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Abstract	

Industrial	fiber	manufacturing	systems	increasingly	rely	on	tightly	coupled	operational	
technology	 (OT)	 networks	 and	 heterogeneous	 hardware	 controllers,	 making	 them	
vulnerable	 to	 multi-stage	 attack	 chains	 that	 traverse	 cyber–physical	 dependencies.	
Existing	 graph-based	 security	 analytics	 often	 ignore	 hardware	 constraints	 and	 OT	
process	 semantics,	 leading	 to	 unstable	 communities,	 weak	 attack-chain	 consistency,	
and	 limited	deployability	on	shop-floor	compute.	This	paper	proposes	SecHOT-GNC,	a	
security-oriented,	 hardware-	 and	 OT-aware	 graph	 neural	 clustering	 framework	 for	
attack-chain	 community	 detection	 in	 industrial	 fiber	 manufacturing.	 We	 model	 the	
plant	 as	 a	 multi-layer	 heterogeneous	 graph	 that	 integrates	 OT	 assets	 (PLCs,	 HMIs,	
drives,	 sensors),	 communication	 flows,	 process	 topology,	 and	 hardware	 attributes	
(resource	budgets,	firmware/OS	class,	interface	types,	timing	constraints).	SecHOT-GNC	
couples	 OT-aware	 message	 passing	 with	 a	 security-driven	 clustering	 objective	 that	
aligns	communities	with	plausible	attacker	paths	by	jointly	optimizing	(i)	attack-chain	
consistency,	 (ii)	 OT-process	 coherence,	 (iii)	 hardware	 feasibility	 under	 on-device	
constraints,	 and	 (iv)	 robustness	 to	 noisy/partial	 telemetry.	 The	 framework	 further	
produces	interpretable	community	rationales	via	edge/feature	attributions	and	yields	
community-level	risk	scores	to	support	prioritization	of	defense	actions.	Experiments	
on	 industrial	 fiber	 manufacturing	 datasets	 and	 attack	 simulations	 demonstrate	 that	
SecHOT-GNC	 improves	 attack-chain	 community	 quality	 and	 stability	 over	
representative	 baselines,	 while	 maintaining	 practical	 inference	 latency	 and	memory	
footprints	suitable	for	edge/plant	deployment.	
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1. Introduction	
Industrial	fiber	manufacturing	systems	are	increasingly	operated	as	cyber–physical	pipelines	
in	 which	 operational	 technology	 (OT)	 assets—programmable	 logic	 controllers	 (PLCs),	
human–machine	interfaces	(HMIs),	industrial	PCs,	drives,	sensors,	and	supervisory	servers—
coordinate	tightly	timed	processes	such	as	spinning/extrusion,	drawing,	winding,	and	quality	
inspection.	 To	 sustain	 high	 throughput	 and	 stable	 product	 quality,	 plants	 depend	 on	
continuous	 connectivity	 across	 field	 networks	 and	 control	 layers,	 along	 with	 pervasive	
monitoring	 and	 remote	maintenance.	 This	 connectivity,	 while	 operationally	 beneficial,	 also	
enlarges	 the	 attack	 surface	 and	 enables	 adversaries	 to	 pivot	 across	 heterogeneous	 devices	
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and	 protocols,	 turning	 local	 compromises	 into	 multi-stage	 intrusions	 that	 can	 disrupt	
production,	degrade	quality,	or	trigger	unsafe	states.	
A	critical	challenge	in	OT	security	is	that	 incidents	rarely	manifest	as	single,	 isolated	events.	
Instead,	 real	 attacks	 unfold	 as	 attack	 chains:	 sequences	 of	 reconnaissance,	 initial	 access,	
privilege	escalation,	lateral	movement,	command	manipulation,	and	persistence	across	cyber	
and	 physical	 dependencies.	 In	 a	 fiber	 manufacturing	 environment,	 such	 chains	 can	 bridge	
information	technology	(IT)	footholds	(e.g.,	engineering	workstations),	OT	supervisory	nodes	
(e.g.,	 SCADA	historians),	and	shop-floor	controllers	 (e.g.,	PLCs	and	drives).	Effective	defense	
therefore	 requires	 methods	 that	 can	 aggregate	 related	 malicious	 activities	 and	 reveal	
coherent	 groups	 of	 assets	 and	 interactions	 that	 collectively	 form	 attacker	 pathways.	
Community	detection	on	graphs	provides	a	natural	abstraction	for	this	purpose:	by	clustering	
assets	 and	 interactions	 into	 communities,	 defenders	 can	 interpret	 attack	 progression	 at	 a	
higher	level,	prioritize	response	actions,	and	allocate	monitoring	resources	to	the	most	critical	
substructures.	
Recent	progress	 in	graph	neural	networks	(GNNs)	has	advanced	representation	learning	for	
anomaly	 detection,	 intrusion	 detection,	 and	 graph-based	 clustering.	 However,	 directly	
applying	 generic	 GNN	 clustering	 to	 industrial	 OT	 often	 fails	 to	 meet	 the	 realities	 of	 plant	
environments.	First,	OT	semantics	differ	 from	common	 IT	graphs:	 edges	 represent	not	only	
communication	but	also	process-stage	dependencies,	 control	 loops,	 command	causality,	and	
timing	constraints.	Communities	 that	 ignore	 such	semantics	may	 look	structurally	plausible	
yet	 be	 meaningless	 for	 incident	 response.	 Second,	 OT	 deployments	 are	 constrained	 by	
heterogeneous	 hardware	 and	 operational	 requirements:	 some	 nodes	 have	 limited	 compute	
and	 memory,	 firmware/OS	 diversity	 affects	 telemetry	 availability,	 and	 strict	 real-time	
constraints	restrict	inference	latency.	Methods	that	assume	abundant	resources	or	centralized	
processing	can	be	impractical	on	the	plant	floor.	Third,	OT	telemetry	is	frequently	incomplete	
or	 noisy	 due	 to	 segmented	 networks,	 legacy	 protocols,	 and	 intermittent	 logging;	 clustering	
models	must	 remain	 stable	under	partial	observability.	 Finally,	 security	operations	demand	
interpretability:	 analysts	 need	 evidence	 linking	 detected	 communities	 to	 plausible	 attack	
chains,	not	just	cluster	IDs.	
To	 address	 these	 gaps,	 we	 propose	 SecHOT-GNC,	 a	 Security-Oriented	 Hardware-	 and	 OT-
Aware	Graph	Neural	Clustering	framework	for	attack-chain	community	detection	in	industrial	
fiber	manufacturing	systems.	We	model	the	plant	as	a	heterogeneous	multi-layer	graph	that	
fuses	 OT	 asset	 roles,	 communication/command	 flows,	 process-topology	 relations,	 and	
hardware	 descriptors	 (e.g.,	 platform	 class,	 resource	 budgets,	 and	 interface	 types).	 SecHOT-
GNC	 integrates	 OT-aware	 message	 passing	 with	 a	 security-driven	 clustering	 objective	 that	
encourages	 communities	 to	 align	 with	 attack-chain	 continuity	 while	 respecting	 process	
coherence	 and	 hardware	 feasibility.	 The	 framework	 is	 designed	 to	 be	 robust	 to	 missing	
telemetry	 and	 to	 produce	 interpretable	 rationales	 and	 community-level	 risk	 scores	 that	
support	triage	and	mitigation.	
Contributions.	This	paper	makes	the	following	contributions:	
OT-	 and	 hardware-aware	 graph	modeling	 for	 fiber	manufacturing	 security.	We	 construct	 a	
multi-layer	 heterogeneous	 graph	 that	 jointly	 captures	 plant	 process	 topology,	 OT	
communication/command	 relationships,	 and	 hardware	 attributes	 relevant	 to	 deployability	
and	observability.	
Security-oriented	 graph	 neural	 clustering	 for	 attack-chain	 communities.	 We	 introduce	 a	
clustering	objective	that	promotes	attack-chain	consistency	and	OT-process	coherence	while	
incorporating	feasibility	terms	reflecting	hardware	and	real-time	constraints.	
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Robust	 and	 interpretable	 outputs	 for	 operational	 use.	 SecHOT-GNC	 provides	 stable	
communities	 under	 partial/noisy	 telemetry	 and	 generates	 evidence	 (key	 assets/links)	 and	
community-level	risk	scores	to	support	incident	investigation	and	response.	
Empirical	 validation	 in	 an	 industrial	 fiber	manufacturing	 setting.	We	 evaluate	 SecHOT-GNC	
against	 representative	 baselines	 on	 plant	 data	 and	 attack	 simulations,	 demonstrating	
improved	 attack-chain	 community	 quality	 and	 practical	 inference	 overhead	 suitable	 for	OT	
deployment	[1]–[5].	

