extract insights from limited domain-specific data. 
This capability becomes particularly valuable when analyzing multi-echelon networks where 
data availability and quality vary significantly across different tiers and organizational 
boundaries. 

Simultaneously, causal discovery has emerged as a powerful framework for identifying cause -
and-effect relationships from observational data, moving beyond the limita tions of purely 
correlational analysis [3]. Causal discovery methods employ sophisticated statistical and 
computational techniques to infer directed acyclic graphs that represent causal dependencies 
between variables, providing interpretable structures that support actionable decision-
making. The integration of causal discovery with supply chain analytics enables organizations 
to identify root causes of disruptions, evaluate the impact of interventions, and optimize 
network configurations based on genuine causal mechanisms rather than spurious 
correlations [4]. This paradigm shift from correlation to causation represents a fundamental 
transformation in how supply chain practitioners approach network analysis and 
optimization, moving from reactive problem-solving to proactive system design based on 
deep mechanistic understanding. 

Multi-echelon supply networks present unique challenges for causal analysis due to their 
hierarchical structure, temporal dependencies, and the presence of feedback loops between 
echelons. Demand signals propagate through multiple tiers, with each echelon's ordering 
decisions influenced by local inventory positions, lead times, and forecasting heuristics. The 
resulting dynamics create complex causal pathways that interact across spatial and temporal 
dimensions, requiring analytical frameworks capable of capturing both inter -echelon 
relationships and temporal dependencies simultaneously. Empirical evidence suggests that 
structural factors such as the number of echelons, node density, and network divergence 
significantly influence the magnitude and dynamics of demand amplification, yet the causal 
mechanisms underlying these structural effects remain poorly understood. Traditional causal 
discovery methods often assume independence between observations or simplified network 
structures, limiting their applicability to the dynamic, interconnected nature of supply chain 
systems where decisions at one echelon causally influence outcomes at other echelons across 
multiple time periods. 

This research addresses these challenges by developing an integrated framework that 
combines foundation models with causal discovery techniques specifically designed for multi-
echelon supply network analysis. Our approach leverages graph neural networks to represent 
supply network topologies and temporal dependencies, while employing causal inference 
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algorithms to identify directional relationships between demand signals, inventory levels, and 
operational decisions across echelons. The framework incorporates domain kno wledge about 
supply chain structures to guide the causal discovery process, ensuring that identified 
relationships align with physical constraints and operational realities. By unifying these 
methodologies, we create a powerful analytical tool capable of revealing hidden causal 
mechanisms in demand propagation while maintaining interpretability and scalability for 
real-world applications. The framework explicitly models how temporal graph structures 
evolve over time, capturing the dynamic nature of supply chain relationships that change with 
market conditions, disruptions, and strategic decisions. The remainder of this paper provides 
a comprehensive literature review examining prior research in causal discovery and 
foundation models for supply chains, followed by detailed descriptions of our methodology 
incorporating temporal graph neural network architectures, experimental results 
demonstrating structural impacts on demand propagation, and concluding insights with 
implications for supply chain management practice. 

2. Literature Review 

The intersection of causal discovery, foundation models, and supply chain management 
represents an emerging research frontier with significant potential to transform network 
analytics and decision-making. This literature review synthesizes recent developments across 
these domains, highlighting key contributions and identifying gaps that motivate our research 
approach. The review is organized around three primary themes that collectively inform our 
methodological framework and research objectives. 

Causal discovery in supply chain contexts has gained substantial attention as practitioners 
recognize the limitations of correlation-based analytics for supporting strategic decisions [5]. 
Recent work by Brintrup and colleagues demonstrated the application of causal machine 
learning for supply chain risk prediction and intervention planning, showing that causal 
models outperform purely predictive approaches in identifying actionable risk factors [6]. 
Their research emphasized that understanding causation enables more targeted interventions 
compared to correlation-based risk models, which often suggest ineffective or 
counterproductive actions. Similarly, research on root cause attribution in delivery logistics 
has shown that integrating causal discovery with reinforcement learning can identify the 
underlying drivers of supply chain disruptions more accurately than traditional statistical 
methods [7]. These studies collectively demonstrate the value of causal reasoning for supply 
chain problems, yet most existing work focuses on relatively simple network structures or 
single-echelon systems, leaving multi-echelon causal analysis largely unexplored. 

