Frontiers in Artificial Intelligence Research Volume 3 Issue 1, 2026
ISSN: 3079-6342

SecHOT-GNC: Security-Oriented Hardware- and OT-Aware Graph
Neural Clustering for Attack-Chain Community Detection in
Industrial Fiber Manufacturing Systems

Fu Wang® "+, Liang Zhang’"*

ITayho Advanced Materials Group Co., Ltd., Yantai, Shandong 264006, China.
* Corresponding author: zhangliang@tayho.com.cn, wangfu@tayho.com.cn
+ These authors contributed equally and are co-first authors.

Abstract

Industrial fiber manufacturing systems increasingly rely on tightly coupled operational
technology (OT) networks and heterogeneous hardware controllers, making them
vulnerable to multi-stage attack chains that traverse cyber-physical dependencies.
Existing graph-based security analytics often ignore hardware constraints and OT
process semantics, leading to unstable communities, weak attack-chain consistency,
and limited deployability on shop-floor compute. This paper proposes SecHOT-GNC, a
security-oriented, hardware- and OT-aware graph neural clustering framework for
attack-chain community detection in industrial fiber manufacturing. We model the
plant as a multi-layer heterogeneous graph that integrates OT assets (PLCs, HMIs,
drives, sensors), communication flows, process topology, and hardware attributes
(resource budgets, firmware/0S class, interface types, timing constraints). SecHOT-GNC
couples OT-aware message passing with a security-driven clustering objective that
aligns communities with plausible attacker paths by jointly optimizing (i) attack-chain
consistency, (ii) OT-process coherence, (iii) hardware feasibility under on-device
constraints, and (iv) robustness to noisy/partial telemetry. The framework further
produces interpretable community rationales via edge/feature attributions and yields
community-level risk scores to support prioritization of defense actions. Experiments
on industrial fiber manufacturing datasets and attack simulations demonstrate that
SecHOT-GNC improves attack-chain community quality and stability over
representative baselines, while maintaining practical inference latency and memory
footprints suitable for edge/plant deployment.
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1. Introduction

Industrial fiber manufacturing systems are increasingly operated as cyber-physical pipelines
in which operational technology (OT) assets—programmable logic controllers (PLCs),
human-machine interfaces (HMlIs), industrial PCs, drives, sensors, and supervisory servers—
coordinate tightly timed processes such as spinning/extrusion, drawing, winding, and quality
inspection. To sustain high throughput and stable product quality, plants depend on
continuous connectivity across field networks and control layers, along with pervasive
monitoring and remote maintenance. This connectivity, while operationally beneficial, also
enlarges the attack surface and enables adversaries to pivot across heterogeneous devices
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and protocols, turning local compromises into multi-stage intrusions that can disrupt
production, degrade quality, or trigger unsafe states.

A critical challenge in OT security is that incidents rarely manifest as single, isolated events.
Instead, real attacks unfold as attack chains: sequences of reconnaissance, initial access,
privilege escalation, lateral movement, command manipulation, and persistence across cyber
and physical dependencies. In a fiber manufacturing environment, such chains can bridge
information technology (IT) footholds (e.g., engineering workstations), OT supervisory nodes
(e.g., SCADA historians), and shop-floor controllers (e.g., PLCs and drives). Effective defense
therefore requires methods that can aggregate related malicious activities and reveal
coherent groups of assets and interactions that collectively form attacker pathways.
Community detection on graphs provides a natural abstraction for this purpose: by clustering
assets and interactions into communities, defenders can interpret attack progression at a
higher level, prioritize response actions, and allocate monitoring resources to the most critical
substructures.

Recent progress in graph neural networks (GNNs) has advanced representation learning for
anomaly detection, intrusion detection, and graph-based clustering. However, directly
applying generic GNN clustering to industrial OT often fails to meet the realities of plant
environments. First, OT semantics differ from common IT graphs: edges represent not only
communication but also process-stage dependencies, control loops, command causality, and
timing constraints. Communities that ignore such semantics may look structurally plausible
yet be meaningless for incident response. Second, OT deployments are constrained by
heterogeneous hardware and operational requirements: some nodes have limited compute
and memory, firmware/OS diversity affects telemetry availability, and strict real-time
constraints restrict inference latency. Methods that assume abundant resources or centralized
processing can be impractical on the plant floor. Third, OT telemetry is frequently incomplete
or noisy due to segmented networks, legacy protocols, and intermittent logging; clustering
models must remain stable under partial observability. Finally, security operations demand
interpretability: analysts need evidence linking detected communities to plausible attack
chains, not just cluster IDs.

