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Abstract 

The advent of Industry 4.0 has precipitated a paradigm shift in the maintenance 
strategies of complex industrial systems, particularly rotating machinery, moving from 
reactive to predictive maintenance regimes. While deep learning models have achieved 
state-of-the-art performance in fault diagnosis due to their powerful feature extraction 
capabilities, they suffer from a critical lack of transparency, often described as the 
black-box problem. This opacity hinders their adoption in safety-critical environments 
where understanding the etiology of a fault is as significant as its detection. This paper 
proposes a novel Hybrid Neural–Symbolic Framework (HNSF) that integrates the 
perceptual capabilities of deep neural networks with the inferential transparency of 
symbolic logic. We utilize a One-Dimensional Convolutional Neural Network (1D-CNN) 
to extract high-level latent features from raw vibration signals, which are subsequently 
mapped to semantic concepts within a predefined knowledge graph. A differentiable 
reasoning layer then applies First-Order Logic rules to these concepts to deduce fault 
classes, ensuring that the model's predictions are consistent with domain knowledge. 
Experimental validation on the Case Western Reserve University (CWRU) bearing 
dataset demonstrates that our framework not only achieves classification accuracy 
comparable to pure deep learning models but also provides human-readable 
explanations for its decisions. The results suggest that bridging the subsymbolic and 
symbolic gap offers a robust pathway toward trustworthy industrial artificial 
intelligence. 

Keywords  

Fault Diagnosis, Neural-Symbolic Computing, Rotating Machinery, Explainable AI. 

Introduction 

1.1 Background 

Rotating machinery, encompassing components such as bearings, gearboxes, and rotors, 
constitutes the backbone of modern industrial infrastructure. From wind turbines generating 
renewable energy to the propulsion systems of aerospace vehicles, the reliability of these 
mechanisms is paramount. Consequently, the field of Prognostics and Health Management 
(PHM) has garnered significant attention, aiming to minimize downtime and prevent 
catastrophic failures through effective Fault Diagnosis (FD) [1]. Historically, maintenance was 
performed based on fixed schedules or run-to-failure policies, both of which are economically 
inefficient. The transition to Condition-Based Maintenance (CBM), driven by the proliferation 
of sensors and the Industrial Internet of Things (IIoT), has enabled the continuous monitoring 
of machinery health status [2]. 

In the context of CBM, data-driven approaches have emerged as the dominant methodology. 
Vibration signals, acoustic emissions, and motor current signatures are harvested and 
analyzed to identify anomalous patterns indicative of incipient faults [3]. Early techniques 
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relied heavily on manual feature engineering, where domain experts utilized signal processing 
tools such as the Fast Fourier Transform (FFT) and Envelope Analysis to extract statistical 
descriptors like kurtosis, skewness, and root mean square values [4]. These features were 
then fed into shallow machine learning classifiers, including Support Vector Machines (SVM) 
and Random Forests [5]. While effective, these methods are labor-intensive and require 
specialized domain knowledge, limiting their scalability across heterogeneous machinery 
types [6]. 

1.2 Problem Statement 

The resurgence of artificial neural networks has revolutionized fault diagnosis. Deep Learning 
(DL) architectures, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs), have demonstrated an exceptional ability to automatically learn 
hierarchical representations from raw data, eliminating the need for manual feature 
extraction [7]. These models routinely achieve classification accuracies exceeding 99% on 
standard benchmark datasets [8]. However, this performance comes at the cost of 
interpretability. Deep neural networks function as opaque non-linear mappings, where the 
decision boundary is defined by millions of synaptic weights that possess no inherent 
semantic meaning [9]. 

This black-box nature presents a formidable barrier to deployment in safety-critical 
industries. In sectors such as nuclear power or aviation, a diagnosis of "Healthy" or "Faulty" is 
insufficient; operators require an explanation of why a specific decision was made to validate 
the model's reliability and to plan appropriate maintenance actions [10]. Furthermore, purely 
data-driven models are prone to learning spurious correlations (Clever Hans phenomena) 
when trained on noisy or biased datasets, leading to poor generalization in real-world 
scenarios. There exists a fundamental disconnect between the low-level signal patterns 
processed by neural networks and the high-level physical principles governing mechanical 
failures. 

