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Abstract

The increasing complexity of modern distributed systems has created significant
challenges in incident diagnosis and root cause analysis. Traditional approaches often
lack explainability and struggle with the dynamic nature of system failures, while pure
machine learning methods suffer from limited interpretability and contextual
understanding. This paper proposes a novel framework that integrates Retrieval-
Augmented Generation (RAG) with graph-based reasoning and Large Language Models
(LLMs) to enable explainable incident diagnosis in complex systems. The proposed
approach leverages knowledge graphs to capture causal relationships among system
components, employs retrieval mechanisms to access relevant historical incident data,
and utilizes LLMs to generate human-interpretable explanations for diagnosed
incidents. Through comprehensive evaluation on real-world incident datasets, our
method demonstrates superior performance in fault localization accuracy, achieving
92.3% precision while providing transparent reasoning paths that enhance engineer
trust and accelerate remediation workflows. The framework addresses critical
limitations in existing approaches by combining the structured reasoning capabilities
of graph neural networks with the semantic understanding and generation abilities of
large language models, thereby advancing the state-of-the-art in intelligent operations
and system reliability engineering.
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Introduction

Modern distributed systems have evolved into intricate architectures comprising thousands
of interdependent microservices, creating unprecedented challenges for incident
management and system reliability. When failures occur in these complex environments,
engineers face the daunting task of navigating through massive volumes of telemetry data, log
entries, and performance metrics to identify root causes and implement effective remediation
strategies [1]. The average incident resolution time in large-scale production systems often
exceeds several hours, with manual diagnosis consuming substantial engineering resources
and potentially impacting service level agreements [2]. This operational burden has
intensified with the proliferation of cloud-native architectures and the adoption of continuous
deployment practices, where system configurations change rapidly and failure modes become
increasingly diverse and unpredictable.

Traditional rule-based monitoring systems and threshold-based alerting mechanisms have
proven inadequate for addressing the diagnostic challenges in contemporary distributed
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systems. These conventional approaches rely on predefined patterns and static rules that
cannot adapt to evolving system behaviors and novel failure scenarios [3]. Furthermore, the
sheer volume and velocity of observability data generated by modern systems overwhelm
human operators, making it impossible to manually correlate signals across different layers of
the technology stack. While machine learning techniques have shown promise in anomaly
detection and fault localization, they often operate as black boxes that provide limited insight
into their decision-making processes, hindering engineer trust and adoption in production
environments where interpretability is paramount for operational safety [4].

The emergence of Large Language Models has opened new possibilities for intelligent systems
that can understand, reason about, and communicate complex technical information in
natural language [5]. Recent advances in Retrieval-Augmented Generation have demonstrated
the potential to combine the broad knowledge encoded in pre-trained language models with
domain-specific information retrieved from external knowledge sources, enabling more
accurate and contextually relevant responses [6]. Simultaneously, graph-based reasoning
approaches have proven effective in modeling the causal relationships and dependencies
inherent in distributed systems, providing structured representations that capture the
propagation patterns of failures across interconnected components [7]. The integration of
these complementary technologies presents a compelling opportunity to develop explainable
incident diagnosis systems that leverage both structured causal reasoning and natural
language understanding.

This paper introduces a novel framework that synthesizes Retrieval-Augmented Generation,
graph neural networks, and large language models to enable explainable incident diagnosis in
complex distributed systems. Our approach constructs dynamic knowledge graphs that
represent system topology and causal dependencies, implements sophisticated retrieval
mechanisms to access relevant historical incident patterns, and employs large language
models to generate human-interpretable explanations that guide engineers through the
diagnostic process. The framework addresses several critical research challenges including
the representation of temporal causal relationships in evolving system architectures, the
effective retrieval of contextually relevant diagnostic knowledge from large-scale incident
repositories, and the generation of trustworthy explanations that balance technical accuracy
with human comprehensibility. Through rigorous empirical evaluation on production incident
datasets, we demonstrate that our approach achieves substantial improvements in diagnostic
accuracy while significantly reducing mean time to resolution compared to existing state-of-
the-art methods.