To address these gaps, we propose SecHOT-GNC, a Security-Oriented Hardware- and OT-
Aware Graph Neural Clustering framework for attack-chain community detection in industrial
fiber manufacturing systems. We model the plant as a heterogeneous multi-layer graph that
fuses OT asset roles, communication/command flows, process-topology relations, and
hardware descriptors (e.g., platform class, resource budgets, and interface types). SecHOT-
GNC integrates OT-aware message passing with a security-driven clustering objective that
encourages communities to align with attack-chain continuity while respecting process
coherence and hardware feasibility. The framework is designed to be robust to missing
telemetry and to produce interpretable rationales and community-level risk scores that
support triage and mitigation.

Contributions. This paper makes the following contributions:

OT- and hardware-aware graph modeling for fiber manufacturing security. We construct a
multi-layer heterogeneous graph that jointly captures plant process topology, OT
communication/command relationships, and hardware attributes relevant to deployability
and observability.

Security-oriented graph neural clustering for attack-chain communities. We introduce a
clustering objective that promotes attack-chain consistency and OT-process coherence while
incorporating feasibility terms reflecting hardware and real-time constraints.
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Robust and interpretable outputs for operational use. SecHOT-GNC provides stable
communities under partial/noisy telemetry and generates evidence (key assets/links) and
community-level risk scores to support incident investigation and response.

Empirical validation in an industrial fiber manufacturing setting. We evaluate SecHOT-GNC
against representative baselines on plant data and attack simulations, demonstrating
improved attack-chain community quality and practical inference overhead suitable for OT
deployment [1]-[5].

2. Theoretical Foundations

2.1. OT/ICS Intrusion Detection and Security Monitoring

A large body of research addresses intrusion detection in industrial control systems (ICS) and
OT environments using signature-based rules, statistical methods, and machine learning over
network flows, commands, and process variables. Traditional IDS pipelines are effective for
known patterns and localized anomalies, but they often struggle with (i) multi-stage
adversarial behaviors that are distributed across assets, (ii) partial visibility caused by
segmented OT networks and legacy protocols, and (iii) the need to reason jointly over cyber
signals and process semantics (e.g., control-loop dependencies and timing). In addition, many
OT solutions assume centralized compute and storage, whereas plant deployments frequently
require lightweight inference and robustness under constrained on-site hardware[33].

Gap. OT IDS commonly produces event-level alerts but provides limited capability to organize
alerts into coherent, asset-level structures representing attacker pathways and operationally
meaningful groupings.

2.2. Attack-Chain Modeling, Correlation, and ATT&CK-Oriented Analytics

Attack-chain and kill-chain modeling aims to connect heterogeneous alerts into higher-level
narratives (e.g., reconnaissance — initial access — lateral movement — impact). In enterprise
security, correlation engines, provenance graphs, and ATT&CK-based mappings have been
used to group related events and infer tactics/techniques. OT settings add domain-specific
complexities: attacker actions may be constrained by physical process stages, device roles,
and protocol semantics, and the “impact” may manifest as subtle quality degradation rather
than an immediate outage. Moreover, correlation approaches can be brittle when telemetry is
missing, timestamps are noisy, or asset inventories are incomplete—conditions that are
common in real OT plants[30-32].

Gap. Existing attack-chain correlation methods are often rule-heavy or rely on strong
assumptions about complete observability, and they may not explicitly incorporate OT
process topology and device/hardware feasibility in forming attack-chain groupings.

2.3. Graph-Based Security Analytics and GNNs for Cyber-Physical Systems

Graphs provide a natural representation for security problems because assets,
communications, commands, and dependencies can be modeled as nodes and edges. Prior
work has explored graph learning for malware analysis, intrusion detection, and threat
hunting via graph embeddings and GNN-based classifiers. GNNs enable context-aware
representations by propagating information along edges, which is particularly useful for
modeling lateral movement and dependency-driven risk. However, applying generic GNN
architectures to OT graphs is non-trivial: OT graphs are often heterogeneous (multiple
node/edge types), multi-layer (network + process + physical dependencies), and governed by
timing and safety constraints. Furthermore, “best-performing” models in IT settings may be
too heavy for edge/plant compute or may require training signals that are scarce in OT [24-
29].
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Gap. Many graph-learning security methods focus on detection/classification rather than
clustering assets into attack-chain communities, and they rarely model hardware constraints
and OT process semantics as first-class elements of the learning objective.