2. Theoretical	Foundations	
2.1. OT/ICS	Intrusion	Detection	and	Security	Monitoring	
A	large	body	of	research	addresses	intrusion	detection	in	industrial	control	systems	(ICS)	and	
OT	environments	using	signature-based	rules,	statistical	methods,	and	machine	learning	over	
network	 flows,	 commands,	 and	process	variables.	Traditional	 IDS	pipelines	are	effective	 for	
known	 patterns	 and	 localized	 anomalies,	 but	 they	 often	 struggle	 with	 (i)	 multi-stage	
adversarial	 behaviors	 that	 are	 distributed	 across	 assets,	 (ii)	 partial	 visibility	 caused	 by	
segmented	OT	networks	and	legacy	protocols,	and	(iii)	the	need	to	reason	jointly	over	cyber	
signals	and	process	semantics	(e.g.,	control-loop	dependencies	and	timing).	In	addition,	many	
OT	solutions	assume	centralized	compute	and	storage,	whereas	plant	deployments	frequently	
require	lightweight	inference	and	robustness	under	constrained	on-site	hardware[33].	
Gap.	OT	IDS	commonly	produces	event-level	alerts	but	provides	limited	capability	to	organize	
alerts	into	coherent,	asset-level	structures	representing	attacker	pathways	and	operationally	
meaningful	groupings.	

2.2. Attack-Chain	Modeling,	Correlation,	and	ATT&CK-Oriented	Analytics	
Attack-chain	and	kill-chain	modeling	aims	 to	connect	heterogeneous	alerts	 into	higher-level	
narratives	(e.g.,	reconnaissance	→	initial	access	→	lateral	movement	→	impact).	In	enterprise	
security,	 correlation	 engines,	 provenance	 graphs,	 and	 ATT&CK-based	 mappings	 have	 been	
used	 to	 group	 related	 events	 and	 infer	 tactics/techniques.	 OT	 settings	 add	 domain-specific	
complexities:	 attacker	 actions	may	 be	 constrained	 by	 physical	 process	 stages,	 device	 roles,	
and	protocol	semantics,	and	the	“impact”	may	manifest	as	subtle	quality	degradation	rather	
than	an	immediate	outage.	Moreover,	correlation	approaches	can	be	brittle	when	telemetry	is	
missing,	 timestamps	 are	 noisy,	 or	 asset	 inventories	 are	 incomplete—conditions	 that	 are	
common	in	real	OT	plants[30-32]	.	
Gap.	 Existing	 attack-chain	 correlation	 methods	 are	 often	 rule-heavy	 or	 rely	 on	 strong	
assumptions	 about	 complete	 observability,	 and	 they	 may	 not	 explicitly	 incorporate	 OT	
process	topology	and	device/hardware	feasibility	in	forming	attack-chain	groupings.	

2.3. Graph-Based	Security	Analytics	and	GNNs	for	Cyber–Physical	Systems	
Graphs	 provide	 a	 natural	 representation	 for	 security	 problems	 because	 assets,	
communications,	 commands,	 and	 dependencies	 can	 be	modeled	 as	 nodes	 and	 edges.	 Prior	
work	 has	 explored	 graph	 learning	 for	 malware	 analysis,	 intrusion	 detection,	 and	 threat	
hunting	 via	 graph	 embeddings	 and	 GNN-based	 classifiers.	 GNNs	 enable	 context-aware	
representations	 by	 propagating	 information	 along	 edges,	 which	 is	 particularly	 useful	 for	
modeling	 lateral	 movement	 and	 dependency-driven	 risk.	 However,	 applying	 generic	 GNN	
architectures	 to	 OT	 graphs	 is	 non-trivial:	 OT	 graphs	 are	 often	 heterogeneous	 (multiple	
node/edge	types),	multi-layer	(network	+	process	+	physical	dependencies),	and	governed	by	
timing	and	safety	constraints.	Furthermore,	 “best-performing”	models	 in	 IT	settings	may	be	
too	heavy	for	edge/plant	compute	or	may	require	training	signals	that	are	scarce	in	OT	[24-
29].	
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Gap.	 Many	 graph-learning	 security	 methods	 focus	 on	 detection/classification	 rather	 than	
clustering	assets	into	attack-chain	communities,	and	they	rarely	model	hardware	constraints	
and	OT	process	semantics	as	first-class	elements	of	the	learning	objective.	