The development of causal discovery algorithms for temporal and network data has 
progressed significantly in recent years, with several methodologies showing promise for 
supply chain applications [8]. Graph neural networks have emerged as particularly effective 
tools for learning causal relationships in structured data, enabling the representation of 
complex dependencies across network topologies [9]. Recent surveys of graph neural 
networks for time series analysis highlight their capacity to model both inter -variable 
relationships and temporal dependencies simultaneously, making them well-suited for supply 
chain demand propagation problems [10]. However, adapting these methods to multi-echelon 
structures requires careful consideration of hierarchical relationships and feedback 
mechanisms that distinguish supply networks from other graph-structured domains. The 
challenge lies in developing causal discovery procedures that respect the physical constraints 
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and operational characteristics inherent in supply chain systems while maintaining 
computational efficiency for large-scale networks. 

Foundation models have recently been explored for supply chain applications, though their 
integration with causal discovery remains limited in existing literature [11]. Research on 
foundation models for demand forecasting has shown that large pre-trained models can 
achieve superior performance compared to traditional statistical methods and task-specific 
machine learning approaches [12]. The ability of foundation models to capture complex 
patterns across diverse data sources and generalize to new contexts makes them particularly 
valuable for supply chain scenarios characterized by heterogeneous data and frequent regime 
shifts [13]. Studies investigating multi-agent systems and foundation models for autonomous 
supply chains suggest that these technologies can enable more adaptive and resilient network 
operations, though practical implementations remain in early stages [14]. The potential of 
foundation models to process natural language, numerical data, and graph structures 
simultaneously opens new possibilities for integrated supply chain analytics that combine 
structured data with unstructured information sources. 

Multi-echelon supply network modeling has been extensively studied from optimization and 
control perspectives, with substantial literature addressing inventory management, demand 
forecasting, and network design problems [15]. Research on multi-echelon inventory 
optimization has established theoretical foundations for understanding how policies at 
different echelons interact to determine system-wide performance [16]. Studies of demand 
propagation in serial supply chains have characterized how order variability amplifies as 
signals move upstream, providing mathematical frameworks for analyzing the bullwhip effect 
under various replenishment policies [17]. However, most analytical models make simplifying 
assumptions about demand processes and decision rules that may not reflect the complexity 
of real supply networks. The incorporation of causal discovery into multi-echelon modeling 
could enhance these frameworks by empirically identifying the actual causal relationships 
governing network behavior rather than relying solely on theoretical assumptions. 

Recent work on disruption propagation and supply chain viability has begun to incorporate 
causal perspectives into multi-echelon analysis, though integration with foundation models 
remains unexplored [18]. Research examining causal Bayesian networks for modeling 
disruption cascades in multi-tier supply systems demonstrates how causal reasoning can 
inform intervention strategies under budget constraints [19]. These studies show that causal 
models enable more effective targeting of interventions compared to approaches that treat all 
correlations as equally actionable. However, existing causal models for supply chains typically 
require manual specification of network structures or rely on domain expertise to constrain 
the discovery process, limiting their scalability and generalizability across different supply 
network configurations. Automated causal discovery methods that can learn network 
structures directly from data while incorporating domain knowledge remain an important 
research need. 

The application of graph neural networks to supply chain forecasting and optimization has 
shown promising results, with several studies demonstrating improvements over traditional 
approaches [20]. Research on spatial-temporal graph convolutional networks for demand 
forecasting in multi-location inventory systems has established the feasibility of using graph-
based deep learning for supply chain problems [21]. These methods excel at capturing spatial 
dependencies between locations or products while modeling temporal dynamics through 
recurrent or attention mechanisms. However, most existing applications focus on prediction 
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rather than causal inference, using graph neural networks primarily as flexible function 
approximators rather than tools for discovering causal structures. The extension of graph 
neural network methodologies to support causal discovery in supply networks represents a 
natural progression that could yield both improved predictive performance and enhanced 
interpretability. 

Recent developments in causal discovery algorithms specifically designed for temporal data 
have created opportunities for more sophisticated analysis of supply chain dynamics [22]. 
Methods employing structural causal models with temporal lag consideration can identify 
how variables at different time points influence each other, which is essential for 
understanding supply chain phenomena that unfold over multiple periods. Research on causal 
discovery with reinforcement learning has shown how these approaches can be combined to 
both identify causal structures and optimize decisions simultaneously [23]. The application of 
these temporal causal discovery methods to multi-echelon supply chains could reveal how 
decisions at one echelon and time period causally influence outcomes at other echelons in 
future periods, providing insights that current methods cannot capture. However, 
computational complexity remains a significant challenge when applying these methods to 
large-scale supply networks with many variables and extended time horizons. 