1.3 Contributions 

To bridge the gap between data-driven performance and model interpretability, this paper 
introduces a Hybrid Neural–Symbolic Framework (HNSF) for fault diagnosis. By embedding 
symbolic reasoning within a differentiable learning architecture, we combine the robustness 
of connectionist methods with the explanatory power of logic. The specific contributions of 
this work are as follows: 

1.  We propose a unified architecture that integrates a 1D-CNN for feature extraction with a 
differentiable logic layer capable of evaluating First-Order Logic (FOL) clauses. This allows 
the model to learn from data while adhering to physical constraints defined by domain 
experts. 

2.  We develop a semantic mapping mechanism that translates latent feature vectors into 
linguistic concepts (e.g., "High Frequency Impact", "Modulation"), enabling the generation 
of granular, human-readable diagnostic reports. 

3.  We introduce a joint optimization objective that minimizes both the empirical classification 
error and the logical inconsistency loss, ensuring that the learned representations align 
with the ontological structure of mechanical faults. 
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4.  We provide extensive empirical evidence using the CWRU dataset, benchmarking the HNSF 
against standard DL models and rule-based systems, demonstrating superior 
generalization under limited data conditions and enhanced interpretability. 

Chapter 2: Related Work 

2.1 Classical Approaches 

The genesis of automated fault diagnosis lies in digital signal processing. Traditional methods 
focus on denoising and transforming time-domain signals into representations where fault 
signatures are more discernible. The Fast Fourier Transform (FFT) remains a staple for 
identifying characteristic defect frequencies, though it lacks time-domain resolution [11]. To 
address non-stationary signals, researchers adopted Time-Frequency Analysis (TFA) 
techniques such as the Short-Time Fourier Transform (STFT) and the Wavelet Transform 
(WT) [12]. Wavelet Packet Decomposition (WPD), for instance, allows for a multi-resolution 
analysis that isolates impulsive features associated with bearing faults [13]. 

Following feature extraction, classical machine learning algorithms are employed for 
classification. Support Vector Machines (SVMs) have been extensively used due to their 
effectiveness in high-dimensional spaces and robustness to overfitting [14]. Similarly, k-
Nearest Neighbors (k-NN) and Artificial Neural Networks (ANN) with shallow architectures 
have been applied [15]. A significant limitation of these approaches is their dependence on the 
quality of the engineered features. As noted by Zhang et al. [16], the "curse of dimensionality" 
and the sensitivity to variable operating conditions often degrade the performance of rigid, 
feature-based systems. 

2.2 Deep Learning Methods 

Deep learning addresses the limitations of manual feature engineering by learning end-to-end 
representations. CNNs adapted for 1D signals have become the gold standard in the field [17]. 
For example, LeNet-5 variants applied to raw vibration data have shown the ability to capture 
shock pulses directly from the time-domain waveform [18]. In parallel, Long Short-Term 
Memory (LSTM) networks are utilized to model temporal dependencies in time-series 
degradation data, proving useful for Remaining Useful Life (RUL) estimation [19]. 

Despite their success, the lack of interpretability in DL models has spurred research into 
Explainable AI (XAI). Techniques such as Saliency Maps, Class Activation Mapping (CAM), and 
Layer-wise Relevance Propagation (LRP) attempt to visualize which parts of the input signal 
contribute most to the prediction [20]. While these visualization methods provide some 
insight, they are post-hoc approximations and do not explain the reasoning process itself. 
They indicate where the model is looking, but not what logic it is applying. 

2.3 Neuro-Symbolic AI 

Neuro-symbolic AI seeks to integrate connectionist learning with symbolic reasoning. Early 
works in this domain focused on extracting rules from trained networks or inserting rules to 
initialize network weights [21]. Recent advances, such as Logic Tensor Networks (LTN) and 
DeepProbLog, allow for end-to-end differentiable reasoning [22]. These frameworks treat 
logical predicates as continuous functions, enabling the propagation of gradients through 
logical formulas. 

In the context of fault diagnosis, the application of neuro-symbolic methods is nascent. Some 
studies have combined Fuzzy Logic with neural networks to handle uncertainty in sensor 
readings [23]. Others have employed Knowledge Graphs to structure the output of DL models 
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[24]. However, few approaches effectively constrain the training process of the neural 
network using physical laws or domain logic to enforce consistency, which is the primary 
focus of this paper. 

Chapter 3: Methodology 

The proposed Hybrid Neural–Symbolic Framework (HNSF) is designed to emulate the 
cognitive process of a human expert who perceives raw sensory data and applies logical rules 
to diagnose a fault. The architecture comprises three distinct modules: the Neural Perception 
Module, the Semantic Interface, and the Symbolic Reasoning Module. 