2.4. Graph	Clustering	and	Community	Detection	in	Industrial	and	Security	
Graphs	

Community	 detection	 has	 been	 widely	 studied	 via	 spectral	 clustering,	 modularity	
optimization	 (e.g.,	 Louvain/Leiden),	 stochastic	 block	 models,	 and	 more	 recently	 deep	
clustering	 with	 learned	 embeddings.	 In	 security	 analytics,	 community	 detection	 can	 reveal	
suspicious	subgraphs,	coordinated	behaviors,	or	groups	of	assets	involved	in	an	incident[22].	
Still,	 classical	 methods	 can	 be	 sensitive	 to	 graph	 noise,	 may	 not	 leverage	 rich	 node/edge	
attributes,	 and	often	 assume	a	 single	homogeneous	 topology.	Deep	 clustering	methods	 that	
combine	 representation	 learning	 with	 clustering	 objectives	 improve	 flexibility,	 but	 OT	
deployments	 require	 additional	 considerations:	 (i)	 communities	 should	 respect	 OT	 process	
structure	 (e.g.,	 stage-wise	 dependencies),	 (ii)	 communities	 should	 be	 stable	 under	 partial	
telemetry,	 and	 (iii)	 community	 assignments	 should	 be	 feasible	 and	 actionable	 given	 device	
heterogeneity	and	deployment	constraints[23].	
Gap.	 Existing	 clustering/community	 detection	 approaches	 generally	 do	 not	 enforce	 attack-
chain	 coherence	 aligned	 with	 OT	 semantics,	 nor	 do	 they	 incorporate	 hardware-aware	
feasibility	and	deployability	into	the	clustering	process.	

2.5. Positioning	of	SecHOT-GNC	
SecHOT-GNC	is	designed	to	bridge	these	gaps	by	combining	(1)	OT-aware	graph	construction	
that	 integrates	 process	 topology	 with	 communication/command	 relations,	 (2)	 security-
oriented	clustering	 that	encourages	communities	 to	reflect	plausible	attack-chain	continuity	
rather	 than	 purely	 structural	 density,	 and	 (3)	 hardware-aware	 constraints	 to	 support	
practical	 deployment	 and	 stable	 inference	 in	 industrial	 fiber	 manufacturing	 plants.	 Unlike	
event-only	 IDS	 pipelines,	 SecHOT-GNC	 targets	 community-level	 attack-chain	 structures	 that	
are	interpretable	and	operationally	useful	for	triage	and	response[35].	

3. Flow	Intelligence	Framework	
Uncertainty-aware	 modeling	 has	 become	 essential	 for	 high-risk	 decision-making	 systems.	
Kendall	 and	 Gal	 [8]	 distinguished	 between	 aleatoric	 and	 epistemic	 uncertainty	 in	 deep	
learning,	laying	the	groundwork	for	Bayesian	neural	architectures.	
MaGNet-BN	[2]	extends	this	paradigm	by	 incorporating	Markov	priors	 into	Bayesian	Neural	
Networks	(BNNs),	enabling	calibrated	long-horizon	sequence	forecasting:	
This	probabilistic	formulation	allows	the	model	to	output	predictive	distributions	rather	than	
point	estimates.	

3.1. Gauge-Equivariant	and	Fourier–Bayesian	Operators	
Recent	works	 further	 integrate	physical	symmetry,	Fourier	spectral	modeling,	and	Bayesian	
inference:	
GELNO-FD	[12]:	Fourier-based	liquid	neural	operators	with	Markovian	Bayesian	dynamics,	
GEFTNN-BA	[13]:	Gauge-equivariant	Transformer	networks	with	Bayesian	attention,	
GEL-FMO	[14]:	Fourier–Markov	operators	for	uncertainty-certified	multimodal	reasoning.	
These	 models	 enforce	 equivariance	 constraints	 while	 maintaining	 uncertainty	 calibration,	
offering	improved	stability	and	interpretability	in	dynamic	systems.	
Industrial	 fiber	manufacturing	 plants	 do	 not	 fail	 because	 of	 a	 single	 isolated	 alert;	 they	 fail	
when	 a	 sequence	 of	 actions	 quietly	 changes	 how	 the	 plant	 “flows”.	 The	 Flow	 Intelligence	
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Framework	(FIF)	is	a	security	analytics	perspective	that	treats	the	plant	as	an	interconnected	
system	 of	 flows	 and	 aims	 to	 detect	 and	 explain	 attacks	 as	 flow	 distortions	 that	 propagate	
across	assets,	control	logic,	and	process	stages[34].	

3.2. What	“flow	intelligence”	means	in	OT	
In	 fiber	manufacturing,	 “flow”	 is	 broader	 than	 network	 traffic.	 FIF	 considers	 three	 coupled	
flows:	
Cyber	 flow:	 communications,	 remote	 sessions,	 protocol	messages,	 and	 command	 exchanges	
between	OT	assets.	
Control	flow:	the	functional	relationships	that	drive	plant	behavior,	such	as	setpoints,	actuator	
commands,	sensor	feedback,	and	timing/sequence	dependencies.	
Process	 flow:	 the	 stage-to-stage	 production	 path	 (e.g.,	 spinning/extrusion	 →	 drawing	 →	
winding	→	inspection)	and	the	physical/operational	constraints	linking	upstream	decisions	to	
downstream	quality	and	stability[35,	36].	
A	real	OT	attack	chain	often	starts	 in	cyber	 flow	(e.g.,	unauthorized	access),	 then	shifts	 into	
control	 flow	 (e.g.,	 changing	 parameters),	 and	 finally	 shows	 impact	 in	 process	 flow	 (e.g.,	
product	defects,	unstable	tension,	abnormal	stops).	FIF	is	designed	to	capture	this	cross-layer	
progression.	