The integration of foundation models with domain-specific analytics represents an emerging 
trend across multiple industries, with supply chain management poised to benefit 
significantly from these developments [24]. Research on the impact of foundation models on 
digital engineering for logistics and supply chain operations has outlined potential 
applications ranging from demand sensing to automated decision-making [25]. Studies 
examining how foundation models can process multi-modal supply chain data including 
documents, sensor readings, and transactional records suggest broad applicability across 
various supply chain functions. However, most existing work treats foundation models 
primarily as forecasting or classification tools rather than as components of causal inference 
systems. The opportunity to leverage foundation models' representational capacity for 
learning causal structures in supply networks remains largely unexplored, motivating the 
integrated framework proposed in this research. 

Empirical studies examining the impact of supply chain structural factors on operational 
performance have consistently demonstrated that network configuration significantly 
influences system dynamics [26]. Research investigating the relationship between echelon 
count, node density, and demand amplification has revealed nonlinear relationships that 
challenge simple intuitions about network design [27]. Studies comparing serial versus 
divergent network structures have shown that topology fundamentally alters propagation 
dynamics, with divergent networks exhibiting different amplification characteristics 
compared to purely serial configurations [28]. However, these empirical findings have not 
been fully integrated with causal modeling frameworks that could explain the mechanisms 
underlying observed structural effects [29]. Understanding the causal pathways through 
which structural parameters influence demand propagation remains an important gap that 
our research addresses through the integration of network structural analysis with temporal 
causal discovery methods. 



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025 

ISSN: 3079-6369  

 

119 

3. Methodology 

3.1 Framework Architecture and Foundation Model Integration 

The proposed framework integrates foundation models with causal discovery algorithms 
through a multi-stage architecture designed specifically for multi-echelon supply network 
analysis. The foundation model component serves as a powerful feature extractor and pattern 
recognition system, leveraging pre-trained knowledge from large-scale datasets to identify 
relevant features and relationships in supply chain data. We employ a transformer -based 
architecture adapted for multivariate time series analysis, building upon recent advances in 
temporal foundation models that have demonstrated superior performance in forecasting 
tasks across diverse domains. The model processes historical demand data, inventory levels, 
order quantities, and operational parameters from all echelons simultaneously, generating 
rich embeddings that capture complex inter-temporal and inter-echelon dependencies. These 
embeddings provide a learned representation space where causal relationships can be more 
readily identified compared to raw input features, effectively serving as a dimensionality 
reduction mechanism that preserves causally relevant information while filtering noise.  

The integration between foundation model outputs and causal discovery procedures occurs 
through a specialized interface module that translates learned embeddings into structures 
suitable for causal inference. This module employs attention mechanisms to identify which 
variables and time lags are most relevant for causal analysis, effectively performing variable 
selection based on the foundation model's learned representations. We utilize self-attention 
layers to compute importance scores for each variable pair across different temporal offsets, 
generating a preliminary connectivity matrix that guides subsequent causal discovery. The 
foundation model's ability to process long sequences enables consideration of extended time 
horizons when identifying causal relationships, capturing delayed effects that may span 
multiple ordering cycles or production periods. This extended temporal scope is particularly 
important in multi-echelon settings where lead times and batching behaviors can create 
substantial delays between causal influences and observed effects [30]. 

The causal discovery component implements a hybrid approach combining constraint-based 
and score-based methods to construct causal graphs representing supply network dynamics. 
Constraint-based methods employ conditional independence tests to identify causal 
relationships, exploiting the principle that causes and effects exhibit statistical dependencies 
that cannot be explained by common causes or mediating variables. We implement an 
enhanced version of the PC algorithm adapted for temporal data, incorporating domain 
knowledge about supply chain constraints to prune impossible causal edges and improve 
computational efficiency. The score-based component evaluates candidate graph structures 
using a fitness function that balances model complexity against explanatory power, employing 
gradient-based optimization to search the space of possible causal graphs efficiently. By 
combining these approaches, we leverage the computational efficiency of constraint-based 
methods with the flexibility of score-based scoring, yielding more robust causal discovery 
results than either approach alone. 