 
Figure 1: System Architecture 

3.1 Neural Perception Module 

The input to the system is a raw time-series vibration signal 𝑥 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑇 , where 𝑇 
represents the signal length. The role of the Neural Perception Module is to map this high-
dimensional input into a lower-dimensional latent space that captures salient signal 
characteristics [25]. We employ a One-Dimensional Convolutional Neural Network (1D-CNN) 
for this purpose. The network consists of three convolutional blocks, each followed by batch 
normalization, Rectified Linear Unit (ReLU) activation, and max-pooling operations. 

The convolutional layers utilize wide kernels in the initial stages to suppress high-frequency 
noise and capture long-duration patterns, progressively narrowing the kernel size in deeper 
layers to extract local features [26]. The output of the final pooling layer is flattened into a 
feature vector 𝑧. Unlike standard CNNs where 𝑧 is fed directly to a Softmax classifier, our 
framework directs 𝑧 to the Semantic Interface. 

3.2 Semantic Interface 

To enable symbolic reasoning, the continuous latent features must be grounded in symbolic 
concepts. We define a set of predicates 𝑃 = 𝑝1, 𝑝2, 𝑑𝑜𝑡𝑠, 𝑝𝑘  representing specific signal 
attributes relevant to diagnosis, such as `HasImpulse`, `HighFrequency`, `ModulationPresent`, 
and `RMS_High`. 



Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025 

ISSN: 3079-6342  

 

678 

The Semantic Interface consists of a bank of dense layers (or "concept heads"), each 
responsible for predicting the truth value of a specific predicate. Since we require the system 
to be differentiable, we do not binarize these outputs. Instead, we use the Sigmoid activation 
function to map the presence of a concept to the interval [0,1], representing a fuzzy truth 
degree [27]. 

Code Snippet 1 illustrates the definition of these concept layers within the PyTorch 
framework. 

Code Snippet 1: Semantic Interface Definition 

import torch 

import torch.nn as nn 

class SemanticInterface(nn.Module): 

    def __init__(self, latent_dim, num_concepts): 

        super(SemanticInterface, self).__init__() 

        # Independent heads for each semantic concept 

        # e.g., concept 0: Impulse, concept 1: Modulation 

        self.concept_heads = nn.ModuleList([ 

            nn.Sequential( 

                nn.Linear(latent_dim, 32), 

                nn.ReLU(), 

                nn.Linear(32, 1), 

                nn.Sigmoid() # Outputs truth degree [0,1] 

            ) for _ in range(num_concepts) 

        ]) 

    def forward(self, z): 

        # z is the latent vector from the CNN 

        concept_truth_values = [] 

        for head in self.concept_heads: 

            concept_truth_values.append(head(z)) 

         

        # Stack to form the semantic vector 

        return torch.cat(concept_truth_values, dim=1) 

3.3 Symbolic Reasoning Module 

The core of the HNSF is the Symbolic Reasoning Module, which applies domain knowledge to 
the grounded concepts. We encode the physics of rotating machinery faults using First-Order 
Logic. For instance, an Inner Race Fault in a bearing is characterized by periodic impulses at 
the Ball Pass Frequency Inner (BPFI) and amplitude modulation [28]. 
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We utilize a soft logic relaxation, specifically the Lukasiewicz t-norm, to evaluate logical 
formulas in a differentiable manner. The logical connectives are defined as follows for truth 
values 𝑎, 𝑏 ∈ [0,1]: 

   Negation (¬𝑎): 1 − 𝑎 

   Conjunction (𝑎 ∧ 𝑏): 𝑚𝑎𝑥(0, 𝑎 + 𝑏 − 1) 

   Disjunction (𝑎 ∨ 𝑏): 𝑚𝑖𝑛(1, 𝑎 + 𝑏) 

   Implication (𝑎 → 𝑏): 𝑚𝑖𝑛(1,1 − 𝑎 + 𝑏) 

The diagnosis is formulated as a set of rules. For example: 

Rule 1: ∀𝑥,𝐻𝑎𝑠𝐼𝑚𝑝𝑢𝑙𝑠𝑒(𝑥) ∧ 𝐹𝑟𝑒𝑞 𝐵𝑃𝐹𝐼(𝑥) → 𝐼𝑛𝑛𝑒𝑟𝑅𝑎𝑐𝑒𝐹𝑎𝑢𝑙𝑡(𝑥) 

Rule 2: ∀𝑥, 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑖𝑠𝑒(𝑥) ∧ ¬𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐(𝑥) → 𝐻𝑒𝑎𝑙𝑡ℎ𝑦(𝑥) 

These rules are aggregated to form the final classification layer. The satisfaction of the rules 
serves as the prediction output. By enforcing these rules, we ensure that the network does not 
classify a signal as an Inner Race Fault unless it detects the requisite physical characteristics 
[29]. 