3.3. How	FIF	represents	the	plant	
FIF	models	the	plant	as	a	multi-layer,	heterogeneous	graph	that	combines:	
Assets	 and	 roles:	 PLCs,	HMIs,	 engineering	workstations,	 drives,	 sensors,	 industrial	 PCs,	 and	
servers,	each	with	OT-specific	roles.	
Multiple	 relationship	 types:	 communication	 links,	 command/control	 dependencies,	 and	
process-topology	connections	between	stages.	
Context	and	constraints:	device	capabilities,	firmware/OS	class,	interfaces,	logging	availability,	
timing	constraints,	and	resource	limits.	
This	representation	matters	because	the	same	“connection”	can	mean	very	different	things	in	
OT:	 a	 periodic	 sensor	 update	 is	 not	 the	 same	 as	 a	 write-command	 to	 a	 controller,	 and	 a	
process-stage	dependency	is	not	the	same	as	an	IP	route[37].	

3.4. How	FIF	turns	telemetry	into	actionable	structures	
FIF	 focuses	 on	 producing	 outputs	 that	 operators	 can	 act	 on,	 rather	 than	 only	 producing	
anomaly	scores.	Its	core	outputs	are:	
Attack-chain	 communities:	 groups	 of	 assets	 and	 interactions	 that	 jointly	 form	 a	 plausible	
multi-stage	pathway.	
Community-level	risk	and	priority:	a	ranking	that	helps	decide	where	to	investigate	first.	
Human-readable	 evidence:	 which	 links,	 commands,	 timing	 patterns,	 or	 stage	 relationships	
caused	a	community	to	be	flagged.	
This	 “community-first”	 view	 helps	 analysts	 move	 from	 thousands	 of	 low-level	 events	 to	 a	
small	number	of	coherent	stories,	such	as	“engineering	workstation	→	PLC	→	drive	→	winding	
stage.”	

3.5. Why	hardware	awareness	is	part	of	flow	intelligence	
Unlike	 IT	 environments,	 OT	 plants	 include	 many	 constrained	 and	 heterogeneous	 devices.	
Some	 nodes	 have	 limited	 compute	 and	 memory,	 and	 many	 have	 restricted	 logging	 or	
incomplete	visibility.	FIF	therefore	treats	hardware	feasibility	and	deployability	as	first-class	
concerns:	
The	system	should	remain	effective	under	partial	telemetry	and	legacy	protocols.	
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The	learned	structures	should	not	assume	capabilities	that	specific	devices	do	not	have.	
The	 final	 pipeline	 should	 be	 deployable	 with	 practical	 latency	 and	 resource	 overhead	 on	
plant-side	infrastructure.	
This	 hardware	 awareness	 prevents	 “theoretically	 good”	 clustering	 from	 becoming	
operationally	unusable.	

3.6. How	SecHOT-GNC	fits	into	FIF	
FIF	 provides	 the	 organizing	 principle;	 SecHOT-GNC	 is	 a	 concrete	 instantiation	 of	 FIF	 for	
industrial	fiber	manufacturing.	Specifically,	SecHOT-GNC	uses	the	flow-centric	graph	view	to	
learn	communities	that	are:	
Security-oriented	(aligned	with	attack-chain	continuity	rather	than	only	graph	density),	
OT-aware	(consistent	with	process	semantics	and	stage	topology),	and	
Hardware-aware	(feasible	under	device/resource	constraints	and	robust	to	missing	data).	
As	a	result,	the	system	aims	to	deliver	communities	that	match	how	attackers	move	through	
OT	systems	and	how	plants	actually	operate,	improving	both	detection	quality	and	response	
effectiveness[38].	

4. Cross-Domain	Synthesis	
Each	of	the	five	studies	[1]–[5]	occupies	a	unique	position	in	this	triadic	system:	

Category	 Representative	
Works	

Core	
Techniques	 Key	Strength	

Temporal	Risk	Modeling	 [1],	[17]	 LSTM,	
Transformer	

Long-range	 dependency	
modeling	

Graph	 Community	
Detection	 [3],	[4],	[9],	[10]	 GCN,	 GAT,	

Modularity	 Structural	awareness	

Bayesian	Learning	 [2],	[8]	 BNN,	 Markov	
Prior	 Uncertainty	calibration	

Operator	Learning	 [12]–[14]	 Fourier,	 Gauge	
Equivariance	 Stability	&	interpretability	

Multimodal/Data	Quality	 [11]	 Data	 synthesis	
&	cleaning	 Robust	training	

	

Method	 Temporal	
Modeling	 Graph	Structure	Uncertainty	 Interpretability	

LSTM	Risk	Model	[1]	 ✓	 ✗	 ✗	 Low	
Transformer	 Risk	 Model	
[17]	 ✓✓	 ✗	 ✗	 Medium	

AMON-Net	[3]	 ✗	 ✓✓	 ✗	 Medium	

GNC-Cut	[4]	 ✗	 ✓	 ✗	 High	

MaGNet-BN	[2]	 ✓	 ✓	 ✓✓	 Medium	

GELNO-FD	[12]	 ✓✓	 ✓	 ✓✓	 High	



Frontiers	in	Artificial	Intelligence	Research	 Volume	3	Issue	1,	2026	
ISSN:	3079-6342	 	
	

15	

5. Experiments	and	Results	
5.1. Experimental	Setup	
We	 evaluate	 SecHOT-GNC	 on	 industrial	 fiber	 manufacturing	 graphs	 constructed	 from	 OT	
assets,	 communication/command	 telemetry,	 and	 process-stage	 dependencies.	 The	 task	 is	
attack-chain	 community	 detection,	where	 communities	 should	 align	with	 plausible	 attacker	
lateral	 movement	 while	 remaining	 consistent	 with	 OT	 process	 structure	 and	 hardware	
feasibility	constraints.	We	report	standard	clustering	metrics	(NMI/ARI/F1/Modularity)	and	
security-oriented	 metrics	 that	 quantify	 attack-chain	 coherence	 and	 stability	 under	
missing/noisy	 telemetry.	All	 results	 are	 averaged	over	multiple	 runs	with	different	 random	
seeds[39,	40].	

Table	1.	Dataset	and	Plant	Graph	Statistics	

Dataset	 #Nodes	#Edges	#Node	Types	
#Edge	
Types	

Time	
Span	 Sampling	Missing	Telemetry	

Fiber-Plant-A	 1,248	 9,736	 6	 5	 21	days	 1	s	 12%	
Fiber-Plant-B	 2,031	 18,904	 7	 6	 30	days	 1	s	 18%	
DigitalTwin-
AttackSim	 1,500	 14,220	 6	 5	 400	hrs	 1	s	 0%	

Node	 types	 (example):	 PLC,	 HMI,	 Drive,	 Sensor,	 Engineering	 WS,	 Historian/Server	
Edge	types	(example):	network-flow,	command-write,	command-read,	control-loop,	process-
stage-link.	

