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Abstract

The advent of Industry 4.0 has precipitated a paradigm shift in the maintenance
strategies of complex industrial systems, particularly rotating machinery, moving from
reactive to predictive maintenance regimes. While deep learning models have achieved
state-of-the-art performance in fault diagnosis due to their powerful feature extraction
capabilities, they suffer from a critical lack of transparency, often described as the
black-box problem. This opacity hinders their adoption in safety-critical environments
where understanding the etiology of a fault is as significant as its detection. This paper
proposes a novel Hybrid Neural-Symbolic Framework (HNSF) that integrates the
perceptual capabilities of deep neural networks with the inferential transparency of
symbolic logic. We utilize a One-Dimensional Convolutional Neural Network (1D-CNN)
to extract high-level latent features from raw vibration signals, which are subsequently
mapped to semantic concepts within a predefined knowledge graph. A differentiable
reasoning layer then applies First-Order Logic rules to these concepts to deduce fault
classes, ensuring that the model's predictions are consistent with domain knowledge.
Experimental validation on the Case Western Reserve University (CWRU) bearing
dataset demonstrates that our framework not only achieves classification accuracy
comparable to pure deep learning models but also provides human-readable
explanations for its decisions. The results suggest that bridging the subsymbolic and
symbolic gap offers a robust pathway toward trustworthy industrial artificial
intelligence.
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Introduction

1.1 Background

Rotating machinery, encompassing components such as bearings, gearboxes, and rotors,
constitutes the backbone of modern industrial infrastructure. From wind turbines generating
renewable energy to the propulsion systems of aerospace vehicles, the reliability of these
mechanisms is paramount. Consequently, the field of Prognostics and Health Management
(PHM) has garnered significant attention, aiming to minimize downtime and prevent
catastrophic failures through effective Fault Diagnosis (FD) [1]. Historically, maintenance was
performed based on fixed schedules or run-to-failure policies, both of which are economically
inefficient. The transition to Condition-Based Maintenance (CBM), driven by the proliferation
of sensors and the Industrial Internet of Things (IloT), has enabled the continuous monitoring
of machinery health status [2].

In the context of CBM, data-driven approaches have emerged as the dominant methodology.
Vibration signals, acoustic emissions, and motor current signatures are harvested and
analyzed to identify anomalous patterns indicative of incipient faults [3]. Early techniques

674



Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

relied heavily on manual feature engineering, where domain experts utilized signal processing
tools such as the Fast Fourier Transform (FFT) and Envelope Analysis to extract statistical
descriptors like kurtosis, skewness, and root mean square values [4]. These features were
then fed into shallow machine learning classifiers, including Support Vector Machines (SVM)
and Random Forests [5]. While effective, these methods are labor-intensive and require
specialized domain knowledge, limiting their scalability across heterogeneous machinery

types [6].
1.2 Problem Statement

The resurgence of artificial neural networks has revolutionized fault diagnosis. Deep Learning
(DL) architectures, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), have demonstrated an exceptional ability to automatically learn
hierarchical representations from raw data, eliminating the need for manual feature
extraction [7]. These models routinely achieve classification accuracies exceeding 99% on
standard benchmark datasets [8]. However, this performance comes at the cost of
interpretability. Deep neural networks function as opaque non-linear mappings, where the
decision boundary is defined by millions of synaptic weights that possess no inherent
semantic meaning [9].

This black-box nature presents a formidable barrier to deployment in safety-critical
industries. In sectors such as nuclear power or aviation, a diagnosis of "Healthy" or "Faulty" is
insufficient; operators require an explanation of why a specific decision was made to validate
the model's reliability and to plan appropriate maintenance actions [10]. Furthermore, purely
data-driven models are prone to learning spurious correlations (Clever Hans phenomena)
when trained on noisy or biased datasets, leading to poor generalization in real-world
scenarios. There exists a fundamental disconnect between the low-level signal patterns
processed by neural networks and the high-level physical principles governing mechanical
failures.