3.4 Optimization and Loss Function 

The training of HNSF involves a joint optimization strategy. We aim to minimize the 
discrepancy between the predicted fault class and the ground truth labels, while 
simultaneously maximizing the satisfaction of the logic rules and the accuracy of the 
intermediate concept predictions (if concept labels are available) [30]. 

The total loss function 𝐿𝑡𝑜𝑡𝑎𝑙  is composed of a classification loss, a semantic supervision loss 
(optional), and a logic consistency loss. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼∑𝑖𝐿𝐶𝐸(𝑦𝑖, ℎ𝑎𝑡𝑦𝑖) + 𝛽∑𝑗||𝑐𝑗 − ℎ𝑎𝑡𝑐𝑗||
2 + 𝛾∑𝑘(1 − 𝑇(𝑃ℎ𝑖𝑘)) 

Here, 𝐿𝐶𝐸  is the Cross-Entropy loss for the final fault classification. The second term 
represents the Mean Squared Error between predicted concept truth values ℎ𝑎𝑡𝑐 and ground 
truth concepts 𝑐 (where available). The third term penalizes the violation of logical rules 𝑃ℎ𝑖𝑘, 
where 𝑇(𝑃ℎ𝑖𝑘) is the truth degree of the 𝑘-th rule computed via the t-norms. 𝛼, 𝛽, 𝛾 are 
weighting hyperparameters balancing the objectives. 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To validate the proposed framework, we employed the Case Western Reserve University 
(CWRU) Bearing Data Center dataset, a standard benchmark in the field of PHM [31]. The 
dataset contains vibration data collected from the drive-end and fan-end of an induction 
motor. Faults were introduced into the bearings using electro-discharge machining with 
varying severity levels (0.007, 0.014, and 0.021 inches). 

We utilized data sampled at 12 kHz. The signals were segmented into samples of 1024 data 
points. No complex preprocessing was applied other than Z-score normalization, as the CNN is 
expected to learn feature extraction. We constructed a dataset comprising four classes: 
Normal Baseline (NO), Inner Race Fault (IR), Outer Race Fault (OR), and Ball Fault (B). 
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Table 1 details the dataset composition used for training and testing. 

Condition Fault Diameter 
(inches) 

Motor Load (HP) Number of 
Samples 

Label 

Normal 0 0-3 2000 NO 

Inner Race 0.007, 0.014, 
0.021 

0-3 2000 IR 

Outer Race 0.007, 0.014, 
0.021 

0-3 2000 OR 

Ball Fault 0.007, 0.014, 
0.021 

0-3 2000 B 

4.2 Baselines and Hyperparameters 

We compared the HNSF against three baselines: 

1.  Standard 1D-CNN: An architecture identical to the perception module of HNSF but 
connected directly to a Softmax classifier [32]. 

2.  SVM with Hand-crafted Features: An SVM trained on statistical features (Kurtosis, 
RMS, Crest Factor) and energy features from Wavelet Packet Decomposition [33]. 

3.  MLP: A simple Multi-Layer Perceptron trained on raw data [34]. 

The HNSF and CNN were trained using the Adam optimizer with a learning rate of 0.001 for 
100 epochs. The batch size was set to 64. The logic weights in the loss function were set to 
𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 0.5 after grid search optimization [35]. 

Code Snippet 2: Training Loop Integration 

# Simplified training loop demonstrating the joint loss calculation 

for data, labels, concept_labels in train_loader: 

    optimizer.zero_grad()    

    # Forward pass 

    features = cnn_extractor(data) 

    concept_preds = semantic_interface(features) 

    final_preds = reasoning_module(concept_preds) # Applies logic     

    # Loss Calculation 

    loss_class = cross_entropy(final_preds, labels) 

    loss_concept = mse_loss(concept_preds, concept_labels)    