3.2 Temporal Graph Neural Network Architecture for Multi-Echelon Representation 

The graph neural network component provides the structural backbone for representing 
multi-echelon supply networks and propagating information across network tiers during both 
training and inference. We employ a specialized temporal graph convolutional architecture 
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that captures how network structures evolve over time, accommodating the dynamic nature 
of supply chain relationships. The architecture explicitly models temporal graph snapshots at 
different time steps, where each snapshot represents the supply network configuration and 
state variables at a specific point in time. Figure 1 illustrates the temporal evolution of graph 
structures, showing how nodes and edges representing supply chain entities and their 
relationships change across consecutive time periods. The notation V_{t-M+1}, V_t, and V_{t+H} 
denote graph snapshots at different temporal positions, where edge weights w_{ij} represent 
the strength of causal or informational connections between nodes i and j at each time step. 

 

 

Figure 1: the temporal evolution of graph structures 

Each echelon in the supply network corresponds to a node in the graph, with edges 
representing supplier-customer relationships or information flows between echelons. The 
graph structure encodes both the topology of the physical supply network and the temporal 
dependencies between time periods, creating a spatio-temporal graph that captures the full 
complexity of multi-echelon dynamics. Node features include time-series data for demand, 
inventory, orders, and relevant operational parameters, while edge features encode lead 
times, transportation costs, and other relationship-specific characteristics. The temporal 
dimension is critical because supply chain causality operates across time, where decisions 
made at one echelon in period t influence outcomes at other echelons in periods t+1, t+2, and 
beyond. 

The message-passing mechanism in our temporal graph neural network architecture 
implements a multi-hop aggregation scheme that allows information from distant echelons to 
influence local computations through iterative message exchanges. At each layer, nodes 
aggregate information from their neighbors using learned attention weights that determine 
the relative importance of different connections. This attention-based aggregation enables the 
network to focus on the most causally relevant relationships while downweighting spurious 
or indirect connections. We incorporate temporal attention mechanisms that allow the model 
to selectively attend to different time lags when computing representations, capturing both 
immediate and delayed causal effects. The combination of spatial graph convolution and 
temporal attention creates a powerful representational framework capable of modeling th e 
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complex dynamics characteristic of multi-echelon supply systems, where the impact of a 
demand shock at the retail level may take several periods to fully propagate to upstream 
manufacturing and supplier echelons. 

The training procedure for the temporal graph neural network employs a multi-task learning 
approach that simultaneously optimizes for demand forecasting accuracy and causal structure 
discovery. The forecasting task provides supervision through standard time-series prediction 
objectives, training the network to accurately predict future demand and inventory levels 
based on historical observations. The causal discovery task introduces additional objectives 
that encourage the learned attention weights to align with genuine causal relationships rather 
than mere predictive correlations. We implement this through a causality-aware loss function 
that penalizes attention patterns inconsistent with identified causal structures, creating a 
feedback loop between causal discovery and representation learning. This joint training 
approach ensures that the learned representations capture causally relevant features while 
the causal structures reflect the dependencies that matter for prediction. The architecture is 
designed to handle varying network sizes and configurations, allowing analysis of supply 
chains ranging from simple three-tier structures to complex networks with dozens of 
echelons and hundreds of participating entities. 

3.3 Causal Inference and Structural Impact Analysis 

The causal inference module implements specialized algorithms for identifying demand 
propagation patterns and quantifying causal effects in multi-echelon settings. We employ 
structural equation models to represent the causal relationships between variables at 
different echelons and time periods, encoding both direct causal effects and mediated 
influences that propagate through intermediate echelons. The structural equations 
incorporate learnable parameters that quantify the strength and direction of causal 
relationships, enabling estimation of how changes in demand at one echelon causally 
influence orders, inventory, and downstream outcomes. Parameter estimation proceeds 
through a two-stage approach that first identifies the causal structure using the temporal 
graph neural network representations, then estimates effect sizes using regression-based 
methods conditional on the discovered structure. 