The primary contributions of this work encompass the design and implementation of an
integrated framework that unifies graph-based causal reasoning with retrieval-augmented
language models for incident diagnosis, the development of specialized graph neural network
architectures optimized for temporal fault propagation modeling in distributed systems, and
the creation of novel explanation generation mechanisms that produce step-by-step
diagnostic narratives grounded in causal evidence extracted from system knowledge graphs.
Our experimental results validate the effectiveness of this integrated approach across diverse
failure scenarios, demonstrating robust performance in both synthetic benchmark
environments and real-world production systems where incidents exhibit complex cascading
failure patterns and multifaceted root causes.
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2. Literature Review

The landscape of incident diagnosis and root cause analysis has witnessed substantial
evolution over the past several years, with researchers exploring diverse methodologies
ranging from traditional statistical techniques to advanced artificial intelligence approaches.
Early work in fault diagnosis relied heavily on domain expertise encoded in rule-based
systems and expert systems, which struggled to scale with increasing system complexity [8].
The transition toward data-driven approaches marked a significant paradigm shift, enabling
systems to learn diagnostic patterns from historical incident data rather than relying
exclusively on manually crafted rules. However, these early machine learning methods faced
challenges related to feature engineering, model interpretability, and adaptation to evolving
system behaviors [9].

Graph-based approaches have emerged as a powerful paradigm for representing and
reasoning about causal relationships in complex systems, building upon foundational work in
causal inference and probabilistic graphical models. Research in dynamic uncertain causality
graphs demonstrated the utility of graph structures for modeling uncertainty in industrial
fault diagnosis, showing that explicit representation of causal dependencies enables more
robust inference compared to purely correlation-based methods [10]. Recent advances in
event-graph-based root cause analysis have shown that constructing real-time causality
graphs from system events provides effective mechanisms for tracing failure propagation
through distributed architectures [11]. These graph-based approaches excel at capturing the
structural dependencies among system components, but often lack the flexibility to
incorporate unstructured knowledge and the ability to generate natural language
explanations that facilitate human understanding.

The advent of deep learning has catalyzed significant innovations in fault diagnosis
methodologies, with neural network architectures demonstrating remarkable capabilities in
pattern recognition and anomaly detection from high-dimensional telemetry data. Graph
neural networks have proven particularly effective for fault diagnosis in complex industrial
processes, leveraging their ability to learn representations that respect the topological
structure of system component relationships [12]. Recent work on knowledge graph-driven
fault diagnosis has demonstrated how structured knowledge representations combined with
neural architectures can enhance diagnostic accuracy in power systems and manufacturing
environments [13]. However, these deep learning approaches often suffer from limited
explainability, generating predictions without providing interpretable reasoning paths that
engineers can validate and trust in critical production scenarios.

Retrieval-Augmented Generation represents a transformative advancement in the application
of language models to knowledge-intensive tasks, addressing fundamental limitations related
to hallucination, outdated knowledge, and contextual grounding. The foundational RAG
architecture combines dense passage retrieval with generative language models, enabling
systems to access and incorporate relevant external information during the generation
process [14]. Comprehensive surveys of RAG methodologies have delineated the evolution
from naive retrieval-generation pipelines to sophisticated modular architectures that
optimize various components including retrieval mechanisms, augmentation strategies, and
generation models [15]. Recent research has explored the integration of knowledge graphs
with retrieval-augmented language models, demonstrating enhanced performance on
question-answering tasks that require multi-hop reasoning over structured knowledge [16].
These developments suggest substantial potential for applying RAG techniques to incident
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diagnosis, where contextual retrieval of relevant historical incidents and system
documentation can significantly enhance diagnostic accuracy and explanation quality.

The application of Large Language Models to operational domains has gained considerable
attention, with researchers investigating their capabilities for tasks including log analysis,
anomaly explanation, and automated incident response. Studies on LLM-based root cause
analysis have shown promising results in generating diagnostic hypotheses and mitigation
recommendations for cloud service incidents, leveraging the models' ability to understand
technical narratives and synthesize information from multiple sources [17]. Work on event
knowledge graphs combined with LLMs has demonstrated improved interpretability in fault
diagnosis scenarios, providing traceable reasoning chains that connect observed symptoms to
underlying root causes [18]. However, challenges remain in ensuring factual accuracy,
preventing hallucinations about system states, and grounding LLM outputs in verifiable
evidence from actual system telemetry and historical incident data.

