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Abstract	

Industrial	 manufacturing	 systems	 increasingly	 rely	 on	 tightly	 coupled	 operational	
technology	 (OT)	 networks	 and	 heterogeneous	 hardware	 platforms,	 which	 exposes	
them	to	sophisticated	multi-stage	cyber	attacks	that	propagate	across	devices,	control	
logic,	and	production	processes.	Existing	graph-based	security	analytics	often	overlook	
OT	 process	 semantics	 and	 hardware	 constraints,	 resulting	 in	 unstable	 clustering	
results	and	limited	practical	deployability.	This	paper	proposes	a	Security-Constrained	
Graph	 Neural	 Clustering	 framework	 for	 industrial	 manufacturing	 systems	 that	
explicitly	 incorporates	 OT	 semantics	 and	 hardware	 constraints	 into	 attack-chain	
analysis.	 The	 manufacturing	 environment	 is	 modeled	 as	 a	 heterogeneous	 graph	
integrating	 OT	 assets,	 communication	 and	 control	 relationships,	 process-stage	
dependencies,	 and	 device-level	 resource	 limitations.	 A	 security-oriented	 clustering	
objective	 is	designed	to	aggregate	related	assets	 into	attack-chain	communities	while	
enforcing	 OT-consistent	 propagation	 and	 hardware-feasible	 inference.	 The	 proposed	
framework	 further	 enhances	 robustness	 under	 incomplete	 or	 noisy	 telemetry	 and	
provides	interpretable	community-level	risk	indicators	to	support	security	operations.	
Experimental	 results	 on	 industrial	 manufacturing	 datasets	 demonstrate	 that	 the	
proposed	approach	achieves	more	coherent	and	stable	attack-chain	communities	than	
representative	 baselines,	 while	 maintaining	 computational	 efficiency	 suitable	 for	
deployment	in	resource-constrained	OT	environments.	
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1. Introduction	
Industrial	 manufacturing	 systems	 are	 undergoing	 rapid	 digitalization,	 where	 operational	
technology	 (OT)	 assets	 such	 as	programmable	 logic	 controllers	 (PLCs),	 sensors,	 drives,	 and	
supervisory	 workstations	 are	 increasingly	 interconnected	 to	 support	 high-efficiency	 and	
automated	 production.	While	 this	 connectivity	 improves	 productivity	 and	 flexibility,	 it	 also	
significantly	 enlarges	 the	 cyber	 attack	 surface.	 Modern	 attacks	 on	 industrial	 environments	
rarely	occur	as	isolated	incidents;	 instead,	they	unfold	as	multi-stage	attack	chains,	 in	which	
adversaries	 progressively	 move	 across	 OT	 assets,	 exploit	 control	 dependencies,	 and	
ultimately	impact	production	stability,	product	quality,	or	safety[19].	
Traditional	 industrial	 cybersecurity	 solutions	are	 largely	event-driven,	 focusing	on	anomaly	
detection	or	rule-based	intrusion	alerts	at	the	device	or	network	level.	Although	effective	for	
identifying	 individual	 suspicious	 behaviors,	 these	 approaches	 struggle	 to	 reconstruct	 the	
global	 structure	 of	 an	 attack,	 especially	 in	 complex	 manufacturing	 systems	 where	 normal	
operational	 traffic	 is	 dense	 and	 highly	 structured.	 As	 a	 result,	 security	 operators	 are	 often	
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overwhelmed	 by	 fragmented	 alerts	 that	 lack	 contextual	 linkage,	 making	 it	 difficult	 to	
understand	 how	 attacks	 propagate	 across	 the	 system	 and	 which	 assets	 form	 the	 true	 risk	
core[17,18].	
Graph-based	security	modeling	provides	a	natural	abstraction	for	industrial	environments	by	
representing	OT	assets	as	nodes	and	their	communication,	control,	and	process	dependencies	
as	 edges.	 Recent	 advances	 in	 graph	 neural	 networks	 (GNNs)	 have	 further	 enabled	 learning	
rich	 representations	 from	 such	 graphs,	 supporting	 tasks	 such	 as	 anomaly	 detection	 and	
network	 analysis.	 However,	 most	 existing	 GNN-based	 methods	 are	 developed	 for	 IT	 or	
abstract	 graph	 settings	 and	do	not	 adequately	 reflect	 industrial	 realities.	 In	particular,	 they	
often	ignore	OT	process	semantics	(e.g.,	stage-wise	production	dependencies	and	control-loop	
structures)	and	assume	homogeneous,	 resource-rich	hardware	platforms,	which	 limits	 their	
stability	 and	 deployability	 in	 real	 manufacturing	 plants.Another	 critical	 limitation	 lies	 in	
hardware	 constraints.	 Industrial	 systems	 consist	 of	 heterogeneous	 devices	with	 strict	 real-
time	 requirements,	 limited	 computational	 resources,	 and	 uneven	 telemetry	 availability.	
Security	analytics	that	disregard	these	constraints	may	produce	theoretically	accurate	results	
but	 fail	 in	 practice	 due	 to	 excessive	 latency,	 unrealistic	 data	 assumptions,	 or	 deployment	
infeasibility.	 Moreover,	 industrial	 telemetry	 is	 frequently	 incomplete	 or	 noisy	 because	 of	
segmented	 networks,	 legacy	 protocols,	 and	 restricted	 logging,	 which	 further	 challenges	
conventional	clustering	and	learning	approaches[15,16].	
To	 address	 these	 challenges,	 this	 paper	 proposes	 a	 Security-Constrained	 Graph	 Neural	
Clustering	framework	for	industrial	manufacturing	systems.	The	proposed	approach	explicitly	
incorporates	OT	 semantics	 and	 hardware	 constraints	 into	 the	 clustering	 process,	 aiming	 to	
group	 assets	 into	 attack-chain	 communities	 that	 reflect	 plausible	 adversarial	 propagation	
paths	 rather	 than	purely	 structural	 similarity.	By	modeling	manufacturing	 environments	 as	
heterogeneous	graphs	that	integrate	OT	roles,	communication	and	control	relations,	process-
stage	 dependencies,	 and	 device-level	 resource	 limitations,	 the	 framework	 enables	 security-
oriented	clustering	that	is	both	interpretable	and	practically	deployable[13,14].	