2.4. Graph Clustering and Community Detection in Industrial and Security
Graphs

Community detection has been widely studied via spectral clustering, modularity
optimization (e.g., Louvain/Leiden), stochastic block models, and more recently deep
clustering with learned embeddings. In security analytics, community detection can reveal
suspicious subgraphs, coordinated behaviors, or groups of assets involved in an incident[22].
Still, classical methods can be sensitive to graph noise, may not leverage rich node/edge
attributes, and often assume a single homogeneous topology. Deep clustering methods that
combine representation learning with clustering objectives improve flexibility, but OT
deployments require additional considerations: (i) communities should respect OT process
structure (e.g., stage-wise dependencies), (ii) communities should be stable under partial
telemetry, and (iii) community assignments should be feasible and actionable given device
heterogeneity and deployment constraints[23].

Gap. Existing clustering/community detection approaches generally do not enforce attack-
chain coherence aligned with OT semantics, nor do they incorporate hardware-aware
feasibility and deployability into the clustering process.

2.5. Positioning of SecHOT-GNC

SecHOT-GNC is designed to bridge these gaps by combining (1) OT-aware graph construction
that integrates process topology with communication/command relations, (2) security-
oriented clustering that encourages communities to reflect plausible attack-chain continuity
rather than purely structural density, and (3) hardware-aware constraints to support
practical deployment and stable inference in industrial fiber manufacturing plants. Unlike
event-only IDS pipelines, SecHOT-GNC targets community-level attack-chain structures that
are interpretable and operationally useful for triage and response[35].

3. Flow Intelligence Framework

Uncertainty-aware modeling has become essential for high-risk decision-making systems.
Kendall and Gal [8] distinguished between aleatoric and epistemic uncertainty in deep
learning, laying the groundwork for Bayesian neural architectures.

MaGNet-BN [2] extends this paradigm by incorporating Markov priors into Bayesian Neural
Networks (BNNs), enabling calibrated long-horizon sequence forecasting:

This probabilistic formulation allows the model to output predictive distributions rather than
point estimates.

3.1. Gauge-Equivariant and Fourier-Bayesian Operators

Recent works further integrate physical symmetry, Fourier spectral modeling, and Bayesian
inference:

GELNO-FD [12]: Fourier-based liquid neural operators with Markovian Bayesian dynamics,
GEFTNN-BA [13]: Gauge-equivariant Transformer networks with Bayesian attention,
GEL-FMO [14]: Fourier-Markov operators for uncertainty-certified multimodal reasoning.

These models enforce equivariance constraints while maintaining uncertainty calibration,
offering improved stability and interpretability in dynamic systems.

Industrial fiber manufacturing plants do not fail because of a single isolated alert; they fail
when a sequence of actions quietly changes how the plant “flows”. The Flow Intelligence
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Framework (FIF) is a security analytics perspective that treats the plant as an interconnected
system of flows and aims to detect and explain attacks as flow distortions that propagate
across assets, control logic, and process stages[34].

3.2. What “flow intelligence” means in OT
In fiber manufacturing, “flow” is broader than network traffic. FIF considers three coupled
flows:

Cyber flow: communications, remote sessions, protocol messages, and command exchanges
between OT assets.

Control flow: the functional relationships that drive plant behavior, such as setpoints, actuator
commands, sensor feedback, and timing/sequence dependencies.

Process flow: the stage-to-stage production path (e.g., spinning/extrusion — drawing —
winding — inspection) and the physical/operational constraints linking upstream decisions to
downstream quality and stability[35, 36].

A real OT attack chain often starts in cyber flow (e.g., unauthorized access), then shifts into
control flow (e.g., changing parameters), and finally shows impact in process flow (e.g.,
product defects, unstable tension, abnormal stops). FIF is designed to capture this cross-layer
progression.