Explainability in artificial intelligence has become increasingly critical for operational
applications where human operators must trust and validate automated diagnostic
recommendations. Research on explainable root cause analysis has emphasized the
importance of providing human-interpretable reasoning chains that elucidate how diagnostic
conclusions were derived from available evidence [19]. Studies in manufacturing quality
assurance have demonstrated frameworks for explainable root cause analysis that combine
multiple Al techniques while maintaining transparency in decision-making processes [20].
The integration of causal reasoning with explainable Al has shown particular promise,
enabling systems to generate counterfactual explanations that help engineers understand not
only what caused a failure but also what alternative conditions might have prevented it [21].
These developments underscore the importance of designing incident diagnosis systems that
prioritize explainability alongside accuracy, recognizing that operational acceptance depends
critically on engineers' ability to understand and verify the system's reasoning process.

Multi-agent architectures for root cause analysis represent an emerging research direction
that leverages collaborative Al systems to tackle complex diagnostic challenges. Recent work
has explored how multiple specialized agents can work together to analyze different aspects
of system failures, combining diverse data sources and reasoning strategies to arrive at
comprehensive diagnostic conclusions [22]. The application of reinforcement learning to
knowledge graph reasoning has demonstrated capabilities for adaptive path finding through
causal networks, enabling systems to navigate complex chains of causality to identify distant
root causes [23]. These multi-agent approaches align well with the inherently distributed
nature of modern system architectures, where failures often result from complex interactions
among numerous independent components, and comprehensive diagnosis requires
synthesizing evidence from multiple observability signals [24].

The convergence of retrieval mechanisms, graph-based reasoning, and large language models
represents a frontier in incident diagnosis research that remains relatively unexplored
despite the complementary strengths of these technologies. While individual components
have been extensively studied, integrated frameworks that systematically combine these
approaches to achieve explainable, accurate, and contextually grounded incident diagnosis
are still in early stages of development. The research presented in this paper addresses this
gap by proposing a unified architecture that leverages the structured reasoning capabilities of
graph neural networks, the knowledge retrieval strengths of RAG systems, and the natural
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language understanding and generation abilities of large language models to create a
comprehensive solution for explainable incident diagnosis in complex distributed systems.

3. Methodology

3.1 System Architecture and Framework Overview

The proposed framework integrates three fundamental components into a cohesive
architecture designed to enable explainable incident diagnosis through retrieval-augmented
graph reasoning with large language models. At the foundation of our system lies the
Knowledge Graph Construction Module, which employs causal modeling techniques inspired
by Bond Graph methodology to represent the structural and functional relationships among
system components. This approach models system entities and their interactions through a
directed graph structure where nodes represent components such as services, databases, and
infrastructure elements, while edges encode causal relationships including energy flow,
information dependencies, and resource sharing patterns. The causal graph captures both
static architectural dependencies and dynamic behavioral relationships that emerge during
system operation, providing a comprehensive structural representation that supports both
forward simulation of failure propagation and backward inference for root cause
identification.

The Retrieval-Augmented Module serves as the second pillar of our architecture,
implementing sophisticated mechanisms for identifying and extracting relevant contextual
information from historical incident databases, system documentation repositories, and
structured knowledge bases. When a new incident is detected, this module employs hybrid
retrieval strategies combining dense vector similarity search with graph-based relevance
scoring to identify historical incidents that share similar symptom patterns, affected
components, or causal structures with the current failure scenario. The retrieved incidents
are then processed to extract key diagnostic insights including previously identified root
causes, successful remediation strategies, and relevant domain knowledge about system
behaviors under analogous failure conditions. This retrieval process operates continuously,
maintaining an up-to-date context that enriches the diagnostic capabilities of the framework
as new incidents are observed and resolved.
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Figure 1: Bond Graph-Based Causal Graph Structure for System Component Dependency
Modeling

Figure 1 illustrates the causal graph structure used in our framework, adapted from Bond
Graph modeling techniques. The graph represents system components (C for capacitive
elements representing storage, R for resistive elements representing dissipation) and their
causal relationships through directed edges. This representation enables bidirectional
reasoning where both forward propagation analysis and backward root cause tracing can be
performed efficiently. The modular structure supports hierarchical decomposition of complex
systems into manageable subgraphs while maintaining global causal consistency across the
entire system topology.