The	main	contributions	of	this	work	are	summarized	as	follows:	
We	 introduce	 a	 security-constrained	 graph	 modeling	 approach	 that	 jointly	 captures	 OT	
process	structure	and	hardware	feasibility	in	industrial	manufacturing	systems.	
We	design	a	security-oriented	graph	neural	clustering	mechanism	that	aggregates	assets	into	
coherent	attack-chain	communities	under	OT	and	hardware	constraints.	
We	 demonstrate	 through	 experiments	 that	 the	 proposed	 framework	 achieves	 improved	
attack-chain	 coherence,	 robustness	 to	 incomplete	 telemetry,	 and	 computational	 efficiency	
suitable	for	OT	environments.	[1]–[5].	

2. Theoretical	Foundations	
This	 section	 presents	 the	 theoretical	 foundations	 underlying	 the	 proposed	 security-
constrained	graph	neural	clustering	framework.	We	review	key	concepts	from	industrial	OT	
system	 modeling,	 attack-chain	 analysis,	 graph	 neural	 networks,	 and	 constraint-aware	
learning,	which	together	motivate	the	design	of	the	proposed	method.	

2.1. Industrial	OT	Systems	as	Structured	Graphs	
Industrial	manufacturing	systems	are	representative	cyber–physical	systems	(CPS)	composed	
of	multiple	OT	layers,	including	field	devices	(sensors	and	actuators),	control	units	(PLCs	and	
DCS),	and	supervisory	components	(HMI,	SCADA,	and	engineering	workstations).	Interactions	
among	these	components	extend	beyond	simple	network	communication	and	include	control	
dependencies,	timing	constraints,	and	process-stage	relationships.	Modeling	such	systems	as	
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graphs	 is	 therefore	 a	 natural	 abstraction,	where	 nodes	 correspond	 to	 OT	 assets	 and	 edges	
encode	communication,	control,	or	process	dependencies[11,12].	
Unlike	conventional	IT	networks,	OT	graphs	are	inherently	heterogeneous	and	process-driven,	
with	 topologies	 strongly	 constrained	 by	 production	 workflows	 and	 control	 logic.	 Effective	
security	analysis	must	explicitly	account	for	these	structural	characteristics.[33].	