A critical component of our methodology involves analyzing how supply chain structural 
parameters causally influence demand propagation dynamics. We systematically investigate 
three key structural factors that determine multi-echelon network configuration: the number 
of echelons (E), representing supply chain depth or the number of processing stages products 
traverse; the number of nodes at each echelon (N), indicating the breadth or parallel capacity 
at each tier; and the divergence factor (DivF), capturing the degree to which the network 
branches from concentrated upstream sources to distributed downstream nodes. These 
structural parameters fundamentally shape how demand signals propagate through the 
network and how amplification effects accumulate across echelons. Our causal analysis 
framework enables quantification of how variations in these structural parameters causally 
affect key performance metrics such as order variance amplification, inventory volatility, and 
system responsiveness to demand changes. 

Demand propagation analysis leverages the identified causal structures to trace how demand 
shocks at the customer-facing echelon cascade through upstream tiers, quantifying both the 
magnitude of amplification and the temporal dynamics of propagation. We compute causal 
path effects by multiplying edge weights along paths from customer demand to upstream 
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echelons, identifying which pathways contribute most significantly to demand amplification. 
This analysis reveals not only the overall degree of bullwhip effect but also the specific causal 
mechanisms through which amplification occurs, such as order batching, forecast updating, or 
safety stock adjustments. The framework tracks these effects across multiple time periods, 
characterizing both short-term shock transmission and long-term equilibrium impacts. This 
temporal decomposition provides insights into transient versus persistent demand 
amplification phenomena, informing different types of intervention strategies. 

The counterfactual reasoning capabilities of our framework enable assessment of 
intervention effects before implementation, supporting data-driven decision-making for 
supply chain management. Given the identified causal structure, we can simulate how 
modifications to ordering policies, lead times, or information sharing practices would impact 
demand propagation patterns throughout the network. These counterfactual simulations 
employ do-calculus to properly account for confounding effects and feedback loops, ensuring 
that predicted intervention effects reflect genuine causal impacts rather than spurious 
associations. The framework generates probabilistic predictions of intervention outcomes, 
quantifying uncertainty in estimated effects to support robust decision-making under 
incomplete information. This capability enables supply chain managers to explore various 
intervention scenarios and select strategies with the highest expected benefit and lowest risk 
of unintended consequences, using the causal model to understand why certain interventions 
work and predict their effects in untested configurations. 

4. Results and Discussion 

4.1 Structural Parameter Impact on Demand Amplification 

The application of our framework to multi-echelon supply network configurations reveals 
profound impacts of structural parameters on demand amplification patterns. Analysis across 
varying levels of echelon count (E), node density (N), and divergence factor (DivF) 
demonstrates highly nonlinear relationships between network structure and performance 
metrics. Figure 2 presents the peak amplification ratio (PeakRO1/E4) observed across 
different structural configurations, where the amplification ratio quantifies how much order 
variance at the highest echelon exceeds customer demand variance. The notation E4 
represents the fourth echelon or highest tier in the analyzed networks, while the peak metric 
captures the maximum amplification experienced across all simulation scenarios for each 
configuration. 
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Figure 2: the peak amplification ratio across different structural configurations 

The results reveal that echelon count exerts the strongest causal influence on demand 
amplification among the examined structural parameters. Low echelon configurations (EL) 
with minimal intermediary stages exhibit baseline amplification near unity, indicating 
negligible distortion of demand signals. Medium echelon structures (EM) show modest 
amplification approaching threefold, suggesting that even moderate supply chain depth 
introduces significant information distortion. However, high echelon configurations (EH) 
demonstrate dramatic amplification exceeding fiftyfold, representing catastrophic signal 
degradation where upstream production planning becomes almost completely decoupled 
from actual customer demand. This extreme sensitivity to echelon count validates theoretical 
predictions that each additional supply chain tier introduces compounding forecasting errors 
and inventory adjustment dynamics that multiplicatively amplify variability. The causal 
pathway analysis reveals that amplification compounds exponentially rather than linearly 
with echelon additions, as each tier's forecasting and ordering decisions build upon the 
already-distorted signals from downstream echelons. 

Node density (N) and divergence factor (DivF) exhibit more moderate but still substantial 
impacts on amplification dynamics. Configurations with higher node counts at each echelon 
(NM, NH) show progressive increases in amplification, though the effect magnitude remains 
considerably smaller than echelon count impacts. This pattern suggests that parallel capacity 
and redundancy within echelons create opportunities for localized demand pooling and 
information aggregation that partially mitigate amplification, yet cannot fully overcome the 
fundamental signal degradation introduced by multi-tier structures. The divergence factor 
similarly demonstrates modest amplification increases, with highly divergent networks 
(DivFH) exhibiting approximately sixty percent higher peak amplification compared to low 
divergence configurations (DivFL). These findings indicate that network branching and 
distribution complexity contribute meaningfully to demand distortion, likely through 
increased coordination challenges and information asymmetries across parallel pathways. 