The Large Language Model Integration Module constitutes the third core component,
leveraging pre-trained language models fine-tuned on technical documentation and incident
reports to generate natural language explanations for diagnosed failures. This module
receives structured diagnostic hypotheses from the graph reasoning component along with
retrieved contextual information, then synthesizes this data into coherent narratives that
explain the likely root cause, describe the causal chain leading to observable symptoms, and
recommend appropriate remediation actions. The LLM component employs specialized
prompting strategies that encourage factual grounding in the provided graph evidence and
retrieved incidents, mitigating the risk of hallucinations while enabling fluent generation of
technical explanations that engineers can readily understand and act upon.

3.2 Online Root Cause Analysis Workflow

The graph-based causal reasoning component implements an online workflow that
continuously monitors system state and incrementally updates causal models to reflect
evolving system behaviors and emerging failure patterns. Unlike traditional offline diagnostic
approaches that require manual initiation and batch processing of historical data, our online
framework operates through three interconnected stages that enable real-time incident
detection and diagnosis with minimal latency between failure occurrence and root cause
identification.

The first stage employs a Trigger Point Detection mechanism that automatically identifies
significant state transitions in the monitored system. This detector analyzes streaming
telemetry data from all system components, applying statistical change detection algorithms
to identify moments when system behavior deviates significantly from established baselines.
The trigger point detector distinguishes between four primary anomaly patterns that indicate
potential system failures: spike-up events where metrics exhibit sudden sharp increases,
spike-down events characterized by abrupt metric decreases, level-shift-up transitions where
metrics settle at persistently elevated values, and level-shift-down changes where metrics
drop to sustained lower levels. Upon detecting a trigger point, the system initiates the
diagnostic workflow, creating a temporal marker that anchors the subsequent causal analysis
to the specific moment when abnormal behavior first manifested.
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Figure 2: Illustration of Online Root Cause Analysis Workflows

Figure 2 depicts the complete online RCA workflow implemented in our framework. The
upper portion shows the offline phase where historical system monitoring data is collected
and processed to build an initial causal graph representation. When operators observe a
system failure in production, the trigger point detector automatically activates the diagnostic
process. The lower portion illustrates the online phase where batch data is continuously fed
into the trigger point detector, which identifies significant state transitions requiring analysis.
The Incremental Causal Discovery module then updates the causal graph structure based on
the latest observational data, refining causal relationships while preserving previously
learned stable patterns. Finally, the updated failure causal graph enables identification of the
top-K most likely root causes through graph-based reasoning algorithms that trace symptom
propagation backward through the causal network.

The second stage implements Incremental Disentangled Causal Graph Learning that efficiently
updates the system's causal model without requiring complete retraining from scratch. This
incremental approach recognizes that many causal relationships in complex systems remain
stable over time while others evolve in response to configuration changes, deployment
updates, or environmental shifts. The causal learning algorithm disentangles state-invariant
relationships that persist across different system conditions from state-dependent
relationships that vary based on operational context. By maintaining separate representations
for these two types of causal patterns, the framework can rapidly adapt to new system states
by updating only the state-dependent portion of the causal graph while leveraging the stable
state-invariant structure to ensure continuity and prevent catastrophic forgetting of
previously learned diagnostic knowledge.

The third stage applies Network Propagation-based Root Cause Localization that traverses the
updated causal graph to identify the most likely sources of observed failures. Starting from

nodes exhibiting anomalous behavior, the algorithm performs backward propagation through
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incoming causal edges, accumulating evidence and computing likelihood scores for each
potential root cause based on its connectivity to symptomatic nodes, the strength of causal
pathways, temporal alignment between state changes, and consistency with historical failure
patterns. This backward reasoning process mirrors the logical flow that human experts follow
when diagnosing complex system failures, tracing symptoms back through chains of causality
until arriving at fundamental causes that lack incoming causal dependencies from other
components.

3.3 Retrieval Mechanism Design

The retrieval mechanism implements a hybrid approach that combines semantic similarity
search with graph-structured matching to identify the most relevant historical incidents for a
given diagnostic scenario. The system maintains an incident database where each historical
incident is represented by a multi-modal embedding that captures its textual description,
affected component graph structure, temporal evolution pattern, and ultimate root cause
diagnosis. When processing a new incident, the retrieval system first computes a query
representation that encodes the current system state, observed anomalies, and preliminary
diagnostic hypotheses generated by the graph reasoning component. This query
representation is then used to retrieve candidate incidents through multiple retrieval
pathways that prioritize different aspects of relevance.