2.2. Attack-Chain	Perspective	in	Industrial	Cybersecurity	
Industrial	 cyber	 attacks	 typically	manifest	 as	multi-stage	 attack	 chains	 rather	 than	 isolated	
anomalies.	Adversaries	often	progress	 from	peripheral	or	supervisory	nodes	 toward	critical	
control	 components	 through	 lateral	movement	 and	privilege	 escalation,	 ultimately	 affecting	
physical	 processes.	 The	 attack-chain	 perspective	 emphasizes	 the	 structural	 and	 temporal	
relationships	among	attack	actions	and	assets,	focusing	on	how	threats	propagate	through	the	
system[8,9].	
From	 this	 viewpoint,	 isolated	 alert-level	detection	 is	 insufficient.	Aggregating	 related	 assets	
and	 interactions	 into	 attack-chain	 communities	 enables	 a	 system-level	 understanding	 of	
adversarial	behavior	and	provides	a	principled	basis	for	prioritizing	defense	actions	[30-32]	.	

2.3. Graph	Neural	Networks	and	Community	Detection	
Graph	neural	networks	 (GNNs)	provide	a	powerful	mechanism	 for	 learning	 representations	
from	 graph-structured	 data	 by	 iteratively	 aggregating	 information	 from	 neighboring	 nodes	
and	 edges.	 When	 applied	 to	 community	 detection,	 GNNs	 can	 jointly	 exploit	 structural	
connectivity	and	node	attributes	to	generate	embeddings	suitable	for	clustering	or	end-to-end	
community	 learning[6,7].	
However,	classical	community	detection	methods	typically	optimize	structural	criteria	such	as	
modularity,	while	many	GNN-based	clustering	approaches	assume	homogeneous	graphs	and	
unconstrained	 computational	 resources.	 These	 assumptions	 limit	 their	 applicability	 in	
industrial	 OT	 environments,	 where	 security	 semantics	 and	 operational	 constraints	 play	 a	
central	role	[24-29].	

2.4. Constraint-Aware	Learning	under	OT	and	Hardware	Limitations	
Industrial	 environments	 impose	 strict	 hardware	 and	 operational	 constraints,	 including	
limited	computational	resources,	real-time	requirements,	and	incomplete	or	noisy	telemetry.	
Ignoring	 these	 constraints	 can	 lead	 to	models	 that	 are	 theoretically	effective	but	practically	
infeasible.	Constraint-aware	learning	incorporates	such	limitations	directly	into	model	design	
and	 optimization,	 ensuring	 that	 learned	 representations	 and	 clustering	 outcomes	 remain	
deployable	and	reliable.	
In	the	context	of	 industrial	cybersecurity,	embedding	OT	semantics	and	hardware	feasibility	
as	 explicit	 constraints	 helps	 align	 learning	 outcomes	 with	 realistic	 attack	 behaviors	 and	
operational	conditions,	improving	robustness	and	interpretability[22，23].		

2.5. Summary	
In	summary,	the	structural	properties	of	 industrial	OT	systems,	the	attack-chain	perspective	
on	cybersecurity,	the	representational	strengths	of	graph	neural	networks,	and	the	principles	
of	constraint-aware	learning	collectively	form	the	theoretical	foundation	of	this	work.	These	
elements	 motivate	 a	 security-constrained	 approach	 in	 which	 OT	 semantics	 and	 hardware	
limitations	 are	 treated	 as	 first-class	 considerations	 in	 graph	neural	 clustering	 for	 industrial	
manufacturing	security[35].	
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3. Flow	Intelligence	Framework	
Uncertainty-aware	 modeling	 has	 become	 essential	 for	 high-risk	 decision-making	 systems.	
Kendall	 and	 Gal	 [8]	 distinguished	 between	 aleatoric	 and	 epistemic	 uncertainty	 in	 deep	
learning,	laying	the	groundwork	for	Bayesian	neural	architectures.	
MaGNet-BN	[2]	extends	this	paradigm	by	 incorporating	Markov	priors	 into	Bayesian	Neural	
Networks	(BNNs),	enabling	calibrated	long-horizon	sequence	forecasting:	
This	probabilistic	formulation	allows	the	model	to	output	predictive	distributions	rather	than	
point	estimates.	