1.3 Contributions

To bridge the gap between data-driven performance and model interpretability, this paper
introduces a Hybrid Neural-Symbolic Framework (HNSF) for fault diagnosis. By embedding
symbolic reasoning within a differentiable learning architecture, we combine the robustness
of connectionist methods with the explanatory power of logic. The specific contributions of
this work are as follows:

1. We propose a unified architecture that integrates a 1D-CNN for feature extraction with a
differentiable logic layer capable of evaluating First-Order Logic (FOL) clauses. This allows
the model to learn from data while adhering to physical constraints defined by domain
experts.

2. We develop a semantic mapping mechanism that translates latent feature vectors into

linguistic concepts (e.g., "High Frequency Impact", "Modulation"), enabling the generation
of granular, human-readable diagnostic reports.

3. We introduce a joint optimization objective that minimizes both the empirical classification
error and the logical inconsistency loss, ensuring that the learned representations align
with the ontological structure of mechanical faults.
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4. We provide extensive empirical evidence using the CWRU dataset, benchmarking the HNSF
against standard DL models and rule-based systems, demonstrating superior
generalization under limited data conditions and enhanced interpretability.

Chapter 2: Related Work
2.1 Classical Approaches

The genesis of automated fault diagnosis lies in digital signal processing. Traditional methods
focus on denoising and transforming time-domain signals into representations where fault
signatures are more discernible. The Fast Fourier Transform (FFT) remains a staple for
identifying characteristic defect frequencies, though it lacks time-domain resolution [11]. To
address non-stationary signals, researchers adopted Time-Frequency Analysis (TFA)
techniques such as the Short-Time Fourier Transform (STFT) and the Wavelet Transform
(WT) [12]. Wavelet Packet Decomposition (WPD), for instance, allows for a multi-resolution
analysis that isolates impulsive features associated with bearing faults [13].

Following feature extraction, classical machine learning algorithms are employed for
classification. Support Vector Machines (SVMs) have been extensively used due to their
effectiveness in high-dimensional spaces and robustness to overfitting [14]. Similarly, k-
Nearest Neighbors (k-NN) and Artificial Neural Networks (ANN) with shallow architectures
have been applied [15]. A significant limitation of these approaches is their dependence on the
quality of the engineered features. As noted by Zhang et al. [16], the "curse of dimensionality”
and the sensitivity to variable operating conditions often degrade the performance of rigid,
feature-based systems.

2.2 Deep Learning Methods

Deep learning addresses the limitations of manual feature engineering by learning end-to-end
representations. CNNs adapted for 1D signals have become the gold standard in the field [17].
For example, LeNet-5 variants applied to raw vibration data have shown the ability to capture
shock pulses directly from the time-domain waveform [18]. In parallel, Long Short-Term
Memory (LSTM) networks are utilized to model temporal dependencies in time-series
degradation data, proving useful for Remaining Useful Life (RUL) estimation [19].

Despite their success, the lack of interpretability in DL models has spurred research into
Explainable Al (XAI). Techniques such as Saliency Maps, Class Activation Mapping (CAM), and
Layer-wise Relevance Propagation (LRP) attempt to visualize which parts of the input signal
contribute most to the prediction [20]. While these visualization methods provide some
insight, they are post-hoc approximations and do not explain the reasoning process itself.
They indicate where the model is looking, but not what logic it is applying.

2.3 Neuro-Symbolic Al

Neuro-symbolic Al seeks to integrate connectionist learning with symbolic reasoning. Early
works in this domain focused on extracting rules from trained networks or inserting rules to
initialize network weights [21]. Recent advances, such as Logic Tensor Networks (LTN) and
DeepProbLog, allow for end-to-end differentiable reasoning [22]. These frameworks treat
logical predicates as continuous functions, enabling the propagation of gradients through
logical formulas.

In the context of fault diagnosis, the application of neuro-symbolic methods is nascent. Some
studies have combined Fuzzy Logic with neural networks to handle uncertainty in sensor
readings [23]. Others have employed Knowledge Graphs to structure the output of DL models
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[24]. However, few approaches effectively constrain the training process of the neural
network using physical laws or domain logic to enforce consistency, which is the primary
focus of this paper.

Chapter 3: Methodology

The proposed Hybrid Neural-Symbolic Framework (HNSF) is designed to emulate the
cognitive process of a human expert who perceives raw sensory data and applies logical rules
to diagnose a fault. The architecture comprises three distinct modules: the Neural Perception
Module, the Semantic Interface, and the Symbolic Reasoning Module.