Comparative analysis with baseline methods demonstrates the superior performance of our 
causal framework in identifying genuine structural relationships while filtering spurious 
correlations. Traditional regression approaches treating all structural parameters as 
independent predictors consistently overestimate the impacts of node density and divergence 
while underestimating echelon count effects, failing to capture the hierarchical depende ncy 
structure where echelon count acts as a primary driver that moderates other parameter 
influences. Methods based solely on Granger causality frequently misidentify relationships 
between node density and amplification as directly causal, when our framewo rk reveals these 
connections are largely mediated through indirect pathways involving coordination costs and 
forecast aggregation mechanisms. The temporal graph neural network component proves 
particularly effective at distinguishing between direct structural effects and indirect 
consequences propagated through network dynamics over multiple time periods. 

4.2 Temporal Demand Propagation Patterns and Mechanisms 

Analysis of temporal demand propagation reveals distinct dynamic signatures associated with 
different supply chain structural configurations. Figure 3 presents time-series visualizations 
of demand patterns observed at the retail echelon (customer-facing tier) for six 
representative network configurations. The upper row (panels a, b, c) displays patterns under 
stable baseline conditions, while the lower row (panels d, e, f) shows responses to significant 
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demand shocks or market disruptions. Each panel represents demand fluctuations over an 
extended time horizon spanning multiple replenishment cycles, enabling observation of both 
transient dynamics and longer-term equilibrium behavior. 

 

Figure 3: time-series visualizations of demand patterns 

Panel (a) demonstrates the characteristic low-variance pattern of simple supply chain 
structures with minimal echelon count and low divergence. Demand fluctuations remain 
tightly bounded around the mean, with smooth temporal evolution exhibiting minimal high -
frequency oscillations. This pattern reflects efficient signal transmission where each echelon's 
ordering decisions closely track actual customer demand without introducing substantial 
distortion or delay. The causal analysis reveals that such configurations maintain strong 
direct causal pathways from customer demand to upstream production decisions, minimizing 
the accumulation of forecasting errors and inventory adjustment overshoots that characterize 
more complex structures. However, the simplicity comes at potential cost of reduced 
flexibility and limited capacity to buffer against localized disruptions. 

Panel (b) illustrates demand patterns in networks with moderate structural complexity, 
characterized by medium echelon counts and some degree of divergence. The temporal 
evolution shows increased variability compared to panel (a), with periodic fluctuations 
exhibiting clear cyclical components. Notably, variance concentrates in specific temporal 
regions corresponding to coordination points where multiple parallel channels synchronize 
replenishment activities. This clustering effect emerges from the causal mechanism whereby 
independent forecasting and ordering decisions across parallel nodes at the same echelon 
occasionally align, creating synchronized demand surges that propagate upstream. The 
pattern validates theoretical predictions that divergent structures can amplify volatility 
through temporal concentration even when absolute variance remains moderate, suggesting 
that coordination mechanisms to desynchronize ordering cycles could substantially improve 
stability. 



Frontiers in Applied Physics and Mathematics Volume 2 Issue 1, 2025 

ISSN: 3079-6369  

 

125 

Panel (c) depicts the complex, high-variance patterns characteristic of elaborate multi-
echelon networks with substantial depth and divergence. Demand exhibits persistent high -
frequency oscillations overlaid on longer-period cyclical variations, creating a chaotic 
temporal signature that severely complicates upstream planning. The causal framework 
identifies multiple interacting mechanisms generating this complexity: each echelon 
introduces independent forecasting errors that compound across tiers; long lead times create 
extended delays between cause and effect; and feedback loops amplify small disturbances as 
inventory adjustments at one echelon trigger reactive responses at others. This pattern 
represents the failure mode where structural complexity overwhelms information 
transmission capability, resulting in demand signals at upstream echelons bearing minimal 
resemblance to actual customer needs. 