The semantic retrieval pathway employs dense vector representations learned through
contrastive training on pairs of similar incidents, enabling the system to identify historical
cases that share similar high-level characteristics even when specific components or failure
modes differ. These embeddings are computed using specialized transformer-based encoders
fine-tuned on technical incident reports, ensuring that the semantic representations capture
domain-specific concepts related to system failures, performance degradations, and
operational anomalies. The retrieval process utilizes approximate nearest neighbor search
algorithms to efficiently identify the top-k most similar incidents from potentially millions of
historical records, balancing retrieval quality with computational efficiency constraints
required for real-time diagnostic applications.

The graph-structured retrieval pathway focuses on identifying incidents that exhibit similar
causal graph patterns, recognizing that failures with analogous propagation structures often
share common root causes even when affecting different specific components. This pathway
computes graph similarity metrics based on structural properties including subgraph
isomorphism, graph edit distance, and learned graph kernel embeddings that capture higher-
order structural patterns. The graph matching algorithm employs efficient approximation
techniques to handle the computational complexity of exact graph comparison, producing
similarity scores that reflect both topological correspondence and node attribute matching
between the query incident graph and historical incident graphs. By combining semantic and
structural similarity signals, the hybrid retrieval mechanism achieves superior performance
compared to approaches relying on either modality alone, ensuring that retrieved incidents
provide genuinely relevant diagnostic context.

3.4 LLM-Based Explanation Generation
The explanation generation component leverages large language models to transform

structured diagnostic hypotheses and retrieved contextual information into coherent natural
language narratives that facilitate human understanding and decision-making. The LLM is
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provided with carefully structured input that includes the ranked list of root cause hypotheses
from the graph reasoning component, retrieved similar incidents with their documented
resolutions, relevant system documentation excerpts, and the current state of affected system
components. This input is formatted using a specialized prompting strategy that emphasizes
factual grounding, encourages step-by-step reasoning, and requests explicit citation of
evidence from the provided context.

The generation process proceeds through multiple stages that progressively refine the
explanation content and structure. The initial generation stage produces a comprehensive
explanation that describes the likely root cause, traces the causal pathway from root cause to
observed symptoms through the knowledge graph, explains why the identified cause is
consistent with available evidence including temporal patterns and correlation strengths, and
compares the current incident to relevant historical cases retrieved from the incident
database. This preliminary explanation incorporates the causal reasoning performed on the
graph structure, translating abstract node relationships and edge weights into concrete
statements about how failures propagated through system components.

The refinement stage adapts the explanation to the target audience and use case, generating
multiple explanation variants with different levels of technical detail and narrative structure.
For immediate incident response scenarios, the system produces concise executive
summaries that highlight the root cause identification, assess the scope and severity of impact,
and enumerate recommended remediation actions with expected outcomes, enabling rapid
decision-making by on-call engineers and management personnel. For post-incident analysis
and knowledge sharing, the system generates comprehensive diagnostic reports that include
detailed reasoning chains showing how evidence was accumulated and weighted, alternative
hypotheses that were considered and ruled out with explanations of why they were deemed
less likely, lessons learned from the incident regarding system vulnerabilities and monitoring
gaps, and recommendations for preventive measures including architectural changes,
monitoring enhancements, and operational procedure updates to avoid similar failures in the
future.

4. Results and Discussion

4.1 Experimental Setup and Evaluation Metrics

The evaluation of our proposed framework was conducted using multiple datasets comprising
real-world production incidents from large-scale distributed systems alongside synthetic
benchmark scenarios designed to test specific diagnostic capabilities under controlled
conditions. The primary evaluation dataset consists of incident records collected over
eighteen months from a production e-commerce platform operating more than eight
thousand microservices and handling billions of daily transactions. This dataset includes
detailed telemetry data capturing performance metrics, system topology information
describing service dependencies and communication patterns, incident reports documenting
symptom observations and resolution outcomes, and expert annotations identifying
confirmed root causes for a curated subset of incidents representing diverse failure types.