3.1. Gauge-Equivariant	and	Fourier–Bayesian	Operators	
Recent	works	 further	 integrate	physical	symmetry,	Fourier	spectral	modeling,	and	Bayesian	
inference:	
GELNO-FD	[12]:	Fourier-based	liquid	neural	operators	with	Markovian	Bayesian	dynamics,	
GEFTNN-BA	[13]:	Gauge-equivariant	Transformer	networks	with	Bayesian	attention,	
GEL-FMO	[14]:	Fourier–Markov	operators	for	uncertainty-certified	multimodal	reasoning.	
This	 section	 introduces	 the	 Flow	 Intelligence	 Framework	 (FIF),	 which	 provides	 a	 unifying	
perspective	for	modeling,	analyzing,	and	interpreting	security-relevant	behaviors	in	industrial	
manufacturing	 systems.	 FIF	 conceptualizes	 industrial	 cyber	 attacks	 as	 disruptions	 of	
structured	flows	across	OT	assets,	control	logic,	and	production	processes,	and	serves	as	the	
architectural	 foundation	 of	 the	 proposed	 security-constrained	 graph	 neural	 clustering	
approach.[34].	

3.2. Flow-Centric	View	of	Industrial	Systems	
Industrial	manufacturing	systems	operate	through	tightly	coupled	flows	rather	than	isolated	
events.	These	flows	include	information	exchange,	control	execution,	and	process	progression,	
which	 together	 sustain	 stable	 production.	 From	 a	 security	 perspective,	 malicious	 activities	
manifest	as	abnormal	interactions	or	deviations	within	and	across	these	flows.	
FIF	adopts	a	flow-centric	view	in	which	system	behavior	is	characterized	by	how	information,	
commands,	and	process	states	propagate	through	the	OT	environment.	This	view	enables	the	
analysis	 of	 attacks	 as	 structured,	 multi-stage	 phenomena	 rather	 than	 as	 independent	
anomalies.[35,	36].	

3.3. Types	of	Flows	in	Manufacturing	OT	Environments	
Within	FIF,	three	interrelated	flow	types	are	considered:	
Cyber	 flow,	 representing	 communication	 and	 command	 exchanges	 between	 OT	 assets,	
including	protocol	interactions,	session	patterns,	and	control	messages.	
Control	 flow,	 capturing	 functional	 dependencies	 within	 control	 loops,	 such	 as	 sensor–
controller–actuator	relationships	and	timing-sensitive	command	execution.	
Process	flow,	reflecting	production-stage	dependencies	and	physical	process	constraints	that	
govern	how	upstream	actions	affect	downstream	outcomes.	
Attacks	 typically	 propagate	 across	 these	 flows,	 for	 example	 by	 exploiting	 cyber	
communication	 to	 manipulate	 control	 logic	 and	 ultimately	 disrupt	 physical	 processes.	
Modeling	their	interaction	is	therefore	essential	for	accurate	attack-chain	analysis	[37].	

3.4. Flow-Aware	Graph	Representation	
FIF	 represents	 the	 manufacturing	 environment	 as	 a	 heterogeneous,	 multi-layer	 graph	 that	
integrates	the	different	flow	types.	Nodes	correspond	to	OT	assets,	while	edges	encode	cyber,	
control,	 and	 process-flow	 relationships.	 Each	 node	 and	 edge	 is	 associated	 with	 attributes	
describing	 operational	 roles,	 interaction	 patterns,	 and	 contextual	 constraints.	 This	
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representation	 allows	 the	 framework	 to	 capture	 both	 local	 interactions	 and	 global	 flow	
structures,	providing	a	comprehensive	foundation	for	learning	security-relevant	patterns.	

3.5. From	Flows	to	Attack-Chain	Communities	
A	central	 goal	of	FIF	 is	 to	 transform	raw	 flow	 information	 into	attack-chain	 communities—
groups	of	assets	and	interactions	that	collectively	represent	plausible	adversarial	propagation	
paths.	 Rather	 than	 clustering	 based	 solely	 on	 structural	 proximity,	 FIF	 emphasizes	 flow	
consistency	 and	 security	 relevance,	 ensuring	 that	 detected	 communities	 reflect	meaningful	
attack	scenarios	within	the	OT	context.	
By	organizing	assets	into	such	communities,	FIF	supports	higher-level	reasoning	about	threat	
progression	and	enables	more	effective	prioritization	of	defensive	actions.	