Figure 1: System Architecture

Figure 1: System Architecture

3.1 Neural Perception Module

The input to the system is a raw time-series vibration signal x € mathbbR”, where T
represents the signal length. The role of the Neural Perception Module is to map this high-
dimensional input into a lower-dimensional latent space that captures salient signal
characteristics [25]. We employ a One-Dimensional Convolutional Neural Network (1D-CNN)
for this purpose. The network consists of three convolutional blocks, each followed by batch
normalization, Rectified Linear Unit (ReLU) activation, and max-pooling operations.

The convolutional layers utilize wide kernels in the initial stages to suppress high-frequency
noise and capture long-duration patterns, progressively narrowing the kernel size in deeper
layers to extract local features [26]. The output of the final pooling layer is flattened into a
feature vector z. Unlike standard CNNs where z is fed directly to a Softmax classifier, our
framework directs z to the Semantic Interface.

3.2 Semantic Interface

To enable symbolic reasoning, the continuous latent features must be grounded in symbolic
concepts. We define a set of predicates P = pq,p,, dots, p; representing specific signal
attributes relevant to diagnosis, such as "HasImpulse’, "HighFrequency’, "ModulationPresent’,
and "RMS_High'.
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The Semantic Interface consists of a bank of dense layers (or "concept heads"), each
responsible for predicting the truth value of a specific predicate. Since we require the system
to be differentiable, we do not binarize these outputs. Instead, we use the Sigmoid activation
function to map the presence of a concept to the interval [0,1], representing a fuzzy truth
degree [27].

Code Snippet 1 illustrates the definition of these concept layers within the PyTorch
framework.

Code Snippet 1: Semantic Interface Definition

import torch
import torch.nn as nn
class SemanticInterface(nn.Module):
def __init__(self, latent_dim, num_concepts):
super(Semanticlnterface, self).__init_ ()
# Independent heads for each semantic concept
# e.g., concept 0: Impulse, concept 1: Modulation
self.concept_heads = nn.ModuleList(][
nn.Sequential(
nn.Linear(latent_dim, 32),
nn.ReLU(),
nn.Linear(32, 1),
nn.Sigmoid() # Outputs truth degree [0,1]
) for _ in range(num_concepts)
1
def forward(self, z):
# z is the latent vector from the CNN
concept_truth_values = []
for head in self.concept_heads:

concept_truth_values.append(head(z))

# Stack to form the semantic vector

return torch.cat(concept_truth_values, dim=1)

3.3 Symbolic Reasoning Module

The core of the HNSF is the Symbolic Reasoning Module, which applies domain knowledge to
the grounded concepts. We encode the physics of rotating machinery faults using First-Order
Logic. For instance, an Inner Race Fault in a bearing is characterized by periodic impulses at
the Ball Pass Frequency Inner (BPFI) and amplitude modulation [28].
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We utilize a soft logic relaxation, specifically the Lukasiewicz t-norm, to evaluate logical
formulas in a differentiable manner. The logical connectives are defined as follows for truth
values a,b € [0,1]:

Negation (ma): 1 —a

Conjunction (a A b): max(0,a+b — 1)

Disjunction (a V b): min(1,a + b)

Implication (a = b): min(1,1 —a + b)
The diagnosis is formulated as a set of rules. For example:
Rule 1: Vx, HasImpulse(x) A Freq gPFI(x) — InnerRaceFault(x)
Rule 2: Vx, RandomNoise(x) A =Periodic(x) — Healthy(x)

These rules are aggregated to form the final classification layer. The satisfaction of the rules
serves as the prediction output. By enforcing these rules, we ensure that the network does not
classify a signal as an Inner Race Fault unless it detects the requisite physical characteristics
[29].

3.4 Optimization and Loss Function

The training of HNSF involves a joint optimization strategy. We aim to minimize the
discrepancy between the predicted fault class and the ground truth labels, while
simultaneously maximizing the satisfaction of the logic rules and the accuracy of the
intermediate concept predictions (if concept labels are available) [30].

The total loss function L;,.q; is composed of a classification loss, a semantic supervision loss
(optional), and a logic consistency loss.

