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Abstract 

With the deep penetration of blockchain technology across various fields, its security 
system faces severe challenges, and fraudulent activities are becoming increasingly 
frequent. This study focuses on the problem of fraud detection in blockchain and 
proposes an innovative model, FraudGNN, based on Graph Neural Networks (GNN). The 
model constructs a dynamic transaction graph, where transaction addresses are 
treated as nodes and asset transfer relationships as edges, incorporating time-series 
features. A Graph Attention Network (GAT) is used to extract behavioral features from 
node neighborhoods. In addition, a Bidirectional Long Short-Term Memory network 
(Bi-LSTM) is introduced to capture behavioral paths across block-level transactions, 
enabling accurate classification and prediction of abnormal accounts within blockchain 
networks. Experiments conducted on an Ethereum transaction dataset—containing 
approximately 3.6 million transaction records and 40,000 labeled addresses—show 
that the FraudGNN model significantly outperforms traditional methods such as 
Random Forest and Graph Convolutional Networks (GCN) in key metrics, achieving 
91.2% precision, 87.5% recall, and an F1-score of 89.3%. In particular, the model 
demonstrates stronger generalization and reasoning capabilities when identifying 
previously unseen addresses, offering solid technical support for improving blockchain 
security systems. 
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1. Introduction 

Blockchain technology, as an innovative paradigm based on distributed ledger systems, has 
attracted widespread attention since its emergence [1]. With core features such as 
decentralization, immutability, and traceability, it has been actively explored and applied 
across various domains globally [2]. In the financial sector, blockchain has significantly 
improved traditional cross-border payment processes. Conventional interbank remittances 
are limited by complex clearing procedures and the involvement of intermediaries, usually 
requiring 2 to 5 working days for fund settlement [3]. In addition, transaction fees typically 
remain high, averaging between 3% and 5%. In contrast, blockchain-based cross-border 
payment systems—such as Ripple’s distributed network—utilize distributed ledgers and 
smart contracts to reduce settlement times to a few hours, or even achieve real-time transfers 
[4]. Meanwhile, transaction costs can be lowered to one-tenth to one-fifth of those in 
traditional systems. The significant improvement in fund transfer efficiency and increased 
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transparency ensures that each transaction can be clearly traced throughout the blockchain 
network [5]. This effectively reduces both transaction risks and uncertainties. 

In the field of supply chain management, the application of blockchain technology has brought 
transformative changes to product lifecycle tracking. Taking a well-known international 
luxury brand as an example, the introduction of blockchain allowed it to raise product 
traceability accuracy to over 99.2%. By building a blockchain-based distributed ledger, 
consumers can scan a code on their mobile devices to access complete information—from the 
origin of raw materials and manufacturing, to warehousing, logistics and final sale [6,7]. This 
greatly improves the transparency and reliability of product information and effectively curbs 
the spread of counterfeit goods in the supply chain. According to statistics, in the first year of 
adopting blockchain technology, the brand saw an approximate 40% year-on-year reduction 
in economic losses caused by counterfeit products [8]. This highlights the practical value of 
blockchain in supply chain management. In the healthcare sector, blockchain has created new 
opportunities for the management and sharing of medical data [9]. In a regional healthcare 
alliance project, the adoption of blockchain significantly increased data-sharing efficiency—by 
about 60% compared to traditional systems [10]. The average time for researchers to access 
patient data for scientific studies was reduced from 15 days to less than 5 days. By combining 
encryption techniques and distributed storage, blockchain ensures the security and privacy of 
patient records [11]. At the same time, smart contracts enable compliant and efficient data 
circulation, providing strong support for medical research, remote healthcare and other 
advanced applications [12]. However, as the blockchain ecosystem rapidly expands and 
diversifies, its security vulnerabilities have become increasingly evident. The openness and 
anonymity inherent in blockchain networks, while offering convenience to legitimate users, 
also provide opportunities for malicious actors [13]. From early double-spending attacks in 
the Bitcoin network to recent large-scale asset thefts caused by vulnerabilities in Ethereum 
smart contracts, blockchain-related fraud has evolved into more diverse and complex forms 
[14]. According to a report released by a recognized cybersecurity organization, blockchain 
fraud in 2024 resulted in global economic losses reaching USD 4.5 billion, with more than 3 
million individual investors and over 5,000 corporate users affected [15]. These incidents not 
only cause substantial financial damage but also seriously undermine public trust and the 
sustainable development of blockchain technology. 

