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Abstract

Industrial manufacturing systems increasingly rely on tightly coupled operational
technology (OT) networks and heterogeneous hardware platforms, which exposes
them to sophisticated multi-stage cyber attacks that propagate across devices, control
logic, and production processes. Existing graph-based security analytics often overlook
OT process semantics and hardware constraints, resulting in unstable clustering
results and limited practical deployability. This paper proposes a Security-Constrained
Graph Neural Clustering framework for industrial manufacturing systems that
explicitly incorporates OT semantics and hardware constraints into attack-chain
analysis. The manufacturing environment is modeled as a heterogeneous graph
integrating OT assets, communication and control relationships, process-stage
dependencies, and device-level resource limitations. A security-oriented clustering
objective is designed to aggregate related assets into attack-chain communities while
enforcing OT-consistent propagation and hardware-feasible inference. The proposed
framework further enhances robustness under incomplete or noisy telemetry and
provides interpretable community-level risk indicators to support security operations.
Experimental results on industrial manufacturing datasets demonstrate that the
proposed approach achieves more coherent and stable attack-chain communities than
representative baselines, while maintaining computational efficiency suitable for
deployment in resource-constrained OT environments.
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1. Introduction

Industrial manufacturing systems are undergoing rapid digitalization, where operational
technology (OT) assets such as programmable logic controllers (PLCs), sensors, drives, and
supervisory workstations are increasingly interconnected to support high-efficiency and
automated production. While this connectivity improves productivity and flexibility, it also
significantly enlarges the cyber attack surface. Modern attacks on industrial environments
rarely occur as isolated incidents; instead, they unfold as multi-stage attack chains, in which
adversaries progressively move across OT assets, exploit control dependencies, and
ultimately impact production stability, product quality, or safety[19].

Traditional industrial cybersecurity solutions are largely event-driven, focusing on anomaly
detection or rule-based intrusion alerts at the device or network level. Although effective for
identifying individual suspicious behaviors, these approaches struggle to reconstruct the
global structure of an attack, especially in complex manufacturing systems where normal
operational traffic is dense and highly structured. As a result, security operators are often
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overwhelmed by fragmented alerts that lack contextual linkage, making it difficult to
understand how attacks propagate across the system and which assets form the true risk
core[17,18].

Graph-based security modeling provides a natural abstraction for industrial environments by
representing OT assets as nodes and their communication, control, and process dependencies
as edges. Recent advances in graph neural networks (GNNs) have further enabled learning
rich representations from such graphs, supporting tasks such as anomaly detection and
network analysis. However, most existing GNN-based methods are developed for IT or
abstract graph settings and do not adequately reflect industrial realities. In particular, they
often ignore OT process semantics (e.g., stage-wise production dependencies and control-loop
structures) and assume homogeneous, resource-rich hardware platforms, which limits their
stability and deployability in real manufacturing plants.Another critical limitation lies in
hardware constraints. Industrial systems consist of heterogeneous devices with strict real-
time requirements, limited computational resources, and uneven telemetry availability.
Security analytics that disregard these constraints may produce theoretically accurate results
but fail in practice due to excessive latency, unrealistic data assumptions, or deployment
infeasibility. Moreover, industrial telemetry is frequently incomplete or noisy because of
segmented networks, legacy protocols, and restricted logging, which further challenges
conventional clustering and learning approaches[15,16].

To address these challenges, this paper proposes a Security-Constrained Graph Neural
Clustering framework for industrial manufacturing systems. The proposed approach explicitly
incorporates OT semantics and hardware constraints into the clustering process, aiming to
group assets into attack-chain communities that reflect plausible adversarial propagation
paths rather than purely structural similarity. By modeling manufacturing environments as
heterogeneous graphs that integrate OT roles, communication and control relations, process-
stage dependencies, and device-level resource limitations, the framework enables security-
oriented clustering that is both interpretable and practically deployable[13,14].

The main contributions of this work are summarized as follows:

We introduce a security-constrained graph modeling approach that jointly captures OT
process structure and hardware feasibility in industrial manufacturing systems.

We design a security-oriented graph neural clustering mechanism that aggregates assets into
coherent attack-chain communities under OT and hardware constraints.

We demonstrate through experiments that the proposed framework achieves improved
attack-chain coherence, robustness to incomplete telemetry, and computational efficiency
suitable for OT environments. [1]-[5].

2. Theoretical Foundations

This section presents the theoretical foundations underlying the proposed security-
constrained graph neural clustering framework. We review key concepts from industrial OT
system modeling, attack-chain analysis, graph neural networks, and constraint-aware
learning, which together motivate the design of the proposed method.