The lower panels reveal how different structural configurations respond to demand shocks, 
providing insights into resilience and recovery dynamics. Panel (d) sho ws shock response in 
low-divergence serial networks, characterized by clear propagation waves where the 
disturbance travels upstream through successive echelons with decreasing amplitude over 
time. This damped oscillatory response indicates inherent stability in simple structures, 
where each echelon's inventory buffers absorb and attenuate shocks rather than amplifying 
them. The temporal decay pattern validates that well-designed serial chains can achieve rapid 
recovery, with demand patterns returning to baseline within three to four replenishment 
cycles after initial disturbance. However, the causal analysis reveals vulnerability to 
synchronized shocks that hit multiple echelons simultaneously, potentially overwhelming the 
damping mechanisms that operate effectively for single-point disturbances. 

Panel (e) illustrates shock responses in highly divergent networks, where amplification 
concentrates dramatically in primary channels handling the majority of volume. The temporal 
pattern shows rapid initial amplification followed by extended high-variance periods as the 
shock reverberates through parallel pathways. Causal analysis reveals this stems from 
asymmetric information and capacity distribution across divergent channels, where high -
volume pathways respond aggressively to perceived scarcity while lower-volume channels lag, 
creating temporal misalignment that prolongs system disturbance. The recovery period 
extends substantially beyond simple serial structures, requiring eight to ten cycles to stabilize. 
This finding suggests that divergent architectures trade improved baseline flexibility for 
reduced shock resilience, motivating hybrid designs that combine divergence for flexibility 
with enhanced information sharing to maintain coordination during disruptions. 

Panel (f) depicts the most severe response pattern observed in high-echelon networks facing 
significant demand shocks. The temporal evolution shows sustained high-amplitude 
oscillations that persist far beyond the initial disturbance, with variance remaining elevated 
even after twenty or more replenishment cycles. The causal mechanism underlying this 
pathological behavior involves positive feedback loops where inventory shortages at 
intermediate echelons trigger panic ordering that further depletes upstream inventories, 
creating cascading scarcity signals that take extended periods to resolve. The framework 
identifies specific causal pathways through which misinformation propagates: each echelon 
interprets downstream surges as genuine demand increases rather  than inventory 
adjustment artifacts, leading to synchronized overproduction followed by destocking phases. 
These findings validate that certain structural configurations lack inherent stability 
mechanisms, requiring explicit intervention through enhanced information sharing or 
coordinated inventory management to prevent runaway amplification. 
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Comparison with traditional demand forecasting approaches reveals significant advantages of 
the causal framework for understanding and predicting propagation dynamics . Methods 
based purely on time-series analysis of individual echelon demands fail to capture the 
mechanistic relationships generating observed patterns, leading to poor out-of-sample 
predictions when structural conditions change. Approaches using machine learning for 
pattern recognition achieve better short-term forecasting but cannot explain why certain 
patterns emerge or predict responses to novel structural modifications. The causal 
framework's ability to decompose observed dynamics into specific mechanisms operating 
across echelons enables both accurate prediction and actionable insights for intervention 
design, representing a fundamental advance over black-box forecasting methods that 
optimize prediction accuracy at the expense of interpretability and transferability. 

4.3 Implications for Supply Chain Design and Management 

The empirical findings from our causal analysis framework carry profound implications for 
supply chain design and operational management. The demonstrated sensitivity of demand 
amplification to structural parameters, particularly echelon count, suggests that supply chain 
simplification through disintermediation and tier reduction should be prioritized as a primary 
strategy for improving system stability. Organizations facing chronic bullwhip effects should 
evaluate whether all existing echelons add sufficient value to justify the demand distortion 
they introduce, considering vertical integration or direct sourcing relationships that eliminate 
unnecessary intermediaries. However, the analysis also reveals that simplification must be 
balanced against other objectives such as risk diversification and market responsiveness, as 
the most stable structures may lack the flexibility required to adapt to changing market 
conditions. 

The identification of specific causal pathways driving amplification enables targeted 
interventions that address root causes rather than symptoms. For networks where high 
echelon count creates unavoidable complexity, our framework reveals that information 
sharing initiatives providing upstream visibility into end-customer demand offer the most 
effective mitigation strategy. Counterfactual analysis using the causal model demonstrates 
that such transparency interventions can reduce amplification by thirty to forty percent even 
in structurally complex networks, essentially short-circuiting the multi-tier forecasting 
cascades that generate compounding errors. Organizations should prioritize implementation 
of vendor-managed inventory, collaborative forecasting, or demand signal repositories that 
provide upstream partners direct access to point-of-sale data rather than filtered order 
information. 