3.6. Integration	with	Security-Constrained	Learning	
FIF	 is	designed	 to	work	 in	 conjunction	with	 security-constrained	 learning	mechanisms	 that	
account	 for	 OT	 semantics	 and	 hardware	 limitations.	 Flow	 information	 provides	 rich	
contextual	 signals,	 while	 security	 constraints	 guide	 learning	 toward	 deployable	 and	
interpretable	 outcomes.	 Together,	 they	 enable	 graph	 neural	 clustering	 that	 remains	 robust	
under	incomplete	telemetry	and	feasible	within	industrial	operational	environments.[38].	

3.7. Summary	
The	 Flow	 Intelligence	 Framework	 establishes	 a	 flow-centric,	 graph-based	 foundation	 for	
understanding	 and	 detecting	 multi-stage	 attacks	 in	 industrial	 manufacturing	 systems.	 By	
explicitly	modeling	 cyber,	 control,	 and	process	 flows	and	 their	 interactions,	 FIF	bridges	 the	
gap	between	low-level	telemetry	and	high-level	security	reasoning,	laying	the	groundwork	for	
the	 security-constrained	 graph	 neural	 clustering	 method	 presented	 in	 the	 subsequent	
sections.	

4. Cross-Domain	Synthesis	
This	 section	 presents	 the	 Cross-Domain	 Synthesis	 that	 bridges	 theoretical	 principles,	 flow	
intelligence,	and	practical	security	modeling	in	industrial	manufacturing	systems.	The	goal	of	
this	 synthesis	 is	 to	 integrate	heterogeneous	domains—cybersecurity,	OT	process	 semantics,	
hardware	 constraints,	 and	 graph	 learning—into	 a	 coherent	 analytical	 framework	 that	
supports	security-constrained	graph	neural	clustering.	

4.1. Motivation	for	Cross-Domain	Integration	
Industrial	cybersecurity	cannot	be	effectively	addressed	within	a	single	domain.	Cyber	events,	
control	logic,	physical	processes,	and	hardware	limitations	interact	in	ways	that	jointly	shape	
both	normal	operations	and	attack	behaviors.	Methods	that	consider	only	network	traffic	or	
only	control	variables	risk	missing	critical	dependencies.	Cross-domain	synthesis	is	therefore	
required	 to	 ensure	 that	 security	 analysis	 reflects	 the	 full	 operational	 reality	 of	 industrial	
manufacturing	systems.	

4.2. Aligning	Cyber,	Control,	and	Process	Domains	
Cross-domain	 synthesis	 begins	 by	 aligning	 cyber	 communication	 patterns	with	 control	 and	
process	semantics.	Communication	flows	are	interpreted	in	the	context	of	control	roles	(e.g.,	
controller	 versus	 actuator)	 and	 production	 stages,	 enabling	 the	 distinction	 between	 benign	
operational	 interactions	 and	 security-relevant	 deviations.	 This	 alignment	 allows	 security	
analysis	to	reason	about	why	a	given	interaction	occurs	and	how	it	may	contribute	to	attack	
propagation.	
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4.3. Incorporating	Hardware	Constraints	as	a	First-Class	Domain	
Hardware	 characteristics—such	 as	 computational	 capacity,	 timing	 sensitivity,	 interface	
limitations,	 and	 telemetry	 availability—form	 a	 critical	 domain	 that	 influences	 both	 attack	
feasibility	 and	 analytical	 deployment.	 Cross-domain	 synthesis	 explicitly	 incorporates	
hardware	 constraints	 to	 ensure	 that	 learned	 patterns	 and	 detected	 communities	 are	
consistent	 with	 device	 capabilities	 and	 operational	 restrictions.	 This	 integration	 prevents	
analytical	 outcomes	 that	 are	 theoretically	 sound	 but	 practically	 infeasible	 in	 industrial	
environments.	

4.4. D.	Synthesizing	Domains	through	Graph	Representation	
The	 heterogeneous	 graph	 representation	 serves	 as	 the	 unifying	 structure	 for	 cross-domain	
synthesis.	 By	 encoding	 cyber,	 control,	 process,	 and	 hardware	 information	 within	 a	 single	
graph	 model,	 relationships	 across	 domains	 can	 be	 jointly	 analyzed.	 This	 unified	
representation	 enables	 graph	 neural	 clustering	 to	 learn	 embeddings	 that	 capture	 multi-
domain	dependencies	and	security-relevant	interactions.	