Common types of blockchain fraud include fabricated transactions, address-based scams, and 
Ponzi schemes. These fraud activities are typically highly covert and technically sophisticated. 
In cases involving fake transactions, fraudsters create fictitious blockchain records and asset 
transfer paths to mislead users or manipulate cryptocurrency market prices [16,17]. Data 
from market monitoring agencies indicate that approximately 0.5% to 1% of daily 
transactions on major cryptocurrency platforms are suspected to be fraudulent. 
Address-based scams exploit the anonymity of blockchain addresses to deceive users into 
transferring assets to fraudulent addresses. Given the irreversible nature of blockchain 
transactions, victims usually find it extremely difficult to recover transferred funds [18]. 
Studies show that around 80% of victims in such scams are unable to retrieve their assets 
once the transaction is completed. Ponzi schemes remain prevalent in the blockchain domain 
[19]. In these cases, fraudsters lure investors with promises of high returns and use funds 
from new participants to pay earlier ones, thereby creating an illusion of profitability [20]. 
When the scheme reaches a certain scale, the perpetrators disappear with the collected funds. 
In the past year alone, over 200 Ponzi schemes related to blockchain were publicly reported, 
involving a total amount exceeding USD 1.2 billion. Traditional detection methods based on 
rule-matching or simple statistical analysis are increasingly ineffective in identifying such 
complex and dynamic fraudulent behaviors. Rule-based methods rely on predefined 
transaction rules and patterns, making them inflexible in adapting to rapidly evolving fraud 
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strategies [21]. Simple statistical approaches can only analyze superficial features of 
transaction data and are unable to capture deeper relational structures or hidden behavioral 
patterns [22]. As a result, the development of accurate and efficient blockchain fraud 
detection technologies has become a critical and urgent research direction in the field of 
blockchain security. 

In recent years, Graph Neural Networks (GNNs) have emerged as a promising technique in 
artificial intelligence, achieving notable progress in complex network analysis tasks [23,24]. 
Given the natural graph-structured characteristics of blockchain transaction data—where 
each transaction address can be represented as a node and asset flows as edges—GNNs are 
well-suited to the fraud detection needs of blockchain systems [25]. By constructing 
transaction graphs and applying GNNs’ graph representation learning capabilities, it becomes 
possible to extract both node features and inter-node relationship features, thereby 
improving the accuracy of fraud detection [26]. Graph Attention Networks (GATs), for 
instance, introduce attention mechanisms that allow the model to assign different weights to 
neighboring nodes. This enables the network to focus on behaviorally relevant interactions, 
enhancing the extraction of features that are strongly correlated with fraudulent activities. 
Moreover, by integrating GNNs with Recurrent Neural Networks (RNNs) or Long Short-Term 
Memory (LSTM) networks, the model can capture the temporal evolution and long-range 
dependencies of transaction sequences, allowing for more precise identification of fraud 
patterns over time [27]. Empirical studies have demonstrated that GNNs outperform 
traditional machine learning methods in key blockchain tasks such as anomaly detection and 
node classification. In a dedicated study on Ethereum, a GNN-based fraud detection model 
achieved a 15% to 20% improvement in precision over conventional models [28]. This study 
aims to investigate blockchain fraud detection methods based on Graph Neural Networks. 
Through innovative transaction graph construction and behavioral path analysis, we propose 
an efficient model named FraudGNN, and verify its effectiveness and superiority through 
large-scale experiments in practical application scenarios. 

2. Methodology 

2.1. Transaction Graph Construction 

To accurately model blockchain transactions, a dynamic transaction graph with time-series 
characteristics is constructed. Transaction addresses—covering individuals, enterprises, and 
smart contract accounts—are treated as nodes. Asset transfer relationships are treated as 
directed edges, with the direction indicating the flow of assets from the sending address to the 
receiving address [29]. Since transaction timing is critical for detecting fraud-related patterns, 
each edge is assigned a precise timestamp. This enables the identification of abnormal 
behaviors, such as high-frequency operations in short time windows or rapid fund 
movements. Raw records are extracted from the underlying blockchain. A data parsing 
algorithm is applied to accurately retrieve information such as transaction addresses, transfer 
amounts, and timestamps. Edges are generated according to transaction records and 
annotated with the corresponding time information. As new transactions occur, the graph is 
updated in real time. This ensures that the transaction graph remains current and forms a 
reliable foundation for subsequent analysis. 