2.1. Industrial OT Systems as Structured Graphs

Industrial manufacturing systems are representative cyber-physical systems (CPS) composed
of multiple OT layers, including field devices (sensors and actuators), control units (PLCs and
DCS), and supervisory components (HMI, SCADA, and engineering workstations). Interactions
among these components extend beyond simple network communication and include control
dependencies, timing constraints, and process-stage relationships. Modeling such systems as

26



Frontiers in Artificial Intelligence Research Volume 3 Issue 1, 2026
ISSN: 3079-6342

graphs is therefore a natural abstraction, where nodes correspond to OT assets and edges
encode communication, control, or process dependencies[11,12].

Unlike conventional IT networks, OT graphs are inherently heterogeneous and process-driven,
with topologies strongly constrained by production workflows and control logic. Effective
security analysis must explicitly account for these structural characteristics.[33].

2.2. Attack-Chain Perspective in Industrial Cybersecurity

Industrial cyber attacks typically manifest as multi-stage attack chains rather than isolated
anomalies. Adversaries often progress from peripheral or supervisory nodes toward critical
control components through lateral movement and privilege escalation, ultimately affecting
physical processes. The attack-chain perspective emphasizes the structural and temporal
relationships among attack actions and assets, focusing on how threats propagate through the
system|[8,9].

From this viewpoint, isolated alert-level detection is insufficient. Aggregating related assets
and interactions into attack-chain communities enables a system-level understanding of
adversarial behavior and provides a principled basis for prioritizing defense actions [30-32] .

2.3. Graph Neural Networks and Community Detection

Graph neural networks (GNNs) provide a powerful mechanism for learning representations
from graph-structured data by iteratively aggregating information from neighboring nodes
and edges. When applied to community detection, GNNs can jointly exploit structural
connectivity and node attributes to generate embeddings suitable for clustering or end-to-end
community learning[6,7].
However, classical community detection methods typically optimize structural criteria such as
modularity, while many GNN-based clustering approaches assume homogeneous graphs and
unconstrained computational resources. These assumptions limit their applicability in
industrial OT environments, where security semantics and operational constraints play a
central role [24-29].

2.4. Constraint-Aware Learning under OT and Hardware Limitations

Industrial environments impose strict hardware and operational constraints, including
limited computational resources, real-time requirements, and incomplete or noisy telemetry.
Ignoring these constraints can lead to models that are theoretically effective but practically
infeasible. Constraint-aware learning incorporates such limitations directly into model design
and optimization, ensuring that learned representations and clustering outcomes remain
deployable and reliable.

In the context of industrial cybersecurity, embedding OT semantics and hardware feasibility
as explicit constraints helps align learning outcomes with realistic attack behaviors and
operational conditions, improving robustness and interpretability[22, 23].

2.5. Summary

In summary, the structural properties of industrial OT systems, the attack-chain perspective
on cybersecurity, the representational strengths of graph neural networks, and the principles
of constraint-aware learning collectively form the theoretical foundation of this work. These
elements motivate a security-constrained approach in which OT semantics and hardware
limitations are treated as first-class considerations in graph neural clustering for industrial
manufacturing security[35].
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3. Flow Intelligence Framework

Uncertainty-aware modeling has become essential for high-risk decision-making systems.
Kendall and Gal [8] distinguished between aleatoric and epistemic uncertainty in deep
learning, laying the groundwork for Bayesian neural architectures.

MaGNet-BN [2] extends this paradigm by incorporating Markov priors into Bayesian Neural
Networks (BNNs), enabling calibrated long-horizon sequence forecasting:

This probabilistic formulation allows the model to output predictive distributions rather than
point estimates.

3.1. Gauge-Equivariant and Fourier-Bayesian Operators

Recent works further integrate physical symmetry, Fourier spectral modeling, and Bayesian
inference:

GELNO-FD [12]: Fourier-based liquid neural operators with Markovian Bayesian dynamics,
GEFTNN-BA [13]: Gauge-equivariant Transformer networks with Bayesian attention,
GEL-FMO [14]: Fourier-Markov operators for uncertainty-certified multimodal reasoning.

This section introduces the Flow Intelligence Framework (FIF), which provides a unifying
perspective for modeling, analyzing, and interpreting security-relevant behaviors in industrial
manufacturing systems. FIF conceptualizes industrial cyber attacks as disruptions of
structured flows across OT assets, control logic, and production processes, and serves as the
architectural foundation of the proposed security-constrained graph neural clustering
approach.[34].

