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Abstract	

The	 digital	 age	 has	 catalyzed	 a	 phenomenon	 where	 information	 diffusion	 occurs	 at	
unprecedented	 velocities,	 often	 outpacing	 the	 capacity	 for	 verification.	 This	 paper	
investigates	 the	 symbiotic	 relationship	between	panic	propagation	and	 the	 spread	of	
misinformation	 on	 social	 media	 platforms	 during	 crisis	 events.	 While	 traditional	
sentiment	analysis	and	fact-checking	systems	have	operated	in	isolation,	we	propose	a	
novel	 framework	 that	 utilizes	 Large	 Language	Models	 (LLMs)	 to	 jointly	model	 these	
phenomena.	By	leveraging	the	semantic	reasoning	capabilities	of	state-of-the-art	LLMs,	
we	 quantify	 the	 causality	 and	 temporal	 lag	 between	 exposure	 to	 falsified	 narratives	
and	 the	 subsequent	 escalation	 of	 collective	 anxiety.	 Our	methodology	 introduces	 the	
Panic-Misinformation	 Interaction	 Index	 (PMII),	 a	 metric	 derived	 from	 high-
dimensional	 embedding	 spaces,	 to	 measure	 the	 volatility	 of	 public	 discourse.	 We	
evaluate	 our	 approach	 on	 a	massive	 dataset	 curated	 from	 social	media	 feeds	 during	
recent	 global	 health	 emergencies.	 The	 results	 demonstrate	 that	misinformation	does	
not	 merely	 accompany	 panic	 but	 acts	 as	 a	 primary	 accelerant,	 with	 a	 quantifiable	
amplification	 factor.	 Furthermore,	 our	 LLM-driven	 approach	 outperforms	 baseline	
deep	learning	models	in	predictive	accuracy	regarding	the	trajectory	of	social	hysteria.	
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1. Introduction	
1.1	Background	
Social	 media	 platforms	 have	 evolved	 into	 the	 central	 nervous	 system	 of	 modern	
communication,	facilitating	the	rapid	exchange	of	 information	during	critical	societal	events.	
While	 these	 networks	 provide	 essential	 channels	 for	 emergency	 alerts	 and	 community	
support,	 they	 simultaneously	 function	as	 conduits	 for	high-velocity	 rumor	propagation.	The	
term	 *infodemic*	 has	 been	 coined	 to	 describe	 an	 overabundance	 of	 information—some	
accurate	 and	 some	 not—that	makes	 it	 difficult	 for	 people	 to	 find	 trustworthy	 sources	 and	
reliable	guidance	when	they	need	it	[1].	The	psychological	underpinnings	of	this	phenomenon	
are	 rooted	 in	 the	 collective	 processing	 of	 threat	 stimuli;	 when	 individuals	 perceive	 an	
imminent	 danger	 but	 lack	 concrete	 information,	 the	 void	 is	 often	 filled	 by	 speculative	 or	
malicious	narratives	[2].	
The	 dynamics	 of	 panic	 on	 social	 networks	 are	 distinct	 from	 physical	 crowd	 behaviors.	 In	
digital	spaces,	panic	 is	characterized	by	the	contagion	of	negative	emotional	valence,	hyper-
sharing	 behavior,	 and	 the	 rapid	 polarization	 of	 discourse	 groups.	 Concurrently,	
misinformation—defined	 here	 as	 false	 or	 misleading	 information	 shared	 regardless	 of	
intent—thrives	 in	 these	high-anxiety	environments.	The	cognitive	 load	 theory	suggests	 that	
under	 stress,	 an	 individual's	 critical	 thinking	 faculties	 are	 diminished,	 increasing	
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susceptibility	to	unverified	claims	[3].	Understanding	the	interplay	between	these	two	forces	
is	not	merely	an	academic	exercise	but	a	necessity	for	maintaining	social	stability	and	public	
health.	