We established several evaluation metrics to assess different aspects of the framework's
diagnostic capabilities, recognizing that incident diagnosis quality encompasses multiple
dimensions beyond simple accuracy measurements. The primary accuracy metric measures
the proportion of incidents where the true root cause appears within the top-k ranked
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hypotheses generated by the system, with separate evaluation at k equals one, three, and five
to assess both precision at the top rank and recall across the full hypothesis list. Beyond
accuracy, we evaluate explanation quality through human expert assessments using criteria
including factual correctness of statements about system behavior and causal relationships,
completeness of causal reasoning in tracing failure propagation paths, clarity of presentation
in conveying technical information accessibly, and actionability of recommendations for
remediation and prevention, with each explanation rated on scales from one to five by
experienced site reliability engineers who were not involved in the system development.

1 11 |
1l (M 1l
” JA"""‘W""."A,',.M* \ |\|~‘f' 0l‘.,"1’1( ]‘

1,~'r‘1-n|:,v-<“.1

| ;;‘,,.,U&JHJL“‘“, ‘,.I.ll‘\‘.\-v‘..h-‘,,.q‘)b
¥

4 | 5

18550 18:55 19:00 19:05 1910 1220 1225 1230 12135 2315 2320 2325 2330 2335 0905 0910 0915 09:20

(a) Spike Up (b) Spike Down (c) Level Shift Up (d) Level Shift Down

mysql.tps
mysql.qps
docker.io-read

ik Ay,
|y f

|

mysql.bytes-sent

Figure 3: Four Categories of Anomaly Patterns in System Metrics

Figure 3 presents four categories of anomaly patterns successfully detected and classified by
our trigger point detection mechanism across different system metrics and time periods.
Panel (a) shows a spike-up event in mysql_gps (queries per second) where metric values
exhibit a sharp sudden increase before returning to baseline, indicating a transient load surge
or query storm. Panel (b) demonstrates a spike-down pattern in mysql_qps characterized by
an abrupt drop in query throughput, potentially signaling connection failures or database
unavailability. Panel (c) illustrates a level-shift-up transition in mysql_bytes-sent where the
metric settles at a persistently elevated level, suggesting a change in query patterns or data
access behaviors. Panel (d) depicts a level-shift-down scenario in docker_io-read where /0
read rates drop to sustained lower values, possibly indicating resource contention or
configuration changes. The red dashed lines mark the precise trigger points where our
detection algorithm identified significant state transitions, demonstrating the system's
capability to automatically recognize diverse failure manifestations and initiate appropriate
diagnostic workflows with minimal latency.

The experimental methodology employed stratified cross-validation to ensure robust
performance estimates across different incident types, system conditions, and temporal
periods. We partitioned the dataset into training, validation, and test sets with temporal
stratification to prevent information leakage from future incidents into model training,
reflecting the real-world constraint that diagnostic systems must generalize to novel incident
patterns not present in historical data. Baseline comparisons were established against several
state-of-the-art approaches including pure machine learning classifiers trained on labeled
incident data, graph-based causal inference methods without retrieval augmentation
operating solely on structural analysis, and LLM-based diagnosis systems without explicit
graph reasoning relying on textual similarity and language model inference, enabling
systematic assessment of the contribution of each component in our integrated framework
through comprehensive ablation studies.

4.2 Diagnostic Performance Analysis
The experimental results demonstrate substantial improvements in diagnostic accuracy
achieved through the integration of retrieval-augmented graph reasoning with large language

models across all evaluation metrics. Our complete framework attained a top-one accuracy of
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92.3% in identifying correct root causes, representing a fifteen percentage point improvement
over the strongest baseline method which achieved 77.1% accuracy using graph neural
networks without retrieval augmentation. The performance gains were particularly
pronounced for complex incidents involving cascading failures affecting multiple service tiers
or multiple interacting root causes occurring simultaneously, where the retrieval
mechanism's ability to identify relevant historical patterns enabled more accurate hypothesis
ranking compared to methods relying solely on structural graph analysis of the current
incident without broader contextual knowledge.

Ablation studies conducted by systematically removing components from the full framework
revealed the complementary contributions of graph reasoning, retrieval augmentation, and
LLM-based explanation generation to overall diagnostic performance. When the retrieval
component was disabled, diagnostic accuracy decreased to 85.7%, demonstrating that access
to relevant historical incidents provides substantial value for disambiguation among
competing hypotheses that exhibit similar causal graph structures and identification of subtle
failure patterns that may not be immediately apparent from graph topology alone. Removing
the graph reasoning component while retaining retrieval and LLM capabilities resulted in 79.4%
accuracy, indicating that structured causal analysis through graph neural networks
contributes significantly to diagnostic precision beyond what can be achieved through purely
text-based incident matching and language model inference without explicit representation of
system dependencies.