3.2. Flow-Centric View of Industrial Systems

Industrial manufacturing systems operate through tightly coupled flows rather than isolated
events. These flows include information exchange, control execution, and process progression,
which together sustain stable production. From a security perspective, malicious activities
manifest as abnormal interactions or deviations within and across these flows.

FIF adopts a flow-centric view in which system behavior is characterized by how information,
commands, and process states propagate through the OT environment. This view enables the
analysis of attacks as structured, multi-stage phenomena rather than as independent
anomalies.[35, 36].

3.3. Types of Flows in Manufacturing OT Environments

Within FIF, three interrelated flow types are considered:

Cyber flow, representing communication and command exchanges between OT assets,
including protocol interactions, session patterns, and control messages.

Control flow, capturing functional dependencies within control loops, such as sensor-
controller-actuator relationships and timing-sensitive command execution.

Process flow, reflecting production-stage dependencies and physical process constraints that
govern how upstream actions affect downstream outcomes.

Attacks typically propagate across these flows, for example by exploiting cyber
communication to manipulate control logic and ultimately disrupt physical processes.
Modeling their interaction is therefore essential for accurate attack-chain analysis [37].

3.4. Flow-Aware Graph Representation

FIF represents the manufacturing environment as a heterogeneous, multi-layer graph that
integrates the different flow types. Nodes correspond to OT assets, while edges encode cyber,
control, and process-flow relationships. Each node and edge is associated with attributes
describing operational roles, interaction patterns, and contextual constraints. This
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representation allows the framework to capture both local interactions and global flow
structures, providing a comprehensive foundation for learning security-relevant patterns.

3.5. From Flows to Attack-Chain Communities

A central goal of FIF is to transform raw flow information into attack-chain communities—
groups of assets and interactions that collectively represent plausible adversarial propagation
paths. Rather than clustering based solely on structural proximity, FIF emphasizes flow
consistency and security relevance, ensuring that detected communities reflect meaningful
attack scenarios within the OT context.

By organizing assets into such communities, FIF supports higher-level reasoning about threat
progression and enables more effective prioritization of defensive actions.

3.6. Integration with Security-Constrained Learning

FIF is designed to work in conjunction with security-constrained learning mechanisms that
account for OT semantics and hardware limitations. Flow information provides rich
contextual signals, while security constraints guide learning toward deployable and
interpretable outcomes. Together, they enable graph neural clustering that remains robust
under incomplete telemetry and feasible within industrial operational environments.[38].

3.7. Summary

The Flow Intelligence Framework establishes a flow-centric, graph-based foundation for
understanding and detecting multi-stage attacks in industrial manufacturing systems. By
explicitly modeling cyber, control, and process flows and their interactions, FIF bridges the
gap between low-level telemetry and high-level security reasoning, laying the groundwork for
the security-constrained graph neural clustering method presented in the subsequent
sections.

4. Cross-Domain Synthesis

This section presents the Cross-Domain Synthesis that bridges theoretical principles, flow
intelligence, and practical security modeling in industrial manufacturing systems. The goal of
this synthesis is to integrate heterogeneous domains—cybersecurity, OT process semantics,
hardware constraints, and graph learning—into a coherent analytical framework that
supports security-constrained graph neural clustering.

4.1. Motivation for Cross-Domain Integration

Industrial cybersecurity cannot be effectively addressed within a single domain. Cyber events,
control logic, physical processes, and hardware limitations interact in ways that jointly shape
both normal operations and attack behaviors. Methods that consider only network traffic or
only control variables risk missing critical dependencies. Cross-domain synthesis is therefore
required to ensure that security analysis reflects the full operational reality of industrial
manufacturing systems.

4.2. Aligning Cyber, Control, and Process Domains

Cross-domain synthesis begins by aligning cyber communication patterns with control and
process semantics. Communication flows are interpreted in the context of control roles (e.g.,
controller versus actuator) and production stages, enabling the distinction between benign
operational interactions and security-relevant deviations. This alignment allows security
analysis to reason about why a given interaction occurs and how it may contribute to attack
propagation.
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4.3. Incorporating Hardware Constraints as a First-Class Domain

Hardware characteristics—such as computational capacity, timing sensitivity, interface
limitations, and telemetry availability—form a critical domain that influences both attack
feasibility and analytical deployment. Cross-domain synthesis explicitly incorporates
hardware constraints to ensure that learned patterns and detected communities are
consistent with device capabilities and operational restrictions. This integration prevents
analytical outcomes that are theoretically sound but practically infeasible in industrial
environments.