Lotat = a¥iLce (i, hatyy) + BX;llc; — hatc;||* + yZi (1 — T (Phiy))

Here, Loy is the Cross-Entropy loss for the final fault classification. The second term
represents the Mean Squared Error between predicted concept truth values hatc and ground
truth concepts ¢ (where available). The third term penalizes the violation of logical rules Phiy,
where T(Phiy) is the truth degree of the k-th rule computed via the t-norms. a, 8,y are
weighting hyperparameters balancing the objectives.

Chapter 4: Experiments and Analysis

4.1 Experimental Setup

To validate the proposed framework, we employed the Case Western Reserve University
(CWRU) Bearing Data Center dataset, a standard benchmark in the field of PHM [31]. The
dataset contains vibration data collected from the drive-end and fan-end of an induction
motor. Faults were introduced into the bearings using electro-discharge machining with
varying severity levels (0.007, 0.014, and 0.021 inches).

We utilized data sampled at 12 kHz. The signals were segmented into samples of 1024 data
points. No complex preprocessing was applied other than Z-score normalization, as the CNN is
expected to learn feature extraction. We constructed a dataset comprising four classes:
Normal Baseline (NO), Inner Race Fault (IR), Outer Race Fault (OR), and Ball Fault (B).
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Table 1 details the dataset composition used for training and testing.

Condition Fault = DiameterMotor Load (HP) Number ofLabel
(inches) Samples

Normal 0 0-3 2000 NO

Inner Race 0.007, 0.014,0-3 2000 IR
0.021

Outer Race 0.007, 0.014,0-3 2000 OR
0.021

Ball Fault 0.007, 0.014,0-3 2000 B
0.021

4.2 Baselines and Hyperparameters

We compared the HNSF against three baselines:

1. Standard 1D-CNN: An architecture identical to the perception module of HNSF but

connected directly to a Softmax classifier [32].

2. SVM with Hand-crafted Features: An SVM trained on statistical features (Kurtosis,

RMS, Crest Factor) and energy features from Wavelet Packet Decomposition [33].

3. MLP: A simple Multi-Layer Perceptron trained on raw data [34].

The HNSF and CNN were trained using the Adam optimizer with a learning rate of 0.001 for
100 epochs. The batch size was set to 64. The logic weights in the loss function were set to

a = 1.0, = 0.5,y = 0.5 after grid search optimization [35].
Code Snippet 2: Training Loop Integration

# Simplified training loop demonstrating the joint loss calculation
for data, labels, concept_labels in train_loader:
optimizer.zero_grad()
# Forward pass
features = cnn_extractor(data)
concept_preds = semantic_interface(features)
final_preds = reasoning_module(concept_preds) # Applies logic
# Loss Calculation
loss_class = cross_entropy(final_preds, labels)
loss_concept = mse_loss(concept_preds, concept_labels)
# Logic Loss: Calculate truth of rules (1 - truth)
# Assume logic_engine returns the aggregate truth value of all rules
rule_truth = logic_engine.evaluate_constraints(concept_preds)
loss_logic = 1.0 - rule_truth

total_loss = alpha loss_class + beta loss_concept + gamma loss_logic
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total_loss.backward()

optimizer.step()

4.3 Results and Discussion

The classification performance of the models is presented in Table 2. The HNSF achieves an
accuracy of 99.2%, which is statistically on par with the standard 1D-CNN (99.4%) and
significantly superior to the SVM (94.5%) and MLP (88.1%) baselines [36]. This indicates that
the imposition of logical constraints does not degrade the predictive power of the deep
learning backbone.

Model Accuracy (%) Precision (%) Recall (%) F1-Score
MLP 88.1 87.5 88.0 0.87
SVM (Feature-94.5 94.2 94.4 0.94
based)

Standard 1D-CNN 99.4 99.3 99.4 0.99
HNSF (Proposed) 99.2 99.1 99.2 0.99

While the accuracy parity is encouraging, the primary advantage of HNSF lies in its
interpretability and data efficiency. To evaluate this, we conducted an experiment with
reduced training data, training the models on only 10% of the original dataset. The Standard
1D-CNN's accuracy dropped to 91.2% due to overfitting, whereas the HNSF maintained an
accuracy of 96.5% [37]. The logic rules effectively act as a regularizer, preventing the model
from learning noise-dependent correlations.