3.3. How FIF represents the plant

FIF models the plant as a multi-layer, heterogeneous graph that combines:

Assets and roles: PLCs, HMIs, engineering workstations, drives, sensors, industrial PCs, and
servers, each with OT-specific roles.

Multiple relationship types: communication links, command/control dependencies, and
process-topology connections between stages.

Context and constraints: device capabilities, firmware/OS class, interfaces, logging availability,
timing constraints, and resource limits.

This representation matters because the same “connection” can mean very different things in
OT: a periodic sensor update is not the same as a write-command to a controller, and a
process-stage dependency is not the same as an [P route[37].

3.4. How FIF turns telemetry into actionable structures
FIF focuses on producing outputs that operators can act on, rather than only producing
anomaly scores. Its core outputs are:

Attack-chain communities: groups of assets and interactions that jointly form a plausible
multi-stage pathway.

Community-level risk and priority: a ranking that helps decide where to investigate first.

Human-readable evidence: which links, commands, timing patterns, or stage relationships
caused a community to be flagged.

This “community-first” view helps analysts move from thousands of low-level events to a
small number of coherent stories, such as “engineering workstation — PLC — drive — winding
stage.”

3.5. Why hardware awareness is part of flow intelligence

Unlike IT environments, OT plants include many constrained and heterogeneous devices.
Some nodes have limited compute and memory, and many have restricted logging or
incomplete visibility. FIF therefore treats hardware feasibility and deployability as first-class
concerns:

The system should remain effective under partial telemetry and legacy protocols.
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The learned structures should not assume capabilities that specific devices do not have.

The final pipeline should be deployable with practical latency and resource overhead on
plant-side infrastructure.

This hardware awareness prevents “theoretically good” clustering from becoming
operationally unusable.

3.6. How SecHOT-GNC fits into FIF

FIF provides the organizing principle; SecHOT-GNC is a concrete instantiation of FIF for
industrial fiber manufacturing. Specifically, SecHOT-GNC uses the flow-centric graph view to
learn communities that are:

Security-oriented (aligned with attack-chain continuity rather than only graph density),
OT-aware (consistent with process semantics and stage topology), and
Hardware-aware (feasible under device/resource constraints and robust to missing data).

As a result, the system aims to deliver communities that match how attackers move through
OT systems and how plants actually operate, improving both detection quality and response
effectiveness[38].

4. Cross-Domain Synthesis

Each of the five studies [1]-[5] occupies a unique position in this triadic system:

Representative Core

Category Works Techniques Key Strength

: . LSTM, Long-range dependency
Temporal Risk Modeling  [1], [17] Transformer  modeling
Graph Community GCN, GAT,
Detection [3], [4], [9], [10] Modularity Structural awareness
Bayesian Learning [2], [8] ESS{_ Markov Uncertainty calibration
Operator Learning [12]-[14] Fourier, Gauge Stability & interpretability

Equivariance

Data synthesis

Multimodal/Data Quality [11] & cleaning

Robust training

Method ;601251(1);? Graph Structure Uncertainty Interpretability
LSTM Risk Model [1] v X X Low
Transformer Risk Model Y X X Medium

[17]

AMON-Net [3] X Vv X Medium
GNC-Cut [4] X v X High
MaGNet-BN [2] v v Vv Medium
GELNO-FD [12] Vv v Vv High
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5. Experiments and Results

5.1. Experimental Setup

We evaluate SecHOT-GNC on industrial fiber manufacturing graphs constructed from OT
assets, communication/command telemetry, and process-stage dependencies. The task is
attack-chain community detection, where communities should align with plausible attacker
lateral movement while remaining consistent with OT process structure and hardware
feasibility constraints. We report standard clustering metrics (NMI/ARI/F1/Modularity) and
security-oriented metrics that quantify attack-chain coherence and stability under
missing/noisy telemetry. All results are averaged over multiple runs with different random
seeds[39, 40].
Table 1. Dataset and Plant Graph Statistics

#Node #Edge Time . Missing
Dataset #Nodes #Edges Types Types Span Sampling Telemetry
Fiber-Plant-A 1,248 9,736 6 5 21days 1s 12%
Fiber-Plant-B 2,031 18,904 7 6 30days 1s 18%
DigitalTwin- o
AttackSim 1,500 14,220 6 5 400 hrs 1s 0%

Node types (example): PLC, HMI, Drive, Sensor, Engineering WS, Historian/Server
Edge types (example): network-flow, command-write, command-read, control-loop, process-
stage-link.