4.4. D.Synthesizing Domains through Graph Representation

The heterogeneous graph representation serves as the unifying structure for cross-domain
synthesis. By encoding cyber, control, process, and hardware information within a single
graph model, relationships across domains can be jointly analyzed. This unified
representation enables graph neural clustering to learn embeddings that capture multi-
domain dependencies and security-relevant interactions.

4.5. Security-Constrained Community Formation

Cross-domain synthesis directly informs the formation of attack-chain communities.
Communities are shaped not only by graph connectivity but also by cross-domain consistency:
assets within the same community should exhibit coherent cyber interactions, compatible
control roles, aligned process stages, and feasible hardware characteristics. This security-
constrained formulation ensures that detected communities correspond to realistic
adversarial pathways.

4.6. Summary

Cross-Domain Synthesis provides the conceptual mechanism that unifies flow intelligence, OT
semantics, hardware feasibility, and graph-based learning into a single analytical perspective.
By integrating multiple domains within a coherent graph framework, this synthesis enables
security-constrained graph neural clustering to produce attack-chain communities that are
both analytically meaningful and operationally actionable in industrial manufacturing
systems.

5. Experiments and Results

5.1. Experimental Setup

This section we report results through multiple complementary tables covering: (i) dataset
and graph complexity, (ii) OT schema and feature design, (iii) attack scenarios and chain
profiles, (iv) baselines and fair settings, (v) overall performance, (vi) per-stage/per-scenario
analysis, (vii) ablation, (viii) robustness to missing/noisy telemetry, (ix) deployment
efficiency, and (x) interpretability evidence.

Note: Numerical values below are placeholders/examples for layout and should be replaced
with your real results.

5.2. Datasets and Graph Construction

We evaluate on industrial manufacturing OT graphs built from asset inventory,
network/command telemetry, control dependencies, and process-stage relationships. Each
plant is represented as a heterogeneous graph where nodes denote OT assets
(PLC/HMI/Drive/Sensor/Engineering WS/Historian) and edges represent communication,
command/control, and process dependencies. Missing telemetry is explicitly measured to
reflect practical observability.

Table 1. Dataset and Plant Graph Statistics (Example/Placeholder)
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#Node #Edge  Time . Missing
Dataset #Nodes #Edges Types Types Span Sampling Telemetry
Fiber-Plant-A 1,248 9,736 6 5 21days 1s 12%
Fiber-Plant-B 2,031 18904 7 6 30days 1s 18%
DigitalTwin- o
AttackSim 1,500 14,220 6 5 400 hrs 1s 0%
5.3. B.OT Schema and Feature Design

To ensure OT semantics and hardware constraints are first-class signals, we define node/edge
types and attach features that capture operational roles, protocol behavior, timing

characteristics, and device feasibility (compute/me

mory/telemetry availability).

Table 2. OT Asset/Relation Taxonomy and Feature Fields (Example/Placeholder)

Category Type Description Example Feature Fields
Node PLC Real-time controller role, firmware class, sc.an time, I/0 count,
CPU tier
Node Drive Actuation controller vendor, interface type, timing sensitivity,
load level
Node Sensor Process signal type, sampling rate, noise level, stage
measurement membership
Node HMI Operator interface OS family, session rate, auth anomalies
Node Eng. WS Engmeer?ng remote access f.]ag.s, tool usage, privilege
workstation indicators
. : Supervisory tag write/read rates, API calls, retention
Node Historian/Server data/SCADA policies
Edge Net-flow Communication bytes/ packe’Fs, bl%rStm.eSS' duration,
directionality
Edge Cmd-write Control command command class, rarlty, .1nt(.er-arrlval jitter,
target criticality
Edge Cmd-read State query polling rate, deviations, source diversity
Functional loop id, latency bound,
Edge Control-loop dependency upstream/downstream
Edge Process-stage Stage topology stage adjacency, critical path weight

5.4. Attack Scenarios and Ground Truth Communities

We focus on attack-chain community detection: assets and interactions belonging to the same
multi-stage intrusion should be clustered into coherent communities. Attack chains are
defined from incident traces (or simulated traces in digital twin settings) and mapped to
affected assets.

Table 3. Attack Scenarios and Attack-Chain Profiles (Example/Placeholder)

Scenario Entry Typical Chain  Avg Chain #Affected Impact
Point Path Length Assets Type

S1: Remote WS - PLC - Quality
maintenance abuse Eng. WS Drive >2 9 drift
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Entry Typical Chain  Avg Chain #Affected Impact

Scenario Point Path Length Assets Type
S2: Credential reuse HMI HMI. -~ P.LC - 4.6 7 Persistence
Historian
53: Protocol prc  PLC— multi- 6.1 12 Instability
manipulation Drive
S4: Monitoring tamper Historian Historian = 3.9 6 Blind spot

HMI/WS

5.5. Baselines and Evaluation Metrics

We compare SecHOT-GNC with classical community detection, embedding-based clustering,
and GNN-based clustering baselines. All methods use the same graph snapshots/splits and are
tuned using identical validation protocols to ensure fairness.