The temporal dynamics revealed through propagation pattern analysis highlight the 
importance of time-based interventions that target specific phases of demand cycles. For 
divergent networks exhibiting temporal concentration effects, organizations should 
implement desynchronization mechanisms that spread replenishment activities across time 
rather than allowing natural alignment to create demand surges. This could involve assigning 
different review periods or ordering cycles to parallel channels, essentially trading increased 
coordination complexity for reduced variance amplification. The framework's ability to 
predict optimal desynchronization patterns based on specific network structures enables 
customized intervention design rather than generic best practices that may be suboptimal for 
particular configurations. 
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5. Conclusion 

This research presents a novel framework integrating foundation models with causal 
discovery techniques to analyze demand propagation in multi-echelon supply networks. By 
combining the representational power of large-scale pre-trained models with rigorous causal 
inference methodologies, we address fundamental limitations of traditional correlation-based 
analytics that have long hindered effective supply chain management. The framework 
successfully identifies complex causal structures governing supply network dynamics, 
revealing both established relationships and previously unrecognized dependencies that 
significantly influence system behavior. Our results demonstrate that explicit causal modeling 
substantially improves both explanatory power and predictive performance compared to 
conventional approaches, enabling more informed decision-making and targeted 
interventions. 

The integration of temporal graph neural networks with causal discovery algorithms proves 
particularly effective for representing multi-echelon structures and capturing spatio-temporal 
dependencies inherent in supply chain systems. This methodological combination allows 
simultaneous consideration of network topology, temporal dynamics, and causal relationships 
within a unified analytical framework. The discovered causal structures provide actionable 
insights for supply chain practitioners, identifying specific mechanisms driving demand 
amplification and suggesting targeted interventions to improve network performance. 
Empirical validation demonstrates that structural parameters, particularly echelon count, 
exert profound causal influences on demand propagation, with high-echelon configurations 
exhibiting amplification ratios exceeding fifty times baseline levels. The temporal evolution 
analysis reveals distinct propagation patterns across different network structures, with 
complex configurations exhibiting persistent oscillatory behavior that severely complicates 
upstream planning. 

Counterfactual analysis capabilities enable prospective evaluation of policy changes before 
implementation, supporting data-driven optimization of supply chain operations. The 
framework's ability to simulate intervention effects accounting for complex causal 
dependencies and feedback loops represents a significant advance over traditional 
optimization methods that assume linear relationships or ignore temporal dynamics. 
Organizations can leverage these capabilities to explore various intervention scenarios, 
comparing expected benefits of structural redesign, information sharing initiatives, and policy 
modifications within a unified framework that properly accounts for causal mechanisms 
rather than relying on correlational predictions that may mislead when system conditions 
change. 

Several directions for future research emerge from this work. Extensions to incorporate 
unstructured data sources such as news articles, social media sentiment, and supplier 
communications could enhance the framework's ability to anticipate disruptions and demand 
shifts before they manifest in historical order patterns. The development of real-time causal 
discovery methods that continuously update causal structures as new data arrives would 
enable adaptive supply chain management systems responsive to changing conditions, 
moving beyond static models that assume stable relationships. Investigation of interventio n 
design algorithms that automatically identify optimal policy modifications based on 
discovered causal structures represents another promising avenue, potentially yielding 
decision support systems that recommend specific actions rather than merely diagnos ing 
problems. Validation of the framework across diverse industry contexts and network 
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configurations remains important for establishing its generalizability and practical utility 
beyond the simulation environments used in this study. 

The convergence of foundation models, causal inference, and supply chain analytics 
represents a significant paradigm shift with far-reaching implications for how organizations 
understand and manage complex supply networks. As these technologies mature and become 
more accessible, their adoption promises to transform supply chain management from 
reactive problem-solving toward proactive optimization grounded in deep understanding of 
causal mechanisms. This research contributes to this transformation by demonstrating the 
feasibility and value of integrated causal-foundation model approaches, establishing a 
foundation for continued advancement in this emerging field. The explicit incorporation of 
temporal graph structures and systematic analysis of structural parameter impacts provides 
both theoretical insights into multi-echelon dynamics and practical guidance for network 
design that balances efficiency, stability, and adaptability in increasingly complex global 
supply systems. 
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