1.2	Problem	Statement	
Despite	 the	 recognized	 connection	 between	 false	 information	 and	 public	 anxiety,	
computational	models	have	historically	treated	them	as	separate	research	tracks.	Sentiment	
analysis	 algorithms	 focus	 on	 classifying	 emotional	 states,	 often	 overlooking	 the	 factual	
validity	 of	 the	 content	 generating	 those	 emotions.	 Conversely,	 automated	 fact-checking	
systems	prioritize	veracity	classification	without	accounting	for	the	emotional	resonance	that	
often	propels	false	claims	to	viral	status	[4].	
Current	approaches	relying	on	static	dictionaries	or	shallow	neural	networks	 fail	 to	capture	
the	 semantic	 nuance	 required	 to	 understand	 *why*	 a	 particular	 piece	 of	 misinformation	
triggers	panic.	For	instance,	a	false	claim	about	a	supply	shortage	induces	a	different	type	of	
anxiety	 than	 a	 false	 claim	 about	 a	 biological	 threat.	 Existing	 models	 lack	 the	 contextual	
reasoning	to	differentiate	these	triggers	and	quantify	their	specific	impact	on	the	propagation	
network	[5].	There	is	a	critical	need	for	a	unified	framework	that	can	simultaneously	assess	
veracity	and	emotional	intensity,	mapping	the	causal	pathways	between	them.	

1.3	Contributions	
This	 research	 bridges	 the	 gap	 between	 sentiment	 dynamics	 and	 information	 veracity	
verification	through	the	application	of	Large	Language	Models.	Our	primary	contributions	are	
as	follows:	
1.	 	We	 introduce	 the	 Dual-Stream	 Semantics	 Framework,	 a	 novel	 architecture	 that	 utilizes	
LLMs	to	process	social	media	streams	for	both	panic	intensity	and	claim	veracity	in	parallel,	
interacting	via	a	cross-attention	mechanism	[6].	
2.	 	 We	 propose	 a	 new	 metric,	 the	 Panic-Misinformation	 Interaction	 Index	 (PMII),	 which	
provides	 a	 scalar	 value	 representing	 the	 volatility	 of	 a	 social	 network	 graph	 based	 on	 the	
coupling	of	false	information	and	high-arousal	sentiment.	
3.		We	provide	a	comprehensive	empirical	analysis	using	real-world	datasets,	demonstrating	
that	 our	 LLM-based	 approach	 yields	 a	 statistically	 significant	 improvement	 over	 traditional	
graph-based	and	RNN-based	methods	in	predicting	viral	panic	events	[7].	

2. Related	Work	
2.1	Classical	Approaches	
The	study	of	information	diffusion	has	its	roots	in	epidemiological	modeling.	The	Susceptible-
Infected-Recovered	(SIR)	model	and	its	variants	(SEIR,	SIS)	have	been	extensively	adapted	to	
model	 the	 spread	of	 rumors,	where	 "infection"	 corresponds	 to	believing	a	 rumor	 [8].	While	
mathematically	elegant,	these	models	often	assume	a	homogeneity	in	the	population	and	the	
information	itself,	failing	to	account	for	the	content's	semantic	properties.	
In	the	domain	of	affective	computing,	early	attempts	to	quantify	panic	relied	on	lexicon-based	
approaches.	 Tools	 like	 LIWC	 (Linguistic	 Inquiry	 and	 Word	 Count)	 and	 ANEW	 (Affective	
Norms	 for	English	Words)	were	used	 to	 tally	 fear-related	 terms	[9].	However,	 these	bag-of-
words	methods	are	context-agnostic.	They	cannot	distinguish	between	a	user	reporting	"The	
panic	 is	 over"	 and	 "The	 panic	 is	 just	 beginning,"	 leading	 to	 significant	 classification	 errors.	
Furthermore,	 early	 detection	 of	 misinformation	 relied	 heavily	 on	 feature	 engineering,	
utilizing	user	metadata	(account	age,	follower	count)	and	propagation	graph	structures	rather	
than	the	textual	content	itself	[10].	
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2.2	Deep	Learning	Methods	
The	 advent	 of	 deep	 learning	 shifted	 the	 paradigm	 toward	 automated	 feature	 extraction.	
Recurrent	Neural	Networks	(RNNs)	and	Long	Short-Term	Memory	(LSTM)	networks	became	
the	standard	for	analyzing	sequential	text	data,	allowing	for	the	capture	of	local	context	within	
tweets	 or	 posts	 [11].	 These	 models	 demonstrated	 superior	 performance	 in	 sentiment	
classification	compared	to	statistical	methods.	
More	recently,	Transformer-based	models	like	BERT	(Bidirectional	Encoder	Representations	
from	 Transformers)	 have	 been	 employed	 to	 detect	 fake	 news	 by	 encoding	 the	 semantic	
representation	of	claims.	Research	has	shown	that	fine-tuning	BERT	on	verification	datasets	
yields	high	accuracy	 in	binary	 classification	 tasks	 (true/false)	 [12].	However,	 these	 systems	
typically	operate	 in	 a	 supervised	 learning	 setting	 requiring	massive	 labeled	datasets,	which	
are	 often	 unavailable	 in	 the	 early	 stages	 of	 a	 novel	 crisis.	 Moreover,	 few	 studies	 have	
attempted	 to	 integrate	 the	 output	 of	 a	 sentiment	 analyzer	with	 a	 veracity	 checker	within	 a	
single	end-to-end	differentiable	architecture,	which	is	the	gap	this	paper	addresses.	