2.2. Feature Extraction Using Graph Attention Network (GAT) 

Based on the constructed dynamic transaction graph, a Graph Attention Network (GAT) is 
applied to deeply extract behavioral features from the neighborhood of each node. GAT 
employs an attention mechanism to adaptively learn the importance of neighboring nodes in 
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relation to the target node. For a node i, with neighborhood  Ni, the updated node 
representation hi′ is computed as:  

 ℎ𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗𝑗∈𝑁𝑖

𝑊ℎ𝑗) (1) 

Here, σ denotes an activation function such as ReLU, enhancing the network’s ability to 
capture non-linear patterns. W  is a trainable weight matrix. The attention coefficient αij is 

computed as follows:  

 αij =
exp(eij)

∑ exp(k∈Ni
eik)

 (2) 

where eij = LeakyReLU(aT[Whi||Whj]) In this expression, aT is a learnable vector, and the 

LeakyReLU activation function is adopted to address the gradient vanishing issue on the 
negative half-axis of ReLU. After 50 training epochs, the validation loss converged to around 
0.3, indicating that the GAT model could effectively assign attention weights. Analysis shows 
that when the transaction frequency in a node’s neighborhood exceeds twice the average and 
there are abnormal fund fluctuations, the likelihood of the target node being fraudulent 
increases by approximately 30%. 

2.3. Capturing Behavioral Paths Using Bidirectional LSTM 

The node feature sequence extracted by GAT is fed into a Bidirectional Long Short-Term 
Memory (Bi-LSTM) network to capture behavioral paths along transaction chains across 
multiple blocks. The Bi-LSTM processes the time-series data in both forward and backward 
directions, allowing it to fully capture long-range dependencies. Given an input sequence  

 X = [x1, x2, ⋯ , xT], (3) 

the forward and backward hidden states are computed as:  

 h⃗ t = LSTM⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(h⃗ t−1, xt); h⃖⃗t = LSTM⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (h⃖⃗t+1, xt) (4) 

The final output at each time step is:  

 ht = [h⃗ t; h⃖⃗t] (5) 

Analysis of transaction chain data shows that fraudulent behavior often follows a specific 
pattern: an initial phase of small test transactions (100–500 units of cryptocurrency over 3–5 
transfers), followed by a large-scale transfer exceeding 5,000 units. The Bi-LSTM effectively 
captures such patterns. Compared with the unidirectional LSTM, it improves the accuracy of 
detecting complex behavioral paths by approximately 12%. 

2.4. Classification Prediction 

The features output by the Bi-LSTM are passed through a fully connected layer. A Softmax 
function is then applied to calculate the probability of each node being a normal or fraudulent 
account. The probability is computed as:  

 P(y = k|x) =
eWk

Tx+bk

∑ e
Wj

Tx+bjC
j=1

 (6) 

Here, P(y = k|x) represents the probability that the input xxx belongs to class k ;  Wk 
and bk denote the weight and bias of the fully connected layer; and C = 2 indicates binary 
classification of account types. During training, the Adagrad optimizer is used with a learning 
rate of 0.001. After 100 iterations, the model achieves a training accuracy exceeding 85%. The 
model learns the mapping between the transaction graph structure and fraud labels. During 
prediction, node classification is determined based on the output probabilities from the 
Softmax function. For a test set of 1,000 samples, the model processes 100 samples in 
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approximately 5 seconds. This efficiency meets the requirements of fraud detection tasks that 
do not demand real-time response. 

3. Results and Discussion 

3.1. Experimental Setup 

This study conducts experimental analysis based on an Ethereum transaction dataset, which 
contains approximately 3.6 million transaction records and 40,000 labeled addresses. The 
address labels are clearly categorized into two types: normal addresses and fraudulent 
addresses. To ensure the reliability and generalizability of the experimental results, the 
dataset is divided into training set (70%), validation set (15%), and test set (15%). For 
evaluation, three standard metrics are selected: Precision, Recall, and F1-score. The proposed 
model is compared with two baseline methods: Random Forest and Graph Convolutional 
Network (GCN). 