4.5. Security-Constrained	Community	Formation	
Cross-domain	 synthesis	 directly	 informs	 the	 formation	 of	 attack-chain	 communities.	
Communities	are	shaped	not	only	by	graph	connectivity	but	also	by	cross-domain	consistency:	
assets	 within	 the	 same	 community	 should	 exhibit	 coherent	 cyber	 interactions,	 compatible	
control	 roles,	 aligned	 process	 stages,	 and	 feasible	 hardware	 characteristics.	 This	 security-
constrained	 formulation	 ensures	 that	 detected	 communities	 correspond	 to	 realistic	
adversarial	pathways.	

4.6. Summary	
Cross-Domain	Synthesis	provides	the	conceptual	mechanism	that	unifies	flow	intelligence,	OT	
semantics,	hardware	feasibility,	and	graph-based	learning	into	a	single	analytical	perspective.	
By	 integrating	multiple	domains	within	a	coherent	graph	 framework,	 this	synthesis	enables	
security-constrained	 graph	 neural	 clustering	 to	 produce	 attack-chain	 communities	 that	 are	
both	 analytically	 meaningful	 and	 operationally	 actionable	 in	 industrial	 manufacturing	
systems.	

5. Experiments	and	Results	
5.1. Experimental	Setup	
This	 section	we	 report	 results	 through	multiple	 complementary	 tables	 covering:	 (i)	 dataset	
and	 graph	 complexity,	 (ii)	 OT	 schema	 and	 feature	 design,	 (iii)	 attack	 scenarios	 and	 chain	
profiles,	(iv)	baselines	and	fair	settings,	(v)	overall	performance,	(vi)	per-stage/per-scenario	
analysis,	 (vii)	 ablation,	 (viii)	 robustness	 to	 missing/noisy	 telemetry,	 (ix)	 deployment	
efficiency,	and	(x)	interpretability	evidence.	
Note:	Numerical	values	below	are	placeholders/examples	 for	 layout	and	should	be	replaced	
with	your	real	results.	

5.2. Datasets	and	Graph	Construction	
We	 evaluate	 on	 industrial	 manufacturing	 OT	 graphs	 built	 from	 asset	 inventory,	
network/command	 telemetry,	 control	 dependencies,	 and	 process-stage	 relationships.	 Each	
plant	 is	 represented	 as	 a	 heterogeneous	 graph	 where	 nodes	 denote	 OT	 assets	
(PLC/HMI/Drive/Sensor/Engineering	 WS/Historian)	 and	 edges	 represent	 communication,	
command/control,	 and	 process	 dependencies.	 Missing	 telemetry	 is	 explicitly	 measured	 to	
reflect	practical	observability.	

Table	1.	Dataset	and	Plant	Graph	Statistics	(Example/Placeholder)	
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Dataset	 #Nodes	#Edges	 #Node	
Types	

#Edge	
Types	

Time	
Span	 Sampling	 Missing	

Telemetry	
Fiber-Plant-A	 1,248	 9,736	 6	 5	 21	days	 1	s	 12%	
Fiber-Plant-B	 2,031	 18,904	 7	 6	 30	days	 1	s	 18%	
DigitalTwin-
AttackSim	 1,500	 14,220	 6	 5	 400	hrs	 1	s	 0%	

5.3. B.	OT	Schema	and	Feature	Design	
To	ensure	OT	semantics	and	hardware	constraints	are	first-class	signals,	we	define	node/edge	
types	 and	 attach	 features	 that	 capture	 operational	 roles,	 protocol	 behavior,	 timing	
characteristics,	and	device	feasibility	(compute/memory/telemetry	availability).	

Table	2.	OT	Asset/Relation	Taxonomy	and	Feature	Fields	(Example/Placeholder)	
Category	 Type	 Description	 Example	Feature	Fields	

Node	 PLC	 Real-time	controller	 role,	firmware	class,	scan	time,	I/O	count,	
CPU	tier	

Node	 Drive	 Actuation	controller	 vendor,	interface	type,	timing	sensitivity,	
load	level	

Node	 Sensor	 Process	
measurement	

signal	type,	sampling	rate,	noise	level,	stage	
membership	

Node	 HMI	 Operator	interface	 OS	family,	session	rate,	auth	anomalies	

Node	 Eng.	WS	 Engineering	
workstation	

remote	access	flags,	tool	usage,	privilege	
indicators	

Node	 Historian/Server	 Supervisory	
data/SCADA	

tag	write/read	rates,	API	calls,	retention	
policies	

Edge	 Net-flow	 Communication	 bytes/packets,	burstiness,	duration,	
directionality	