Figure 2: Comparative Performance Chart
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Figure 2: Comparative Performance Chart
4.4 Interpretability Analysis

A key deliverable of the HNSF is the ability to query the semantic concepts. Figure 3 illustrates
the activation of the semantic layer for a sample identified as an Inner Race fault.
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Figure 3: Interpretability Visualization

In Figure 3, we observe that for the input signal, the "HasImpulse® and "Periodic’ concepts
have activation values close to 1.0, while ‘RandomNoise’ is near 0.0. The reasoning module
then triggers Rule 1 (Inner Race definition), leading to the diagnosis. This contrasts with the
standard CNN, which might classify the same signal correctly but relies on obscure feature
maps that are unintelligible to a maintenance engineer [38].

Furthermore, we analyzed cases where the model misclassified samples. In a traditional CNN,
a misclassification is a silent failure. In HNSF, we could trace the error back to the semantic
layer. For instance, in one misclassified Outer Race sample, the "Periodic’ concept was not
activated (value 0.2) due to extreme background noise, causing the logic rule to fail [39]. This
diagnostic capability allows for targeted improvements in the sensor array or the semantic
concept training, a feedback loop impossible with black-box models [40,41].

Chapter 5: Conclusion

This paper presented a Hybrid Neural-Symbolic Framework for fault diagnosis in rotating
machinery, addressing the critical need for interpretability in industrial Al systems. By
integrating a 1D-CNN with a differentiable First-Order Logic reasoning engine, we created a
model that retains the high accuracy of deep learning while providing transparent, rule-based
explanations for its predictions. The experimental results on the CWRU dataset confirmed
that the HNSF matches the performance of state-of-the-art black-box models and exhibits
superior robustness in data-scarce regimes.

The implications of this work are significant for the adoption of Al in Industry 4.0. The ability
to verify why a maintenance alert was triggered fosters trust among human operators. It
transitions the role of the Al from a cryptic oracle to a transparent assistant, facilitating
collaborative decision-making. Moreover, the modularity of the framework allows for the
continuous integration of new expert knowledge without retraining the entire neural pipeline,
simply by updating the logic rules.

Despite the promising results, the current framework has limitations. The definition of the
semantic predicates and logic rules currently relies on manual input from domain experts,
which can be time-consuming and subject to human bias. If the predefined rules are
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incomplete or incorrect, the model's upper performance bound is limited. Additionally, the
computational cost of evaluating complex logical formulas during training is higher than that
of standard cross-entropy optimization.

Future research will focus on two main avenues. First, we aim to implement "Rule Induction”
techniques to allow the model to automatically discover and refine logical rules from the data,
thereby reducing the reliance on manual expert knowledge. Second, we intend to extend the
framework to handle multi-modal data, integrating temperature and acoustic emission
sensors, and applying the logic reasoning over a temporal sequence to perform prognostic
tasks such as Remaining Useful Life (RUL) estimation. The convergence of symbolic Al and
deep learning holds the key to the next generation of robust, explainable, and intelligent
industrial systems.

References

[1] Shao, H., Luo, Q., & Xia, ]. (2025, September). Study on Code Quality Assessment and Optimization
System Utilizing Microsoft Copilot Al. In Proceedings of the 2nd International Symposium on
Integrated Circuit Design and Integrated Systems (pp. 175-179).

[2] Peng, Q., Bai, C.,, Zhang, G., Xu, B,, Liu, X,, Zheng, X,, ... & Lu, C. (2025, October). NavigScene: Bridging
local perception and global navigation for beyond-visual-range autonomous driving. In
Proceedings of the 33rd ACM International Conference on Multimedia (pp. 4193-4202).

[3] Pengwan, Y. A. N. G, ASANO, Y. M,, & SNOEK, C. G. M. (2024). U.S. Patent Application No.
18/501,167.

[4] Yang, P., Asano, Y. M., Mettes, P., & Snoek, C. G. (2022, October). Less than few: Self-shot video
instance segmentation. In European Conference on Computer Vision (pp. 449-466). Cham:
Springer Nature Switzerland.

[5] Tian, Y., Xu, S., Cao, Y., Wang, Z., & Wei, Z. (2025). An Empirical Comparison of Machine Learning
and Deep Learning Models for Automated Fake News Detection. Mathematics, 13(13), 2086.