3. Methodology	
3.1	System	Architecture	
Our	proposed	methodology	leverages	the	emergent	reasoning	capabilities	of	Large	Language	
Models	 to	 dissect	 the	 complex	 relationship	 between	 misinformation	 and	 panic.	 The	
architecture,	referred	to	as	the	Panic-Info-LLM	Framework,	consists	of	three	primary	modules:	
Data	 Ingestion	 and	 Preprocessing,	 the	 Dual-Stream	 LLM	 Analysis	 Engine,	 and	 the	
Quantification	Module.	

	
	

Figure	1:	System	Architecture	
The	process	begins	with	 the	 ingestion	of	 raw	social	media	 text.	Given	 the	noise	 inherent	 in	
such	 data,	 we	 employ	 a	 rigorous	 preprocessing	 pipeline.	 This	 involves	 not	 only	 standard	
tokenization	 but	 also	 the	 anonymization	 of	 user	 mentions	 and	 the	 normalization	 of	 URL	
redirects	to	ensure	that	the	LLM	analyzes	the	core	content	rather	than	structural	artifacts.	

3.2	Dual-Stream	LLM	Analysis	Engine	
The	 core	 innovation	 of	 our	 approach	 lies	 in	 the	 Dual-Stream	 Analysis.	 Unlike	 traditional	
pipelines	 that	 run	 distinct	 models,	 we	 utilize	 a	 single,	 large-scale	 pre-trained	 transformer	
(specifically	 an	 open-source	 variant	 of	 LLaMA-2-70b	 optimized	 for	 instruction	 following)	
prompted	 to	perform	two	distinct	 cognitive	 tasks	simultaneously	 through	Chain-of-Thought	
(CoT)	prompting.	
Stream	 1:	 Panic	 Intensity	 Assessment.	 The	 model	 is	 instructed	 to	 analyze	 the	 emotional	
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valence	 and	 arousal	 of	 the	 text.	 Instead	 of	 a	 binary	 sentiment	 label,	 the	 model	 outputs	 a	
continuous	score	on	a	normalized	scale	representing	the	intensity	of	anxiety,	fear,	or	urgency	
expressed	 in	 the	 text.	This	 is	achieved	by	mapping	 the	LLM's	 internal	 representation	of	 the	
text	against	a	semantic	subspace	defined	by	high-arousal	keywords.	
Stream	2:	Veracity	and	Claim	Extraction.	Simultaneously,	 the	model	 identifies	 factual	claims	
within	the	text.	It	cross-references	these	claims	against	a	retrieved	context	buffer	containing	
verified	 information	 from	 trusted	 sources	 (e.g.,	 WHO,	 CDC,	 Reuters).	 The	 model	 assigns	 a	
veracity	probability	score,	estimating	the	likelihood	that	the	information	is	misleading.	
Code	 Snippet	 1	 demonstrates	 the	 logic	 used	 to	 prompt	 the	 model	 for	 these	 dual	 outputs,	
ensuring	structured	generation	that	can	be	parsed	programmatically.	