Table 2. Asset/Relation Taxonomy and Feature Fields

Category Type Description Example Feature Fields
) role, firmware class, scan time, [/0
Node PLC Real-time controller . /
count, CPU tier
) endor, interface e, timing sensitivity,
Node Drive Actuator controller v typ 8 Vity
load level
signal type, sampling rate, noise level,
Node Sensor Process measurement 8 yp ping

stage membership

OS family, user activity rate, remote

Node HMI/WS Operator/engineering node access flags

Edoe command-  Write/setpoint/control cmd class, rarity, burstiness, inter-
& write command arrival jitter
Edge control-loop Control dependency loop id, direction, latency bound
process- . : upstream/downstream stage id,
Edge stage Stage adjacency constraint criticality weight
Table 3. Attack Scenarios and Attack-Chain Profiles
Scenario Entry Lateral Avg Chain #Affected Impact Tvpe
Point Movement Path Length Assets P P
S1: Remote WS - PLC - . .
maintenance abuse Eng. WS Drive >2 9 Quality drift
S2: Credential reuse HMI HMI > PLC = 4.6 7 Steal.thy
Historian persistence
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Scenario Entry Lateral Avg Chain #Affected Impact Tvpe
Point Movement Path Length Assets P P

S3: . . Protocol PLC PL.C — multiple 6.1 12 .Produ.ct.lon
manipulation Drives instability

) N . : Historian - Monitoring
S4: Data poisoning  Historian HMI/WS 3.9 6 blind spot

Table 4. Baselines and Settings
Uses Heterogeneous .
Method Category Attributes  Support Key Setting (Example)
Louvain classical No No resolution=1.0
Leiden classical No No resolution=1.0
Spectral * classical Yes No k tuned, normalized Laplacian
KMeans
DeepWalk * embedding Yes No dim=128, walk=40
KMeans
nodeZvec + . —
KMeans embedding Yes No dim=128, p/q tuned
GraphSAGE  + .
KMeans GNN Yes Partial 2 layers, mean aggregator
R-GCN (cluster oo
head) GNN Yes Yes relations=types, 2 layers
SecHOT-GNC GNN . Yes Yes OT-av.vare + hardware-aware
clustering + chain objective
Table 5. Overall Performance

Method NMI T ARIT F17 Modularity Q T Chain-Coherence T Stability T
Louvain 0.462+0.02 0.311+0.03 0.528+0.02 0.421 0.403 0.610
Leiden 0.487%0.02 0.339+0.03 0.546+0.02 0.438 0.421 0.628
Spectral 0.512+0.03 0.361+0.03 0.562+0.03 0.401 0.446 0.640
DeepWalk  0.533+0.02 0.389+0.02 0.584+0.02 0.395 0.472 0.652
node2vec  0.541+0.02 0.401%0.02 0.591+0.02 0.402 0.481 0.659
GraphSAGE 0.566+0.02 0.428+0.02 0.612+0.02 0.417 0.519 0.681
R-GCN 0.588+0.02 0.451+0.02 0.626%0.02 0.426 0.547 0.693
SecHOT-GNC 0.641+0.01 0.512+0.02 0.671+0.01 0.451 0.623 0.741

Metric notes :

Chain-Coherence: how well nodes belonging to the same attack chain are grouped into the

same community.

Stability: community consistency across runs / sampling perturbations.

Table 6. Per-Stage Results

Stage

DeepWalk (F1) GraphSAGE (F1)

R-GCN (F1)

SecHOT-GNC (F1)

Spinning/Extrusion 0.57

0.60 0.62
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Stage DeepWalk (F1) GraphSAGE (F1) R-GCN (F1) SecHOT-GNC (F1)
Drawing 0.58 0.61 0.63 0.68
Winding 0.56 0.60 0.62 0.66
Inspection/QA 0.59 0.62 0.64 0.69
Table 7. Ablation Study

Variant NMIT ARIT Chain-Coherence T Latency (ms) |
w/o OT-aware propagation 0.602 0.468 0.571 7.8
w/o Hardware feasibility 0.613 0.479 0.586 7.6
w/o Chain objective 0.589 0.451 0.541 7.5
w/o Robust training 0.595 0.459 0.552 7.6
Full SecHOT-GNC 0.641 0.512 0.623 7.7