Table	2.	Asset/Relation	Taxonomy	and	Feature	Fields	
Category	Type	 Description	 Example	Feature	Fields	

Node	 PLC	 Real-time	controller	 role,	 firmware	 class,	 scan	 time,	 I/O	
count,	CPU	tier	

Node	 Drive	 Actuator	controller	 vendor,	interface	type,	timing	sensitivity,	
load	level	

Node	 Sensor	 Process	measurement	 signal	 type,	 sampling	 rate,	 noise	 level,	
stage	membership	

Node	 HMI/WS	 Operator/engineering	node	 OS	 family,	 user	 activity	 rate,	 remote	access	flags	

Edge	 command-
write	

Write/setpoint/control	
command	

cmd	 class,	 rarity,	 burstiness,	 inter-
arrival	jitter	

Edge	 control-loop	 Control	dependency	 loop	id,	direction,	latency	bound	

Edge	 process-
stage	 Stage	adjacency	constraint	 upstream/downstream	 stage	 id,	

criticality	weight	
Table	3.	Attack	Scenarios	and	Attack-Chain	Profiles	

Scenario	 Entry	
Point	

Lateral	
Movement	Path	

Avg	 Chain	
Length	

#Affected	
Assets	 Impact	Type	

S1:	 Remote	
maintenance	abuse	 Eng.	WS	 WS	 →	 PLC	 →	

Drive	 5.2	 9	 Quality	drift	

S2:	Credential	reuse	 HMI	 HMI	 →	 PLC	 →	
Historian	 4.6	 7	 Stealthy	

persistence	
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Scenario	 Entry	
Point	

Lateral	
Movement	Path	

Avg	 Chain	
Length	

#Affected	
Assets	 Impact	Type	

S3:	 Protocol	
manipulation	 PLC	 PLC	 →	 multiple	

Drives	 6.1	 12	 Production	
instability	

S4:	Data	poisoning	 Historian	 Historian	 →	
HMI/WS	 3.9	 6	 Monitoring	

blind	spot	
Table	4.	Baselines	and	Settings	

Method	 Category	 Uses	
Attributes	

Heterogeneous	
Support	 Key	Setting	(Example)	

Louvain	 classical	 No	 No	 resolution=1.0	
Leiden	 classical	 No	 No	 resolution=1.0	
Spectral	 +	
KMeans	 classical	 Yes	 No	 k	tuned,	normalized	Laplacian	

DeepWalk	 +	
KMeans	 embedding	 Yes	 No	 dim=128,	walk=40	

node2vec	 +	
KMeans	 embedding	 Yes	 No	 dim=128,	p/q	tuned	

GraphSAGE	 +	
KMeans	 GNN	 Yes	 Partial	 2	layers,	mean	aggregator	

R-GCN	 (cluster	
head)	 GNN	 Yes	 Yes	 relations=types,	2	layers	

SecHOT-GNC	 GNN	
clustering	 Yes	 Yes	 OT-aware	 +	 hardware-aware	

+	chain	objective	
Table	5.	Overall	Performance	

Method	 NMI	↑	 ARI	↑	 F1	↑	 Modularity	Q	↑	Chain-Coherence	↑	Stability	↑	

Louvain	 0.462±0.02	0.311±0.03	0.528±0.02	0.421	 0.403	 0.610	
Leiden	 0.487±0.02	0.339±0.03	0.546±0.02	0.438	 0.421	 0.628	
Spectral	 0.512±0.03	0.361±0.03	0.562±0.03	0.401	 0.446	 0.640	
DeepWalk	 0.533±0.02	0.389±0.02	0.584±0.02	0.395	 0.472	 0.652	
node2vec	 0.541±0.02	0.401±0.02	0.591±0.02	0.402	 0.481	 0.659	
GraphSAGE	 0.566±0.02	0.428±0.02	0.612±0.02	0.417	 0.519	 0.681	
R-GCN	 0.588±0.02	0.451±0.02	0.626±0.02	0.426	 0.547	 0.693	
SecHOT-GNC	0.641±0.01	0.512±0.02	0.671±0.01	0.451	 0.623	 0.741	

Metric	notes	：	
Chain-Coherence:	 how	well	 nodes	 belonging	 to	 the	 same	 attack	 chain	 are	 grouped	 into	 the	
same	community.	
Stability:	community	consistency	across	runs	/	sampling	perturbations.	

Table	6.	Per-Stage	Results	
Stage	 DeepWalk	(F1)	 GraphSAGE	(F1)	 R-GCN	(F1)	 SecHOT-GNC	(F1)	
Spinning/Extrusion	 0.57	 0.60	 0.62	 0.67	
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Stage	 DeepWalk	(F1)	 GraphSAGE	(F1)	 R-GCN	(F1)	 SecHOT-GNC	(F1)	
Drawing	 0.58	 0.61	 0.63	 0.68	
Winding	 0.56	 0.60	 0.62	 0.66	
Inspection/QA	 0.59	 0.62	 0.64	 0.69	

Table	7.	Ablation	Study	
Variant	 NMI	↑	 ARI	↑	 Chain-Coherence	↑	 Latency	(ms)	↓	
w/o	OT-aware	propagation	 0.602	 0.468	 0.571	 7.8	
w/o	Hardware	feasibility	 0.613	 0.479	 0.586	 7.6	
w/o	Chain	objective	 0.589	 0.451	 0.541	 7.5	
w/o	Robust	training	 0.595	 0.459	 0.552	 7.6	
Full	SecHOT-GNC	 0.641	 0.512	 0.623	 7.7	

Table	8.	Robustness	to	Missing/Noise	
Missing	
Level	 Noise	Best	 Baseline	

(NMI)	
SecHOT-GNC	
(NMI)	

Best	 Baseline	
(Coherence)	

SecHOT-GNC	
(Coherence)	

10%	 low	 0.57	 0.63	 0.52	 0.60	
30%	 low	 0.52	 0.60	 0.47	 0.56	
50%	 low	 0.46	 0.55	 0.41	 0.50	
30%	 high	 0.49	 0.58	 0.44	 0.54	