Code	Snippet	1:	Python	implementation	of	the	Dual-Stream	Prompting	Strategy	
def generate_analysis_prompt(post_content, verified_context):	
    prompt = f"""	
    Analyze the following social media post regarding a crisis event.   	
    Context from verified sources: {verified_context}    	
    Post: "{post_content}"    	
    Task 1 (Panic Analysis): Evaluate the level of panic, anxiety, or urgency.	
    Assign a score between 0.0 (calm) and 1.0 (hysteria).	
    Provide a brief reasoning based on linguistic markers.   	
    Task 2 (Veracity Check): Extract the main claim.	
    Compare it with the verified context.	
    Assign a Misinformation Probability Score between 0.0 (True) and 1.0 
(False).    	
    Output Format: JSON with keys 'panic_score', 'misinfo_score', 'reasoning'.	
    """	
    return prompt	
def process_batch(batch_posts, context_loader, llm_engine):	
    results = []	
    for post in batch_posts:	
        context = context_loader.get_relevant_context(post)	
        prompt = generate_analysis_prompt(post, context)	
        response = llm_engine.generate(prompt)	
        results.append(parse_json(response))	
    return results	

3.3	The	Panic-Misinformation	Interaction	Index	(PMII)	
To	quantify	the	interplay,	we	introduce	the	PMII.	Current	metrics	often	look	at	the	volume	of	
tweets	or	the	reach	of	a	specific	hashtag.	However,	volume	alone	does	not	indicate	the	toxicity	
of	the	information	environment.	The	PMII	is	calculated	as	a	temporally	weighted	aggregation	
of	the	panic	score	multiplied	by	the	misinformation	score.	
The	logic	behind	this	multiplicative	relationship	is	grounded	in	risk	analysis	[13].	A	high	panic	
score	associated	with	factual	information	(e.g.,	a	true	tsunami	warning)	is	a	functional	societal	
response.	 Conversely,	 high	 misinformation	 with	 low	 panic	 (e.g.,	 a	 flat	 earth	 theory)	 is	
relatively	 benign	 in	 an	 acute	 crisis.	 The	 danger	 zone,	 which	 the	 PMII	 isolates,	 is	 the	
convergence	of	high	misinformation	and	high	panic.	
We	compute	 this	 index	over	sliding	 time	windows	 to	observe	 the	 temporal	evolution	of	 the	
discourse.	By	tracking	the	derivative	of	the	PMII,	we	can	identify	"tipping	points"	where	the	
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interaction	between	false	news	and	anxiety	becomes	self-sustaining,	leading	to	viral	cascades	
that	are	difficult	to	mitigate.	

3.4	Temporal	Dynamics	and	Causality	
To	 move	 beyond	 correlation,	 we	 employ	 Granger	 Causality	 tests	 on	 the	 time-series	 data	
generated	by	the	LLM.	We	construct	two	time	series:	the	aggregate	misinformation	intensity	
and	 the	 aggregate	 panic	 intensity.	 By	 analyzing	 different	 time	 lags,	 we	 determine	whether	
spikes	in	misinformation	systematically	precede	spikes	in	panic,	or	if	panic	induces	a	demand	
for	misinformation	(reverse	causality)	[14].	
This	 temporal	 analysis	 allows	 us	 to	 map	 the	 "incubation	 period"	 of	 a	 panic	 cascade.	 We	
hypothesize	 that	 there	 is	a	critical	window	following	the	 introduction	of	a	high-impact	 false	
narrative	 during	 which	 intervention	 is	 possible	 before	 the	 panic	 response	 becomes	
generalized	across	the	network.	

4. Experiments	and	Analysis	
4.1	Experimental	Setup	
We	implemented	our	framework	using	PyTorch	and	the	Hugging	Face	Transformers	library.	
The	experiments	were	conducted	on	a	cluster	of	NVIDIA	A100	GPUs.	For	the	LLM	backbone,	
we	utilized	a	quantized	version	of	LLaMA-2-70b	to	balance	performance	and	computational	
efficiency.	The	retrieval-augmented	generation	(RAG)	component	for	fact-checking	utilized	a	
vector	database	populated	with	verified	news	articles	corresponding	to	the	dates	of	the	social	
media	posts.	
Datasets:	We	utilized	two	primary	datasets	for	evaluation.	The	first	is	the	CrisisMMD	dataset,	
which	 contains	 multimodal	 data	 from	 various	 natural	 disasters.	 The	 second	 is	 a	 custom-
curated	 COVID-19	 Twitter	 dataset,	 filtered	 for	 the	 early	 months	 of	 the	 pandemic	 (January	
2020	-	May	2020),	a	period	characterized	by	high	uncertainty	and	rampant	misinformation.	
Table	1	details	the	statistical	distribution	of	the	datasets	used	in	our	experiments,	highlighting	
the	volume	of	data	and	the	prevalence	of	labeled	misinformation.	