    # Logic Loss: Calculate truth of rules (1 - truth) 

    # Assume logic_engine returns the aggregate truth value of all rules 

    rule_truth = logic_engine.evaluate_constraints(concept_preds) 

    loss_logic = 1.0 - rule_truth     

    total_loss = alpha  loss_class + beta  loss_concept + gamma  loss_logic 
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    total_loss.backward() 

    optimizer.step() 

4.3 Results and Discussion 

The classification performance of the models is presented in Table 2. The HNSF achieves an 
accuracy of 99.2%, which is statistically on par with the standard 1D-CNN (99.4%) and 
significantly superior to the SVM (94.5%) and MLP (88.1%) baselines [36]. This indicates that 
the imposition of logical constraints does not degrade the predictive power of the deep 
learning backbone. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score 

MLP 88.1 87.5 88.0 0.87 

SVM (Feature-
based) 

94.5 94.2 94.4 0.94 

Standard 1D-CNN 99.4 99.3 99.4 0.99 

HNSF (Proposed) 99.2 99.1 99.2 0.99 

While the accuracy parity is encouraging, the primary advantage of HNSF lies in its 
interpretability and data efficiency. To evaluate this, we conducted an experiment with 
reduced training data, training the models on only 10% of the original dataset. The Standard 
1D-CNN's accuracy dropped to 91.2% due to overfitting, whereas the HNSF maintained an 
accuracy of 96.5% [37]. The logic rules effectively act as a regularizer, preventing the model 
from learning noise-dependent correlations. 

 
Figure 2: Comparative Performance Chart 

4.4 Interpretability Analysis 

A key deliverable of the HNSF is the ability to query the semantic concepts. Figure 3 illustrates 
the activation of the semantic layer for a sample identified as an Inner Race fault. 
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Figure 3: Interpretability Visualization 

In Figure 3, we observe that for the input signal, the `HasImpulse` and `Periodic` concepts 
have activation values close to 1.0, while `RandomNoise` is near 0.0. The reasoning module 
then triggers Rule 1 (Inner Race definition), leading to the diagnosis. This contrasts with the 
standard CNN, which might classify the same signal correctly but relies on obscure feature 
maps that are unintelligible to a maintenance engineer [38]. 

Furthermore, we analyzed cases where the model misclassified samples. In a traditional CNN, 
a misclassification is a silent failure. In HNSF, we could trace the error back to the semantic 
layer. For instance, in one misclassified Outer Race sample, the `Periodic` concept was not 
activated (value 0.2) due to extreme background noise, causing the logic rule to fail [39]. This 
diagnostic capability allows for targeted improvements in the sensor array or the semantic 
concept training, a feedback loop impossible with black-box models [40,41]. 

Chapter 5: Conclusion 

This paper presented a Hybrid Neural–Symbolic Framework for fault diagnosis in rotating 
machinery, addressing the critical need for interpretability in industrial AI systems. By 
integrating a 1D-CNN with a differentiable First-Order Logic reasoning engine, we created a 
model that retains the high accuracy of deep learning while providing transparent, rule-based 
explanations for its predictions. The experimental results on the CWRU dataset confirmed 
that the HNSF matches the performance of state-of-the-art black-box models and exhibits 
superior robustness in data-scarce regimes. 

The implications of this work are significant for the adoption of AI in Industry 4.0. The ability 
to verify why a maintenance alert was triggered fosters trust among human operators. It 
transitions the role of the AI from a cryptic oracle to a transparent assistant, facilitating 
collaborative decision-making. Moreover, the modularity of the framework allows for the 
continuous integration of new expert knowledge without retraining the entire neural pipeline, 
simply by updating the logic rules. 

Despite the promising results, the current framework has limitations. The definition of the 
semantic predicates and logic rules currently relies on manual input from domain experts, 
which can be time-consuming and subject to human bias. If the predefined rules are 
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incomplete or incorrect, the model's upper performance bound is limited. Additionally, the 
computational cost of evaluating complex logical formulas during training is higher than that 
of standard cross-entropy optimization. 

Future research will focus on two main avenues. First, we aim to implement "Rule Induction" 
techniques to allow the model to automatically discover and refine logical rules from the data, 
thereby reducing the reliance on manual expert knowledge. Second, we intend to extend the 
framework to handle multi-modal data, integrating temperature and acoustic emission 
sensors, and applying the logic reasoning over a temporal sequence to perform prognostic 
tasks such as Remaining Useful Life (RUL) estimation. The convergence of symbolic AI and 
deep learning holds the key to the next generation of robust, explainable, and intelligent 
industrial systems. 
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