Edge	 Cmd-write	 Control	command	 command	class,	rarity,	inter-arrival	jitter,	
target	criticality	

Edge	 Cmd-read	 State	query	 polling	rate,	deviations,	source	diversity	

Edge	 Control-loop	 Functional	
dependency	

loop	id,	latency	bound,	
upstream/downstream	

Edge	 Process-stage	 Stage	topology	 stage	adjacency,	critical	path	weight	

5.4. Attack	Scenarios	and	Ground	Truth	Communities	
We	focus	on	attack-chain	community	detection:	assets	and	interactions	belonging	to	the	same	
multi-stage	 intrusion	 should	 be	 clustered	 into	 coherent	 communities.	 Attack	 chains	 are	
defined	 from	 incident	 traces	 (or	 simulated	 traces	 in	 digital	 twin	 settings)	 and	 mapped	 to	
affected	assets.	

Table	3.	Attack	Scenarios	and	Attack-Chain	Profiles	(Example/Placeholder)	

Scenario	 Entry	
Point	

Typical	Chain	
Path	

Avg	Chain	
Length	

#Affected	
Assets	

Impact	
Type	

S1:	Remote	
maintenance	abuse	 Eng.	WS	 WS	→	PLC	→	

Drive	 5.2	 9	 Quality	
drift	
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Scenario	 Entry	
Point	

Typical	Chain	
Path	

Avg	Chain	
Length	

#Affected	
Assets	

Impact	
Type	

S2:	Credential	reuse	 HMI	 HMI	→	PLC	→	
Historian	 4.6	 7	 Persistence	

S3:	Protocol	
manipulation	 PLC	 PLC	→	multi-

Drive	 6.1	 12	 Instability	

S4:	Monitoring	tamper	 Historian	 Historian	→	
HMI/WS	 3.9	 6	 Blind	spot	

5.5. Baselines	and	Evaluation	Metrics	
We	compare	 SecHOT-GNC	with	 classical	 community	detection,	 embedding-based	 clustering,	
and	GNN-based	clustering	baselines.	All	methods	use	the	same	graph	snapshots/splits	and	are	
tuned	using	identical	validation	protocols	to	ensure	fairness.	
Metrics.	We	 report	 standard	 clustering	metrics	 (NMI,	 ARI,	 F1,	 Modularity	 Q)	 and	 security-
oriented	measures:	
Chain-Coherence:	degree	to	which	assets	from	the	same	attack	chain	are	assigned	to	the	same	
community.	
Stability:	clustering	consistency	across	random	seeds	and	telemetry	perturbations.	

6. Discussion	
In	 future	 work,	 we	 plan	 to	 toward	 streaming	 and	 dynamic	 community	 tracking,	
overlapping/soft	communities	for	shared	infrastructure	nodes,	and	stronger	temporal–causal	
coupling	between	command	sequences	and	process-variable	deviations.	

6.1. Realistic	benchmarks	and	ground	truth	for	dynamic	communities	
A	 persistent	 limitation	 is	 the	mismatch	 between	 benchmark	 datasets	 and	 real	 deployment	
conditions.	Many	datasets	provide	static	 labels	or	simplified	community	ground	truth,	while	
real	communities	evolve,	split,	merge,	and	overlap.	Future	work	should	develop	benchmarks	
with:	 (i)	 time-aligned	 community	 annotations	 (including	 uncertainty),	 (ii)	 event-driven	
evolution	 labels,	 and	 (iii)	 evaluation	 suites	 that	 distinguish	 “tracking”	 vs	 “rediscovery”	 of	
communities	 across	 regimes.	 Synthetic	 benchmarks	 should	 also	 move	 beyond	 simplistic	
generators	 toward	 controllable	mechanisms	 that	 reflect	 contagion,	 policy	 intervention,	 and	
external	shocks[15,	16].	

6.2. Learning	under	non-stationarity:	drift-aware	and	regime-adaptive	models	
Risk	 assessment	 models	 often	 fail	 when	 the	 environment	 shifts.	 Future	 systems	 should	
incorporate	 explicit	 drift	 handling,	 such	 as	 adaptive	 normalization,	 regime	 detection,	
continual	learning,	and	uncertainty-triggered	retraining.	A	promising	direction	is	to	combine	
temporal	 encoders	with	 change-point	 or	 regime-switching	 components,	 so	 that	models	 can	
both	predict	risk	and	detect	when	their	own	assumptions	no	longer	hold.	Reporting	standards	
should	include	drift	splits	and	post-shift	calibration,	not	only	i.i.d.	test	metrics[17].	