Table	1:	Statistical	Summary	of	Datasets	Used	for	Evaluation	
Dataset	 Total	Posts	 Verified	Misinfo	Ratio	 Event	Type	
CrisisMMD	 145,000	 12.4%	 Natural	 Disasters	

(Hurricane,	Fire)	
COVID-19-Early	 520,000	 28.7%	 Global	Pandemic	

4.2	Baselines	
We	compared	the	Panic-Info-LLM	framework	against	three	baselines:	
1.	 	 Bi-LSTM	 +	 GloVe:	 A	 standard	 deep	 learning	 approach	 using	 word	 embeddings	 and	
recurrent	networks	for	separate	sentiment	and	veracity	classification	[15].	
2.	 BERT-Large:	 A	 fine-tuned	 BERT	 model	 treating	 the	 task	 as	 a	 multi-label	 classification	
problem.	
3.	 GraphSAGE:	 A	 graph	 neural	 network	 approach	 that	 utilizes	 the	 propagation	 structure	 of	
retweets	but	relies	on	shallow	text	features	[16].	

4.3	Results	and	Quantitative	Analysis	
The	primary	metric	for	success	was	the	ability	to	predict	"High-Risk	Events,"	defined	as	time	
intervals	 where	 the	 actual	 panic	 index	 (ground	 truth	 established	 by	 human	 annotators)	
exceeded	two	standard	deviations	from	the	mean.	



Frontiers	in	Artificial	Intelligence	Research	 Volume	3	Issue	1,	2026	
ISSN:	3079-6342	 	
	

6	

	
Figure	2:	Comparative	Performance	Chart	

As	 illustrated	 in	 Figure	 2,	 our	 LLM-based	 approach	 demonstrated	 a	 superior	 F1-score	
compared	 to	 the	 baselines.	 The	 most	 significant	 gain	 was	 observed	 in	 the	 Recall	 metric.	
Traditional	 models	 often	 failed	 to	 identify	 panic	 triggers	 that	 were	 linguistically	 subtle	 or	
required	external	knowledge	to	interpret	(e.g.,	linking	a	specific	medical	term	to	a	conspiracy	
theory).	The	LLM's	pre-training	on	vast	corpora	allowed	it	to	bridge	these	semantic	gaps.	
Table	2	presents	the	results	of	the	lag	analysis.	We	measured	the	average	time	delta	between	
the	injection	of	a	major	misinformation	cluster	and	the	subsequent	peak	in	panic	sentiment.	

Table	2:	Temporal	Lag	Analysis	between	Misinformation	Injection	and	Panic	Peak	
Model	/	Metric	 Average	Lag	(Hours)	 Pearson	Correlation	(r)	Granger	 Causality	 (p-

value)	
Raw	 Sentiment	
Analysis	

N/A	 0.45	 >	0.05	

Panic-Info-LLM	 3.5	Hours	 0.82	 <	0.001	
The	results	 in	Table	2	 indicate	a	 strong	causal	 link	 (p	<	0.001)	detected	by	our	 framework.	
The	 average	 lag	 of	 3.5	 hours	 suggests	 a	 rapid	 incubation	 period.	 Crucially,	 the	 correlation	
coefficient	of	0.82	confirms	that	the	PMII	metric	is	a	robust	indicator	of	network	volatility.	

4.4	Qualitative	Analysis	of	Panic	Propagation	
To	better	understand	 the	mechanism	of	propagation,	we	visualized	 the	embedding	space	of	
the	social	media	posts.	Figure	3	displays	the	temporal	evolution	of	the	discourse.	