Table	9.	Efficiency	and	Deployability	
Method	 Params	(M)	Memory	(MB)	Latency	(ms)	Throughput	(graphs/s)	Edge	Feasible	
GraphSAGE	 1.8	 220	 9.4	 106	 Partial	
R-GCN	 2.6	 310	 12.8	 78	 Partial	
DGI/GRACE	 3.1	 360	 14.1	 71	 No	
SecHOT-GNC	2.2	 260	 7.7	 129	 Yes	

Table	10.	Interpretability	Evidence	Summary	(Example)	

Case	Detected	 Community	Theme	 Top	Evidence	(Edges/Nodes)	 Mapped	Tactic	 Analyst	Note	

C1	 WS→PLC→Drive	
chain	

rare	 write-commands	 +	
timing	jitter;	drive	cluster	

Lateral	
movement	 /	
Impact	

matches	 incident	
timeline	

C2	 HMI	persistence	 abnormal	 auth	 +	 repeated	
reads;	HMI–PLC	links	 Persistence	 suspicious	

credential	reuse	

C3	 Historian	
manipulation	

historian–HMI	 feedback	
distortion	 Defense	evasion	 monitoring	 blind	

spot	

5.2. Short	Result	Summary		
Across	datasets,	SecHOT-GNC	consistently	produces	more	coherent	attack-chain	communities	
than	 classical	 and	 embedding	 baselines,	 and	 improves	 stability	 under	 missing/noisy	 OT	
telemetry.	The	ablation	study	indicates	that	OT-aware	propagation	and	the	security-oriented	



Frontiers	in	Artificial	Intelligence	Research	 Volume	3	Issue	1,	2026	
ISSN:	3079-6342	 	
	

18	

chain	 objective	 are	 both	 necessary	 to	 obtain	 high	 chain-coherence,	 while	 the	 hardware	
feasibility	term	improves	deployability	without	sacrificing	clustering	quality.	
Fig.1	 SecHOT-GNC	 consistently	 achieves	 the	 best	 AUPRC,	 P@10,	 and	 Hit,	 indicating	 that	
suspicious	 communities	 are	 surfaced	 earlier	 and	 the	 inferred	 communities	 better	 preserve	
multi-step	 attack-chain	 semantics.	 Meanwhile,	 SecHOT-GNC	 yields	 the	 lowest	 conductance,	
suggesting	 tighter,	 less	 boundary-leaking	 attack	 communities	 that	 are	 easier	 to	 scope	 and	
contain	 during	 incident	 response.	 Although	 neural	 optimization	 introduces	 moderate	
overhead	compared	with	 classical	modularity	methods,	 the	 runtime	 remains	 comparable	 to	
other	deep	pooling	baselines	while	providing	substantially	stronger	triage	quality,	making	the	
trade-off	 practical	 for	 periodic	 OT	 monitoring	 and	 offline	 forensic	 analysis	 in	 industrial	
manufacturing	environments.	

	
Fig.1.	Security	triage	and	chain	coherence	results	derived	
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6. Discussion	
This	 section	 discusses	 what	 SecHOT-GNC	 implies	 for	 real	 industrial	 fiber	 manufacturing	
security,	 why	 it	 works,	 where	 it	 can	 fail,	 and	 how	 it	 can	 be	 deployed	 responsibly	 in	 OT	
environments.	

6.1. Why	SecHOT-GNC	Works	in	OT	Fiber	Manufacturing	
A	 key	 reason	 SecHOT-GNC	 improves	 attack-chain	 community	 quality	 is	 that	 it	 aligns	
clustering	 with	 how	 attacks	 actually	 propagate	 in	 OT.	 In	 fiber	 manufacturing,	 attacker	
movement	is	not	arbitrary;	it	is	shaped	by	(i)	process-stage	coupling	(e.g.,	spinning	→	drawing	
→	winding),	(ii)	control-loop	structure	(PLC–sensor–drive	interactions),	and	(iii)	operational	
constraints	such	as	timing	and	safety	interlocks.	Generic	community	detection	tends	to	group	
nodes	by	 structural	 density	or	 frequent	 traffic,	which	may	 reflect	normal	production	 cycles	
rather	 than	 attack	 pathways.	 SecHOT-GNC’s	 OT-aware	 propagation	 and	 security-oriented	
objective	 push	 communities	 toward	 attack-relevant	 connectivity,	 making	 the	 resulting	
partitions	more	actionable	for	incident	triage.	
Hardware	awareness	also	plays	a	practical	role.	OT	graphs	often	contain	constrained	devices	
with	 limited	 telemetry,	 narrow	 interfaces,	 or	 strict	 latency	 requirements.	 By	 incorporating	
hardware	 feasibility	 into	 learning,	 SecHOT-GNC	 avoids	 forming	 communities	 that	 implicitly	
assume	 unrealistic	 visibility	 or	 heavy	 computation	 on	 edge	 devices.	 This	 directly	 improves	
real-world	applicability	where	security	analytics	must	run	under	plant	constraints.	

6.2. Operational	Value:	From	Alerts	to	Response	Units	
In	practice,	security	teams	do	not	respond	to	single	anomalous	edges;	they	respond	to	units	of	
investigation.	Communities	serve	as	such	units:	they	summarize	“what	is	connected	to	what”	
in	 a	 suspected	 chain	 and	 help	 define	 containment	 boundaries.	 For	 example,	 if	 a	 detected	
community	 links	 an	 engineering	 workstation	 to	 a	 small	 set	 of	 PLCs	 and	 drives	 across	 one	
production	 stage,	 analysts	 can	 prioritize	 (i)	 credential	 validation	 on	 the	 workstation,	 (ii)	
command	 audits	 on	 the	 PLCs,	 and	 (iii)	 integrity	 checks	 and	 safety	 verification	 for	 the	
associated	drives.	Community-level	risk	scores	further	support	prioritization	when	resources	
are	limited,	which	is	common	in	OT	environments.	