6.3	Frequency-domain	generalization	and	controllable	spectral	behavior	
Fourier/spectral	methods	provide	tools	to	separate	smooth	structure	from	abrupt	shocks,	but	
frequency	behavior	is	rarely	evaluated	as	a	first-class	property.	Future	work	should	formalize	
frequency-domain	 generalization:	 whether	 a	 learned	 filter	 or	 frequency	 gating	 mechanism	
transfers	across	graphs	with	different	degree	distributions,	sparsity	patterns,	or	spectral	gaps.	
Another	 key	 direction	 is	 controllable	 spectral	 design	 to	 prevent	 oversmoothing	 while	
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preserving	denoising—e.g.,	learning	explicit	band-pass	responses	or	enforcing	constraints	on	
the	spectral	profile	during	training[18].	

6.4	Joint	modeling	of	risk	and	communities	(multi-task	and	causal	perspectives)	
Risk	 and	 communities	 should	 be	 modeled	 as	 mutually	 informative	 rather	 than	 separate	
outputs.	 Future	 research	 can	 explore	 multi-task	 learning	 where	 community	 structure	
regularizes	risk	prediction	(reducing	noise	and	improving	interpretability),	and	risk	dynamics	
provide	signals	for	community	change	detection.	Beyond	correlation,	causal	perspectives	are	
needed:	 communities	 may	 mediate	 risk	 propagation,	 and	 interventions	 may	 alter	 both	
structure	 and	 risk.	 Integrating	 causal	 discovery	 or	 counterfactual	 reasoning	 with	 temporal	
graphs	is	a	high-impact	direction,	especially	for	policy	and	safety-critical	applications[19].	

6.5	Robustness,	security,	and	stability	guarantees	in	graph-temporal	systems	
Both	 risk	 assessment	 and	 community	 detection	 are	 vulnerable	 to	 missing	 edges,	 noisy	
features,	 and	 adversarial	 manipulation	 (e.g.,	 hiding	 fraudulent	 communities	 or	 creating	
artificial	 clusters).	 Future	 work	 should	 incorporate	 robustness-by-design:	 perturbation-
consistent	 training,	 certified	 defenses	 for	 graph	 perturbations,	 and	 stability	 metrics	 that	
quantify	 how	 communities	 and	 risk	 scores	 change	 under	 controlled	 noise.	Where	 possible,	
theoretical	 guarantees	 (e.g.,	 stability	 bounds	 under	 graph	 perturbation	 or	 drift)	 should	 be	
paired	with	practical	stress	tests[20].	

6.6	Interpretability	that	is	operational,	not	cosmetic	
Interpretability	 should	 support	 decision-making:	 which	 time	 intervals	 triggered	 an	 early	
warning,	which	 relational	 paths	 drove	 contagion	 risk,	 and	which	 frequency	 bands	 signaled	
anomalies	or	boundaries.	Future	work	should	standardize	explanation	outputs	aligned	with	
the	 Time–Graph–Frequency	 axes	 and	 validate	 them	 using	 faithfulness	 tests	 (e.g.,	
removal/perturbation	 tests).	 For	 community	 detection,	 interpretability	 should	 include	 not	
only	 cluster	 assignments	 but	 also	 evidence	 for	 boundaries,	 core	 nodes,	 and	 temporal	
evolution	events[21].	

6.7	Efficiency	and	scalability	for	streaming	and	large-scale	graphs	
Deployments	 increasingly	 involve	 streaming	 graphs	 and	 long	 time	 horizons.	 Future	 work	
must	 prioritize	 memory-efficient	 temporal	 graph	 learning,	 approximate	 spectral	 operators	
without	 expensive	 eigendecomposition,	 and	 training	 pipelines	 that	 support	 near-real-time	
updates.	 Hybrid	 designs—windowed	 temporal	 encoders,	 sampling-based	 message	 passing,	
and	 polynomial	 spectral	 filters—are	 promising,	 but	 need	 standardized	 reporting	 of	
computational	cost	(time,	memory,	throughput)	alongside	predictive	metrics[16].	
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