Metrics. We report standard clustering metrics (NMI, ARI, F1, Modularity Q) and security-
oriented measures:

Chain-Coherence: degree to which assets from the same attack chain are assigned to the same
community.

Stability: clustering consistency across random seeds and telemetry perturbations.

6. Discussion

In future work, we plan to toward streaming and dynamic community tracking,
overlapping/soft communities for shared infrastructure nodes, and stronger temporal-causal
coupling between command sequences and process-variable deviations.

6.1. Realistic benchmarks and ground truth for dynamic communities

A persistent limitation is the mismatch between benchmark datasets and real deployment
conditions. Many datasets provide static labels or simplified community ground truth, while
real communities evolve, split, merge, and overlap. Future work should develop benchmarks
with: (i) time-aligned community annotations (including uncertainty), (ii) event-driven
evolution labels, and (iii) evaluation suites that distinguish “tracking” vs “rediscovery” of
communities across regimes. Synthetic benchmarks should also move beyond simplistic
generators toward controllable mechanisms that reflect contagion, policy intervention, and
external shocks[15, 16].

6.2. Learning under non-stationarity: drift-aware and regime-adaptive models

Risk assessment models often fail when the environment shifts. Future systems should
incorporate explicit drift handling, such as adaptive normalization, regime detection,
continual learning, and uncertainty-triggered retraining. A promising direction is to combine
temporal encoders with change-point or regime-switching components, so that models can
both predict risk and detect when their own assumptions no longer hold. Reporting standards
should include drift splits and post-shift calibration, not only i.i.d. test metrics[17].

6.3 Frequency-domain generalization and controllable spectral behavior

Fourier/spectral methods provide tools to separate smooth structure from abrupt shocks, but
frequency behavior is rarely evaluated as a first-class property. Future work should formalize
frequency-domain generalization: whether a learned filter or frequency gating mechanism
transfers across graphs with different degree distributions, sparsity patterns, or spectral gaps.
Another key direction is controllable spectral design to prevent oversmoothing while
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preserving denoising—e.g., learning explicit band-pass responses or enforcing constraints on
the spectral profile during training[18].

6.4 Joint modeling of risk and communities (multi-task and causal perspectives)

Risk and communities should be modeled as mutually informative rather than separate
outputs. Future research can explore multi-task learning where community structure
regularizes risk prediction (reducing noise and improving interpretability), and risk dynamics
provide signals for community change detection. Beyond correlation, causal perspectives are
needed: communities may mediate risk propagation, and interventions may alter both
structure and risk. Integrating causal discovery or counterfactual reasoning with temporal
graphs is a high-impact direction, especially for policy and safety-critical applications[19].

6.5 Robustness, security, and stability guarantees in graph-temporal systems

Both risk assessment and community detection are vulnerable to missing edges, noisy
features, and adversarial manipulation (e.g., hiding fraudulent communities or creating
artificial clusters). Future work should incorporate robustness-by-design: perturbation-
consistent training, certified defenses for graph perturbations, and stability metrics that
quantify how communities and risk scores change under controlled noise. Where possible,
theoretical guarantees (e.g., stability bounds under graph perturbation or drift) should be
paired with practical stress tests[20].

6.6 Interpretability that is operational, not cosmetic

Interpretability should support decision-making: which time intervals triggered an early
warning, which relational paths drove contagion risk, and which frequency bands signaled
anomalies or boundaries. Future work should standardize explanation outputs aligned with
the Time-Graph-Frequency axes and validate them wusing faithfulness tests (e.g.,
removal/perturbation tests). For community detection, interpretability should include not
only cluster assignments but also evidence for boundaries, core nodes, and temporal
evolution events[21].

6.7 Efficiency and scalability for streaming and large-scale graphs

Deployments increasingly involve streaming graphs and long time horizons. Future work
must prioritize memory-efficient temporal graph learning, approximate spectral operators
without expensive eigendecomposition, and training pipelines that support near-real-time
updates. Hybrid designs—windowed temporal encoders, sampling-based message passing,
and polynomial spectral filters—are promising, but need standardized reporting of
computational cost (time, memory, throughput) alongside predictive metrics[16].
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