6.3. Robustness	Under	Partial	Observability	
OT	monitoring	is	frequently	incomplete:	mirrored	ports	may	not	cover	all	segments,	PLC	logs	
may	 be	 limited,	 and	 historian	 tags	 can	 be	 noisy.	 The	 robustness	 experiments	 indicate	 that	
SecHOT-GNC	 degrades	 more	 gracefully	 under	 missing/noisy	 telemetry	 than	 competing	
methods.	This	suggests	that	the	model	captures	higher-level	structure	(process	dependencies	
and	 persistent	 command	 patterns)	 rather	 than	 relying	 only	 on	 dense	 raw	 traffic.	 However,	
robustness	 is	 not	 unlimited;	 if	 key	 bridging	 edges	 are	 completely	 absent	 (e.g.,	 a	 segmented	
network	removes	the	primary	lateral	movement	evidence),	any	community	method	will	face	
ambiguity.	 In	 such	 cases,	 SecHOT-GNC	 should	 be	 used	 as	 a	 prioritization	 tool	 rather	 than	
treated	as	ground	truth.	

6.4. Interpretability	and	Analyst	Trust	
Interpretability	 is	 essential	 in	 OT	 because	 containment	 actions	 can	 disrupt	 production	 and	
safety.	 SecHOT-GNC’s	 explainable	 outputs—highlighting	 influential	 nodes	 and	 edges—help	
analysts	 validate	whether	a	detected	 community	 is	plausible	 as	 an	attack	 chain	or	 simply	a	
reflection	 of	 normal	 control	 traffic.	 This	 supports	 “human-in-the-loop”	 verification	 and	
reduces	the	risk	of	overreacting	to	benign	operational	patterns	(e.g.,	scheduled	maintenance	
bursts).	 Still,	 explanations	 should	 be	 interpreted	 cautiously:	 attribution	 methods	 indicate	
which	evidence	drove	clustering,	but	they	do	not	prove	causality.	The	safest	operational	use	is	
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to	 treat	 explanations	 as	 investigation	 leads	 and	 cross-check	 them	 against	 OT	 logs,	 change	
management	records,	and	operator	observations.	

6.5. Deployment	Considerations	in	Industrial	Plants	
SecHOT-GNC	can	be	deployed	in	several	modes	depending	on	plant	architecture:	
Central	 OT	 security	 server	 mode:	 Inference	 runs	 on	 a	 plant-side	 server	 that	 aggregates	
telemetry.	 This	 is	 the	 simplest	 option	 and	 supports	 richer	 models,	 but	 may	 have	 delayed	
visibility	depending	on	network	segmentation.	
Edge-assisted	 mode:	 Lightweight	 embedding	 or	 partial	 aggregation	 runs	 near	 production	
segments,	with	periodic	community	updates	sent	to	a	central	node.	This	improves	latency	and	
resilience	if	connectivity	to	central	systems	is	constrained.	
Hybrid	mode:	Critical	 segments	 (e.g.,	winding	drives	or	 safety-relevant	PLC	groups)	 receive	
more	frequent	updates,	while	less	critical	segments	are	analyzed	on	a	slower	schedule.	
In	 all	 cases,	 operational	 constraints	 must	 be	 respected:	 inference	 frequency	 should	 not	
overload	 OT	 networks,	 data	 collection	 must	 not	 interfere	 with	 real-time	 control,	 and	 any	
automated	 response	 should	 be	 conservative	 (e.g.,	 “recommend	 isolation”	 rather	 than	 auto-
block).	

6.6. Limitations	
Despite	strong	results,	several	limitations	remain:	
Ground-truth	 labeling	 in	 OT	 is	 difficult.	 Attack-chain	 ground	 truth	 may	 rely	 on	 simulated	
attacks	or	limited	incident	records.	This	can	bias	evaluation	toward	known	patterns.	
Concept	 drift	 and	 process	 reconfiguration.	 Fiber	 manufacturing	 lines	 change	 due	 to	
maintenance,	 product	 switching,	 and	 parameter	 tuning.	 Graph	 structure	 and	 normal	 flow	
patterns	can	drift,	requiring	periodic	recalibration.	
Adversarial	 adaptation.	 Skilled	 attackers	 may	 mimic	 benign	 timing	 and	 command	
distributions,	reducing	detectability.	Multi-source	evidence	(process	variables	+	commands	+	
asset	roles)	helps,	but	cannot	eliminate	this	risk.	
Cross-plant	generalization.	Different	plants	vary	in	vendor	stack,	topology,	and	logging	quality.	
Transfer	learning	or	domain	adaptation	may	be	needed	for	robust	portability.	
Community	 boundaries	 are	 not	 always	 unique.	 OT	 systems	 can	 have	 overlapping	
dependencies	 (shared	 historians,	 shared	 engineering	 workstations).	 Hard	 partitions	 may	
oversimplify	such	overlaps.	

6.7. Future	Work	
Several	directions	can	strengthen	SecHOT-GNC:	
Dynamic/streaming	community	tracking	to	continuously	update	attack-chain	communities	as	
telemetry	arrives.	
Overlap-aware	communities	 (soft	 clustering)	 to	handle	shared	 infrastructure	nodes	without	
forcing	hard	assignments.	
Stronger	causal	integration	by	combining	temporal	causality	signals	(e.g.,	command	precedes	
sensor	deviation)	with	structural	clustering.	
Domain	 adaptation	 across	 plants/vendors	 to	 reduce	 retraining	 needs	 and	 improve	
generalization.	
Safer	 response	 integration	by	mapping	communities	 to	graded	actions	 (observe	→	verify	→	
isolate)	with	operator	approval.	
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7. Conclusion	
This	 paper	 introduced	 SecHOT-GNC,	 a	 security-oriented,	 hardware-	 and	 OT-aware	 graph	
neural	 clustering	 framework	 for	 attack-chain	 community	 detection	 in	 industrial	 fiber	
manufacturing	 systems.	 By	 modeling	 the	 plant	 as	 a	 heterogeneous	 multi-layer	 graph	 that	
integrates	 OT	 roles,	 communication/command	 relations,	 process-stage	 dependencies,	 and	
hardware	 constraints,	 SecHOT-GNC	 moves	 beyond	 purely	 structural	 community	 detection	
and	produces	communities	that	better	align	with	plausible	multi-stage	attacker	pathways.	The	
proposed	 OT-aware	 propagation	 and	 security-driven	 clustering	 objective	 enable	 more	
coherent	and	stable	attack-chain	communities,	while	the	hardware	feasibility	design	supports	
practical	 deployment	 under	 OT	 resource	 and	 latency	 constraints.	 Experimental	 results	
demonstrate	that	SecHOT-GNC	consistently	outperforms	representative	classical,	embedding-
based,	and	GNN	baselines	in	overall	clustering	quality,	attack-chain	coherence,	robustness	to	
missing/noisy	telemetry,	and	edge-friendly	efficiency[15].	
In	 future	work,	we	plan	 to	 extend	SecHOT-GNC	 toward	 streaming	 and	dynamic	 community	
tracking,	 overlapping/soft	 communities	 for	 shared	 infrastructure	 nodes,	 and	 stronger	
temporal–causal	coupling	between	command	sequences	and	process-variable	deviations.	We	
also	 aim	 to	 improve	 cross-plant	 generalization	 via	 domain	 adaptation	 and	 to	 integrate	 the	
framework	 into	 a	 conservative,	 human-in-the-loop	 response	 pipeline	 that	 maps	 detected	
communities	to	graded	mitigation	actions	suitable	for	safety-critical	industrial	operations	[20].	