	
Figure	3:	Temporal	Heatmap	of	Panic	Propagation	

The	 heatmap	 reveals	 that	 misinformation	 does	 not	 spread	 uniformly.	 Instead,	 it	 initially	
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percolates	within	 specific	 semantic	 clusters	 (echo	 chambers)	before	 "spilling	over"	 into	 the	
general	discourse.	The	LLM	analysis	highlighted	that	posts	combining	high-arousal	emotional	
language	with	pseudo-scientific	jargon	were	the	most	effective	vectors	for	this	spillover.	The	
model	 correctly	 identified	 that	 technical-sounding	 misinformation	 (e.g.,	 "lab-leaked	 bio-
weapon")	generated	significantly	higher	PMII	scores	 than	simple	rumors,	primarily	because	
the	former	induced	a	sense	of	helplessness	and	inevitable	doom,	key	drivers	of	panic	[17].		
Furthermore,	error	analysis	revealed	that	the	LLM	occasionally	hallucinated	panic	in	sarcastic	
posts.	 While	 the	 system	 was	 instructed	 to	 detect	 sarcasm,	 the	 subtlety	 of	 internet	 humor	
during	 crises	 remains	 a	 challenge.	 However,	 the	 integration	 of	 the	 veracity	 stream	 helped	
mitigate	 this;	verified	 true	statements,	even	 if	 sarcastic,	 contributed	 less	 to	 the	overall	PMII	
than	false	statements.	

5. Conclusion	
5.1	Summary	and	Implications	
This	study	has	presented	a	comprehensive	framework	for	quantifying	the	interplay	between	
misinformation	 and	 panic	 using	 Large	 Language	 Models.	 By	 moving	 beyond	 isolated	
sentiment	 analysis	 and	 fact-checking,	 we	 have	 established	 a	 coupled	 methodology	 that	
reflects	 the	 complex	 reality	 of	 social	 media	 dynamics.	 The	 introduction	 of	 the	 Panic-
Misinformation	 Interaction	 Index	 (PMII)	 provides	 researchers	 and	 policymakers	 with	 a	
tangible	metric	to	assess	the	health	of	the	information	ecosystem	in	real-time.	
Our	 findings	 confirm	 that	 misinformation	 acts	 as	 a	 catalyst	 for	 panic,	 with	 a	 quantifiable	
amplification	 effect.	 The	 ability	 of	 LLMs	 to	 understand	 context	 and	 verify	 claims	 against	
external	 knowledge	bases	 allows	 for	 a	more	nuanced	detection	of	high-risk	narratives	 than	
was	 previously	 possible	with	 static	 dictionaries	 or	 shallow	 neural	 networks.	 The	 identified	
3.5-hour	 lag	between	misinformation	 injection	and	panic	peaks	offers	a	 crucial,	 albeit	brief,	
window	for	intervention	by	platform	moderators	or	public	health	officials.	

5.2	Limitations	and	Future	Directions	
Despite	 the	 promising	 results,	 several	 limitations	 persist.	 First,	 the	 computational	 cost	 of	
deploying	large-scale	LLMs	for	real-time	monitoring	of	global	social	media	feeds	is	prohibitive.	
Future	work	must	focus	on	knowledge	distillation	techniques	to	create	smaller,	more	efficient	
models	that	retain	the	reasoning	capabilities	of	their	larger	counterparts.	Second,	our	current	
model	 primarily	 processes	 text.	 However,	 modern	 misinformation	 increasingly	 relies	 on	
multimedia	 (images,	 deepfakes,	 videos).	 Integrating	multimodal	 capabilities	 into	 the	 Panic-
Info-LLM	framework	is	a	necessary	evolution.	
Finally,	 there	 is	 the	 ethical	 dimension	 of	 automated	 moderation.	 While	 the	 PMII	 is	 a	
descriptive	 metric,	 its	 use	 as	 a	 prescriptive	 tool	 for	 content	 suppression	 raises	 concerns	
regarding	 censorship	 and	 the	 freedom	 of	 speech.	 Future	 research	 must	 address	 the	
development	of	"human-in-the-loop"	systems	where	the	AI	serves	as	a	triage	tool	rather	than	
a	final	arbiter,	ensuring	that	the	mitigation	of	panic	does	not	come	at	the	cost	of	transparency	
and	open	discourse.	
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