Table 8. Robustness to Missing/Noise
Missing Noise Best Baseline SecHOT-GNC  Best Baseline SecHOT-GNC
Level (NMI) (NMI) (Coherence) (Coherence)
10% low 0.57 0.63 0.52 0.60
30% low 0.52 0.60 0.47 0.56
50% low 0.46 0.55 0.41 0.50
30% high 0.49 0.58 0.44 0.54

Table 9. Efficiency and Deployability

Method Params (M) Memory (MB) Latency (ms) Throughput (graphs/s) Edge Feasible

GraphSAGE 1.8 220 9.4 106 Partial
R-GCN 2.6 310 12.8 78 Partial
DGI/GRACE 3.1 360 14.1 71 No
SecHOT-GNC 2.2 260 7.7 129 Yes

Table 10. Interpretability Evidence Summary (Example)

Detected Community

Case Theme Top Evidence (Edges/Nodes) Mapped Tactic ~ Analyst Note
WS—PLC—Drive rare  write-commands  + Lateral matches incident
C1 . o . movement /o .
chain timing jitter; drive cluster Impact timeline

abnormal auth + repeated suspicious

C2  HMIpersistence reads; HMI-PLC links Persistence credential reuse
Historian historian-HMI feedback . monitoring blind
C3 . . . . Defense evasion
manipulation distortion spot

5.2. Short Result Summary

Across datasets, SecHOT-GNC consistently produces more coherent attack-chain communities
than classical and embedding baselines, and improves stability under missing/noisy OT
telemetry. The ablation study indicates that OT-aware propagation and the security-oriented
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chain objective are both necessary to obtain high chain-coherence, while the hardware
feasibility term improves deployability without sacrificing clustering quality.

Fig.1 SecHOT-GNC consistently achieves the best AUPRC, P@10, and Hit, indicating that
suspicious communities are surfaced earlier and the inferred communities better preserve
multi-step attack-chain semantics. Meanwhile, SecHOT-GNC yields the lowest conductance,
suggesting tighter, less boundary-leaking attack communities that are easier to scope and
contain during incident response. Although neural optimization introduces moderate
overhead compared with classical modularity methods, the runtime remains comparable to
other deep pooling baselines while providing substantially stronger triage quality, making the
trade-off practical for periodic OT monitoring and offline forensic analysis in industrial
manufacturing environments.
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6. Discussion

This section discusses what SecHOT-GNC implies for real industrial fiber manufacturing
security, why it works, where it can fail, and how it can be deployed responsibly in OT
environments.

6.1. Why SecHOT-GNC Works in OT Fiber Manufacturing

A key reason SecHOT-GNC improves attack-chain community quality is that it aligns
clustering with how attacks actually propagate in OT. In fiber manufacturing, attacker
movement is not arbitrary; it is shaped by (i) process-stage coupling (e.g., spinning — drawing
— winding), (ii) control-loop structure (PLC-sensor-drive interactions), and (iii) operational
constraints such as timing and safety interlocks. Generic community detection tends to group
nodes by structural density or frequent traffic, which may reflect normal production cycles
rather than attack pathways. SecHOT-GNC’s OT-aware propagation and security-oriented
objective push communities toward attack-relevant connectivity, making the resulting
partitions more actionable for incident triage.

Hardware awareness also plays a practical role. OT graphs often contain constrained devices
with limited telemetry, narrow interfaces, or strict latency requirements. By incorporating
hardware feasibility into learning, SecHOT-GNC avoids forming communities that implicitly
assume unrealistic visibility or heavy computation on edge devices. This directly improves
real-world applicability where security analytics must run under plant constraints.

6.2. Operational Value: From Alerts to Response Units

In practice, security teams do not respond to single anomalous edges; they respond to units of
investigation. Communities serve as such units: they summarize “what is connected to what”
in a suspected chain and help define containment boundaries. For example, if a detected
community links an engineering workstation to a small set of PLCs and drives across one
production stage, analysts can prioritize (i) credential validation on the workstation, (ii)
command audits on the PLCs, and (iii) integrity checks and safety verification for the
associated drives. Community-level risk scores further support prioritization when resources
are limited, which is common in OT environments.