[6] Xu, H,, Liy, K, Yao, Z., Yu, P. S, Li, M,, Ding, K., & Zhao, Y. (2024). Lego-learn: Label-efficient graph
open-set learning. arXiv preprint arXiv:2410.16386.

[7] Yang, P., Snoek, C. G., & Asano, Y. M. (2023). Self-ordering point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 15813-15822).

[8] Fang, Z. (2025, June). Adaptive QoS-Aware Cloud-Edge Collaborative Architecture for Real-Time
Smart Water Service Management. In Proceedings of the 2025 International Conference on
Management Science and Computer Engineering (pp. 606-611).

[9] Liy, J., Kong, Z., Zhao, P., Yang, C., Shen, X,, Tang, H,, ... & Wang, Y. (2025, April). Toward adaptive
large language models structured pruning via hybrid-grained weight importance assessment. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 18, pp. 18879-18887).

[10] Wu,], Chen, S, Heo, I, Gutfraind, S., Liy, S, Li, C,, ... & Sharps, M. (2025). Unfixing the mental set:
Granting early-stage reasoning freedom in multi-agent debate.

[11] Wu, H, Pengwan, Y. A. N. G., ASANO, Y. M., & SNOEK, C. G. M. (2025). U.S. Patent Application No.
18/744,541.

[12] Qu, D, & Ma, Y. (2025). Magnet-bn: markov-guided Bayesian neural networks for calibrated
long-horizon sequence forecasting and community tracking. Mathematics, 13(17), 2740.

[13] Li, S. (2025). Momentum, volume and investor sentiment study for us technology sector
stocks—A hidden markov model based principal component analysis. PloS one, 20(9), e0331658.

[14] Yang, P, Hu, V. T. Mettes, P., & Snoek, C. G. (2020, August). Localizing the common action
among a few videos. In European conference on computer vision (pp. 505-521). Cham: Springer
International Publishing.

[15] Yang, P. Mettes, P., & Snoek, C. G. (2021). Few-shot transformation of common actions into
time and space. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 16031-16040).

[16] Meng, L. (2025). From Reactive to Proactive: Integrating Agentic Al and Automated Workflows
for Intelligent Project Management (AI-PMP). Frontiers in Engineering, 1(1), 82-93.

[17] Wu,], Ly, C, Lj, S, & Deng, Z. (2023). A semidefinite relaxation based global algorithm for two-

683



Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

level graph partition problem. Journal of Industrial & Management Optimization, 19(9).

[18] Fang, Z. (2025). Cloud-Native Microservice Architecture for Inclusive Cross-Border Logistics:
Real-Time Tracking and Automated Customs Clearance for SMEs. Frontiers in Artificial Intelligence
Research, 2(2), 221-236.

[19] Wu, H,, Yang, P., Asano, Y. M., & Snoek, C. G. (2025). Segment Any 3D-Part in a Scene from a
Sentence. arXiv preprint arXiv:2506.19331.

[20]  Liu, Z., Zeng, H., & Chen, ]. (2025). Faith’s Frontiers: An Exploration of Religious Syncretism and
Cultural Adaptation in the “Guanyin/Madonna and Child” Painting. Religions, 16(1), 36.
https://www.google.com/search?q=https://doi.org/10.3390/rel16010036

[21] Fang, Z. (2025, July). Microservice-driven modular low-code platform for accelerating SME
digital transformation. In Proceedings of the 2025 International Conference on Economic
Management and Big Data Application (pp. 894-898).

[22] Peng, Q. Planche, B, Gao, Z., Zheng, M., Choudhuri, A., Chen, T,, ... & Wu, Z. (2024). 3d vision-
language gaussian splatting. arXiv preprint arXiv:2410.07577.

[23] Yang, C., & Mustafa, S. E. (2024). The Application and Challenges of Cross-Cultural Translation
and Communication in the National Museum of China under the Perspective of Artificial
Intelligence. Eurasian Journal of Applied Linguistics, 10(3), 214-229.

[24] Meng, L. (2025). Architecting Trustworthy LLMs: A Unified TRUST Framework for Mitigating
Al Hallucination. Journal of Computer Science and Frontier Technologies, 1(3), 1-15.