Precision measures the proportion of predicted fraudulent accounts that are actually 
fraudulent. It is calculated as:  

 Precision =
TP

TP+FP
 (7) 

where TP (True Positives) is the number of addresses correctly predicted as fraudulent, and 
FP (False Positives) is the number of addresses incorrectly predicted as fraudulent. 

Recall indicates the proportion of actual fraudulent accounts that are correctly identified by 
the model. The formula is: 

 Recall =
TP

TP+FN
 (8) 

where FN (False Negatives) is the number of fraudulent accounts incorrectly classified as 
normal. 

F1-score is a harmonic mean that balances Precision and Recall. It is calculated as: 

 F1 − score =
2×Precision×Recall

Precision+Recall
 (9) 

3.2. Experimental Results 

The performance of each model on both the test set and the scenario involving previously 

unseen addresses is summarized in the table below: 

 

Table 1: Performance comparison of different models on the test set and the unseen 
address scenario 

Model 
Type 

Precisi
on (Test 

Set) 

Recall 
(Test Set) 

F1 
Score (Test 

Set) 

Precisi
on (Unseen 
Addresses) 

Recall 
(Unseen 

Addresses) 

F1 
Score 

(Unseen 
Addresses) 

FraudG
NN 

91.2% 87.5% 89.3% 88.5% 84.3% 86.3% 

Rando
m Forest 

78.6% 75.3% 76.9% 65.2% 62.8% 64.0% 

GCN 85.4% 81.2% 83.2% 72.1% 69.4% 70.7% 
 

The FraudGNN model achieved significantly better performance than traditional methods 
across all key metrics, clearly highlighting its effectiveness and superiority in blockchain fraud 
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detection tasks. This experimental result also confirms that the FraudGNN model 
demonstrates stronger inference and generalization capabilities when applied to previously 
unseen addresses, enabling it to effectively identify novel types of fraudulent behavior. 

3.3. Result Analysis 

Ablation experiments show that both the GAT and Bidirectional LSTM modules play key roles 
in the FraudGNN model. When the GAT module is removed, the model’s precision decreases to 
82.3%, recall to 78.1%, and F1-score to 80.1%. When the Bidirectional LSTM module is 
removed, the precision reaches 86.7%, recall 83.0%, and F1-score 84.8%. These results 
clearly demonstrate that the GAT module effectively extracts neighborhood features of nodes, 
while the Bidirectional LSTM captures behavioral paths across block-level transaction chains. 
The two modules complement each other and significantly enhance the model’s ability to 
detect fraudulent behavior. Although GNN models present certain challenges in 
interpretability, analyzing the attention weights computed by the GAT module allows 
observation of which neighborhood nodes influence the model’s fraud prediction. 
Neighborhood nodes with high attention weights may be closely associated with fraudulent 
activity. Similarly, the hidden states output by the Bidirectional LSTM reflect how different 
positions in the transaction chain contribute to the final classification result. These internal 
signals offer partial interpretability of the model’s decisions, which helps improve the model’s 
transparency. 

4. Conclusion 

The FraudGNN model developed in this study demonstrates strong performance on the 
Ethereum transaction dataset. Compared with traditional methods, it shows clear advantages 
and outstanding inference ability when applied to scenarios involving new addresses. In 
practical applications, the model can be deployed on blockchain nodes or integrated into 
security monitoring platforms to support real-time transaction monitoring. For example, on a 
cryptocurrency trading platform, the model can analyze 1,000 transactions, with each 100 
transactions taking approximately 5 seconds to process. This enables timely detection of 
abnormal behavior and provides protection for user assets. Future improvements may 
include exploring more efficient graph neural network architectures to reduce computational 
complexity, thereby increasing detection speed by 20% to 30%. In addition, incorporating 
visualization techniques can help improve interpretability. Combining the model with 
features such as smart contract code analysis and node reputation assessment is expected to 
further improve fraud detection performance by 10% to 15%. 
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