6.3. Robustness Under Partial Observability

OT monitoring is frequently incomplete: mirrored ports may not cover all segments, PLC logs
may be limited, and historian tags can be noisy. The robustness experiments indicate that
SecHOT-GNC degrades more gracefully under missing/noisy telemetry than competing
methods. This suggests that the model captures higher-level structure (process dependencies
and persistent command patterns) rather than relying only on dense raw traffic. However,
robustness is not unlimited; if key bridging edges are completely absent (e.g., a segmented
network removes the primary lateral movement evidence), any community method will face
ambiguity. In such cases, SecHOT-GNC should be used as a prioritization tool rather than
treated as ground truth.

6.4. Interpretability and Analyst Trust

Interpretability is essential in OT because containment actions can disrupt production and
safety. SecHOT-GNC’s explainable outputs—highlighting influential nodes and edges—help
analysts validate whether a detected community is plausible as an attack chain or simply a
reflection of normal control traffic. This supports “human-in-the-loop” verification and
reduces the risk of overreacting to benign operational patterns (e.g., scheduled maintenance
bursts). Still, explanations should be interpreted cautiously: attribution methods indicate
which evidence drove clustering, but they do not prove causality. The safest operational use is
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to treat explanations as investigation leads and cross-check them against OT logs, change
management records, and operator observations.

6.5. Deployment Considerations in Industrial Plants

SecHOT-GNC can be deployed in several modes depending on plant architecture:

Central OT security server mode: Inference runs on a plant-side server that aggregates
telemetry. This is the simplest option and supports richer models, but may have delayed
visibility depending on network segmentation.

Edge-assisted mode: Lightweight embedding or partial aggregation runs near production
segments, with periodic community updates sent to a central node. This improves latency and
resilience if connectivity to central systems is constrained.

Hybrid mode: Critical segments (e.g., winding drives or safety-relevant PLC groups) receive
more frequent updates, while less critical segments are analyzed on a slower schedule.

In all cases, operational constraints must be respected: inference frequency should not
overload OT networks, data collection must not interfere with real-time control, and any

automated response should be conservative (e.g., “recommend isolation” rather than auto-
block).

6.6. Limitations

Despite strong results, several limitations remain:

Ground-truth labeling in OT is difficult. Attack-chain ground truth may rely on simulated
attacks or limited incident records. This can bias evaluation toward known patterns.

Concept drift and process reconfiguration. Fiber manufacturing lines change due to
maintenance, product switching, and parameter tuning. Graph structure and normal flow
patterns can drift, requiring periodic recalibration.

Adversarial adaptation. Skilled attackers may mimic benign timing and command
distributions, reducing detectability. Multi-source evidence (process variables + commands +
asset roles) helps, but cannot eliminate this risk.

Cross-plant generalization. Different plants vary in vendor stack, topology, and logging quality.
Transfer learning or domain adaptation may be needed for robust portability.

Community boundaries are not always unique. OT systems can have overlapping
dependencies (shared historians, shared engineering workstations). Hard partitions may
oversimplify such overlaps.

6.7. Future Work

Several directions can strengthen SecHOT-GNC:

Dynamic/streaming community tracking to continuously update attack-chain communities as
telemetry arrives.

Overlap-aware communities (soft clustering) to handle shared infrastructure nodes without
forcing hard assignments.

Stronger causal integration by combining temporal causality signals (e.g., command precedes
sensor deviation) with structural clustering.

Domain adaptation across plants/vendors to reduce retraining needs and improve
generalization.

Safer response integration by mapping communities to graded actions (observe — verify —
isolate) with operator approval.
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7. Conclusion

This paper introduced SecHOT-GNC, a security-oriented, hardware- and OT-aware graph
neural clustering framework for attack-chain community detection in industrial fiber
manufacturing systems. By modeling the plant as a heterogeneous multi-layer graph that
integrates OT roles, communication/command relations, process-stage dependencies, and
hardware constraints, SecHOT-GNC moves beyond purely structural community detection
and produces communities that better align with plausible multi-stage attacker pathways. The
proposed OT-aware propagation and security-driven clustering objective enable more
coherent and stable attack-chain communities, while the hardware feasibility design supports
practical deployment under OT resource and latency constraints. Experimental results
demonstrate that SecHOT-GNC consistently outperforms representative classical, embedding-
based, and GNN baselines in overall clustering quality, attack-chain coherence, robustness to
missing/noisy telemetry, and edge-friendly efficiency[15].