[25]  Chen, N,, Zhang, C,, An, W., Wang, L., Li, M,, & Ling, Q. (2025). Event-based Motion Deblurring
with Blur-aware Reconstruction Filter. IEEE Transactions on Circuits and Systems for Video
Technology.

[26] Zhang, Y., Li, H., Zeng, Y, & Wu, Z. (2025, September). Predictive Auto Scaling and Cost
Optimization Using Machine Learning in AWS Cloud Environments. In Proceedings of the 2nd
International Symposium on Integrated Circuit Design and Integrated Systems (pp. 161-167).

[27] Peng, Q. Zheng, C., & Chen, C. (2024). A dual-augmentor framework for domain generalization
in 3d human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 2240-2249).

[28] Zhang, Z., Li, Y., Huang, H,, Lin, M., & Yi, L. (2024, September). Freemotion: Mocap-free human
motion synthesis with multimodal large language models. In European Conference on Computer
Vision (pp. 403-421). Cham: Springer Nature Switzerland.

[29] Che, C., Wang, Z.,, Yang, P.,, Wang, Q., Ma, H., & Shi, Z. (2025). LoRA in LoRA: Towards parameter-
efficient architecture expansion for continual visual instruction tuning. arXiv preprint
arXiv:2508.06202.

[30] Chen, ], Zheng, X., Shao, Z., Ruan, M,, Li, H,, Zheng, D., & Liang, Y. (2025). Creative interior
design matching the indoor structure generated through diffusion model with an improved control
network. Frontiers of Architectural Research, 14(3), 614-629.
https://doi.org/10.1016/j.foar.2024.08.003

[31] Li, S, Deng, Z, Lu, C., Wy, ], Dai, ], & Wang, Q. (2023). An efficient global algorithm for
indefinite separable quadratic knapsack problems with box constraints. Computational
Optimization and Applications, 86(1), 241-273.

[32] Wang, X, Wang, H., Tian, Z., Wang, W., & Chen, ]. (2025). Angle-Based Dual-Association
Evolutionary Algorithm for Many-Objective Optimization. Mathematics, 13(11), 1757.
https://www.google.com/search?q=https://doi.org/10.3390/math13111757

[33] Yi, X. (2025). Compliance-by-Design Micro-Licensing for Al-Generated Content in Social
Commerce Using C2PA Content Credentials and W3C ODRL Policies.

[34] Jiang, L., Bao, Z., Sheng, S., & Zhu, D. (2025). SLOFetch: Compressed-Hierarchical Instruction
Prefetching for Cloud Microservices. arXiv preprint arXiv:2511.04774.

[35] Huang, Y, Yu, A, & Xia, L. (2025). Anti-PT symmetric resonant sensors for nonreciprocal
frequency shift demodulation. Optics Letters, 50(11), 3716-3719.

[36] Li, B. (2025). From Maps to Decisions: A GeoAl Framework for Multi-Hazard Infrastructure
Resilience and Equitable Emergency Management. American Journal Of Big Data, 6(3), 139-153.
[37] Yao, Z., Nguyen, H., Srivastava, A., & Ambite, J. L. (2024). Task-Agnostic Federated Learning.

arXiv preprint arXiv:2406.17235.

[38] Yi, X. (2025). Real-Time Fair-Exposure Ad Allocation for SMBs and Underserved Creators via

684



Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025

ISSN: 3079-6342

Contextual Bandits-with-Knapsacks.

[39] Chen, Y., Zhang, L. Shang, ], Zhang, Z. Liu, T., Wang, S., & Sun, Y. (2024). Dha: Learning
decoupled-head attention from transformer checkpoints via adaptive heads fusion. Advances in
Neural Information Processing Systems, 37, 45879-45913.

[40] Chen, X. (2025). Research on Al-Based Multilingual Natural Language Processing Technology
and Intelligent Voice Interaction System. European Journal of Al, Computing & Informatics, 1(3),
47-53.

[41] Yang, C, & Mustafa, S. E. (2025). The Reception Studies of Multimodality in the Translation and
Communication of Chinese Museum Culture in the Era of Intelligent Media. Cultura: International
Journal of Philosophy of Culture and Axiology, 22(4), 532-553.

685