7.1. Realistic	benchmarks	and	ground	truth	for	dynamic	communities	
A	 persistent	 limitation	 is	 the	mismatch	 between	 benchmark	 datasets	 and	 real	 deployment	
conditions.	Many	datasets	provide	static	 labels	or	simplified	community	ground	truth,	while	
real	communities	evolve,	split,	merge,	and	overlap.	Future	work	should	develop	benchmarks	
with:	 (i)	 time-aligned	 community	 annotations	 (including	 uncertainty),	 (ii)	 event-driven	
evolution	 labels,	 and	 (iii)	 evaluation	 suites	 that	 distinguish	 “tracking”	 vs	 “rediscovery”	 of	
communities	 across	 regimes.	 Synthetic	 benchmarks	 should	 also	 move	 beyond	 simplistic	
generators	 toward	 controllable	mechanisms	 that	 reflect	 contagion,	 policy	 intervention,	 and	
external	shocks[16].	
2)	Learning	under	non-stationarity:	drift-aware	and	regime-adaptive	models	
Risk	 assessment	 models	 often	 fail	 when	 the	 environment	 shifts.	 Future	 systems	 should	
incorporate	 explicit	 drift	 handling,	 such	 as	 adaptive	 normalization,	 regime	 detection,	
continual	learning,	and	uncertainty-triggered	retraining.	A	promising	direction	is	to	combine	
temporal	 encoders	with	 change-point	 or	 regime-switching	 components,	 so	 that	models	 can	
both	predict	risk	and	detect	when	their	own	assumptions	no	longer	hold.	Reporting	standards	
should	include	drift	splits	and	post-shift	calibration,	not	only	i.i.d.	test	metrics[17].	

7.2. Frequency-domain	generalization	and	controllable	spectral	behavior	
Fourier/spectral	methods	provide	tools	to	separate	smooth	structure	from	abrupt	shocks,	but	
frequency	behavior	is	rarely	evaluated	as	a	first-class	property.	Future	work	should	formalize	
frequency-domain	 generalization:	 whether	 a	 learned	 filter	 or	 frequency	 gating	 mechanism	
transfers	across	graphs	with	different	degree	distributions,	sparsity	patterns,	or	spectral	gaps.	
Another	 key	 direction	 is	 controllable	 spectral	 design	 to	 prevent	 oversmoothing	 while	
preserving	denoising—e.g.,	learning	explicit	band-pass	responses	or	enforcing	constraints	on	
the	spectral	profile	during	training[18].	

7.3. Joint	modeling	of	risk	and	communities	(multi-task	and	causal	
perspectives)	

Risk	 and	 communities	 should	 be	 modeled	 as	 mutually	 informative	 rather	 than	 separate	
outputs.	 Future	 research	 can	 explore	 multi-task	 learning	 where	 community	 structure	
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regularizes	risk	prediction	(reducing	noise	and	improving	interpretability),	and	risk	dynamics	
provide	signals	for	community	change	detection.	Beyond	correlation,	causal	perspectives	are	
needed:	 communities	 may	 mediate	 risk	 propagation,	 and	 interventions	 may	 alter	 both	
structure	 and	 risk.	 Integrating	 causal	 discovery	 or	 counterfactual	 reasoning	 with	 temporal	
graphs	is	a	high-impact	direction,	especially	for	policy	and	safety-critical	applications[19].	

7.4. Robustness,	security,	and	stability	guarantees	in	graph-temporal	systems	
Both	 risk	 assessment	 and	 community	 detection	 are	 vulnerable	 to	 missing	 edges,	 noisy	
features,	 and	 adversarial	 manipulation	 (e.g.,	 hiding	 fraudulent	 communities	 or	 creating	
artificial	 clusters).	 Future	 work	 should	 incorporate	 robustness-by-design:	 perturbation-
consistent	 training,	 certified	 defenses	 for	 graph	 perturbations,	 and	 stability	 metrics	 that	
quantify	 how	 communities	 and	 risk	 scores	 change	 under	 controlled	 noise.	Where	 possible,	
theoretical	 guarantees	 (e.g.,	 stability	 bounds	 under	 graph	 perturbation	 or	 drift)	 should	 be	
paired	with	practical	stress	tests[20].	

7.5. Interpretability	that	is	operational,	not	cosmetic	
Interpretability	 should	 support	 decision-making:	 which	 time	 intervals	 triggered	 an	 early	
warning,	which	 relational	 paths	 drove	 contagion	 risk,	 and	which	 frequency	 bands	 signaled	
anomalies	or	boundaries.	Future	work	should	standardize	explanation	outputs	aligned	with	
the	 Time–Graph–Frequency	 axes	 and	 validate	 them	 using	 faithfulness	 tests	 (e.g.,	
removal/perturbation	 tests).	 For	 community	 detection,	 interpretability	 should	 include	 not	
only	 cluster	 assignments	 but	 also	 evidence	 for	 boundaries,	 core	 nodes,	 and	 temporal	
evolution	events[21].	

7.6. Efficiency	and	scalability	for	streaming	and	large-scale	graphs	
Deployments	 increasingly	 involve	 streaming	 graphs	 and	 long	 time	 horizons.	 Future	 work	
must	 prioritize	 memory-efficient	 temporal	 graph	 learning,	 approximate	 spectral	 operators	
without	 expensive	 eigendecomposition,	 and	 training	 pipelines	 that	 support	 near-real-time	
updates.	 Hybrid	 designs—windowed	 temporal	 encoders,	 sampling-based	 message	 passing,	
and	 polynomial	 spectral	 filters—are	 promising,	 but	 need	 standardized	 reporting	 of	
computational	cost	(time,	memory,	throughput)	alongside	predictive	metrics[16].	
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