In future work, we plan to extend SecHOT-GNC toward streaming and dynamic community
tracking, overlapping/soft communities for shared infrastructure nodes, and stronger
temporal-causal coupling between command sequences and process-variable deviations. We
also aim to improve cross-plant generalization via domain adaptation and to integrate the
framework into a conservative, human-in-the-loop response pipeline that maps detected
communities to graded mitigation actions suitable for safety-critical industrial operations [20].

7.1. Realistic benchmarks and ground truth for dynamic communities

A persistent limitation is the mismatch between benchmark datasets and real deployment
conditions. Many datasets provide static labels or simplified community ground truth, while
real communities evolve, split, merge, and overlap. Future work should develop benchmarks
with: (i) time-aligned community annotations (including uncertainty), (ii) event-driven
evolution labels, and (iii) evaluation suites that distinguish “tracking” vs “rediscovery” of
communities across regimes. Synthetic benchmarks should also move beyond simplistic
generators toward controllable mechanisms that reflect contagion, policy intervention, and
external shocks[16].

2) Learning under non-stationarity: drift-aware and regime-adaptive models

Risk assessment models often fail when the environment shifts. Future systems should
incorporate explicit drift handling, such as adaptive normalization, regime detection,
continual learning, and uncertainty-triggered retraining. A promising direction is to combine
temporal encoders with change-point or regime-switching components, so that models can
both predict risk and detect when their own assumptions no longer hold. Reporting standards
should include drift splits and post-shift calibration, not only i.i.d. test metrics[17].

7.2. Frequency-domain generalization and controllable spectral behavior

Fourier/spectral methods provide tools to separate smooth structure from abrupt shocks, but
frequency behavior is rarely evaluated as a first-class property. Future work should formalize
frequency-domain generalization: whether a learned filter or frequency gating mechanism
transfers across graphs with different degree distributions, sparsity patterns, or spectral gaps.
Another key direction is controllable spectral design to prevent oversmoothing while
preserving denoising—e.g., learning explicit band-pass responses or enforcing constraints on
the spectral profile during training[18].

7.3. Joint modeling of risk and communities (multi-task and causal
perspectives)

Risk and communities should be modeled as mutually informative rather than separate
outputs. Future research can explore multi-task learning where community structure
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regularizes risk prediction (reducing noise and improving interpretability), and risk dynamics
provide signals for community change detection. Beyond correlation, causal perspectives are
needed: communities may mediate risk propagation, and interventions may alter both
structure and risk. Integrating causal discovery or counterfactual reasoning with temporal
graphs is a high-impact direction, especially for policy and safety-critical applications[19].

7.4. Robustness, security, and stability guarantees in graph-temporal systems

Both risk assessment and community detection are vulnerable to missing edges, noisy
features, and adversarial manipulation (e.g., hiding fraudulent communities or creating
artificial clusters). Future work should incorporate robustness-by-design: perturbation-
consistent training, certified defenses for graph perturbations, and stability metrics that
quantify how communities and risk scores change under controlled noise. Where possible,
theoretical guarantees (e.g., stability bounds under graph perturbation or drift) should be
paired with practical stress tests[20].

7.5. Interpretability that is operational, not cosmetic

Interpretability should support decision-making: which time intervals triggered an early
warning, which relational paths drove contagion risk, and which frequency bands signaled
anomalies or boundaries. Future work should standardize explanation outputs aligned with
the Time-Graph-Frequency axes and validate them wusing faithfulness tests (e.g.,
removal/perturbation tests). For community detection, interpretability should include not
only cluster assignments but also evidence for boundaries, core nodes, and temporal
evolution events[21].

7.6. Efficiency and scalability for streaming and large-scale graphs

Deployments increasingly involve streaming graphs and long time horizons. Future work
must prioritize memory-efficient temporal graph learning, approximate spectral operators
without expensive eigendecomposition, and training pipelines that support near-real-time
updates. Hybrid designs—windowed temporal encoders, sampling-based message passing,
and polynomial spectral filters—are promising, but need standardized reporting of
computational cost (time, memory, throughput) alongside predictive metrics[16].
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