The trigger point detection mechanism proved highly effective in identifying the onset of
system failures across diverse anomaly patterns, achieving 96.8% precision and 94.2% recall
in detecting significant state transitions requiring diagnostic analysis. The detector
successfully distinguished between normal operational variations and genuine anomalies
requiring intervention, with particularly strong performance on level-shift patterns that
indicate persistent system degradation requiring prompt attention. The median latency from
anomaly occurrence to trigger point detection was 23 seconds, enabling rapid initiation of the
diagnostic workflow with minimal delay that could exacerbate incident impact. Analysis of
false positives revealed that most erroneous triggers occurred during planned maintenance
windows or legitimate traffic pattern changes, suggesting opportunities for improvement
through integration of change management calendars and scheduled event awareness.

The temporal analysis of diagnostic performance revealed interesting patterns regarding the
framework's ability to generalize to evolving system configurations and novel failure modes
not present in the training data. We observed that diagnostic accuracy remained relatively
stable across the eighteen-month evaluation period despite substantial changes in the system
architecture including the addition of 847 new microservices, modification of 1,235
dependency relationships through service migrations and API updates, and introduction of
new infrastructure components including database clusters and caching layers. This
robustness stems from the framework's ability to leverage transferable causal patterns
learned from historical incidents such as common failure modes like database connection
exhaustion or memory leaks while adapting to structural changes through continuous
knowledge graph updates that incorporate newly observed component relationships.

The retrieval mechanism's contribution to diagnostic performance was analyzed through
detailed examination of the characteristics of successfully retrieved incidents and their
relationship to diagnostic outcomes. We found that retrieval quality, measured by the
semantic and structural similarity between retrieved incidents and the target incident,
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exhibited strong correlation with final diagnostic accuracy, with correlation coefficients of
0.74 for semantic similarity and 0.71 for structural similarity. This finding validates the design
choice to invest substantial effort in developing sophisticated hybrid retrieval mechanisms
that consider multiple dimensions of incident similarity rather than relying on single-
modality matching. Interestingly, the optimal number of retrieved incidents varied across
different incident types, with simple isolated failures benefiting from focused retrieval of one
to three highly similar cases that provided clear precedents, while complex cascading failures
required broader retrieval of five to ten incidents representing different aspects of the
multifaceted failure scenario to capture the full diagnostic context.

The explanation quality assessment conducted through expert evaluation demonstrated that
the LLM-generated explanations achieved high ratings across multiple quality dimensions,
validating the effectiveness of our explanation generation approach. Factual correctness
received an average rating of 4.3 out of 5, with experts noting that the grounding mechanisms
successfully prevented hallucinations by constraining generation to facts derivable from the
knowledge graph and retrieved incident documents, and ensured claims were supported by
evidence including specific metric values, temporal correlations, and graph connectivity
patterns. Completeness of causal reasoning averaged 4.1, with evaluators appreciating the
step-by-step tracing of failure propagation from identified root causes through intermediate
components to ultimately observable symptoms, providing transparency into how the
diagnosis was reached. Clarity scores averaged 4.4, reflecting the LLM's ability to generate
well-structured narratives that avoided excessive technical jargon while maintaining
necessary precision for engineering audiences. Actionability ratings averaged 3.9, with some
experts desiring more specific remediation guidance including concrete configuration changes,
code-level fixes, or operational procedure modifications, suggesting an area for future
enhancement through integration of runbook knowledge and automated action
recommendation systems.

Performance comparisons with human expert diagnoses on a challenging subset of 127
ambiguous incidents revealed that the automated system achieved comparable diagnostic
accuracy while significantly reducing time to diagnosis and cognitive load on engineering
teams. Human experts averaged 92 minutes to diagnose these complex incidents requiring
analysis of multiple data sources and consultation with service owners, while our framework
produced initial diagnostic hypotheses within 45 seconds of incident detection, representing a
more than hundredfold speedup that translates to substantial reduction in mean time to
resolution. The framework's ranked hypothesis lists included the correct root cause within
the top three candidates in 89% of cases where human experts successfully identified the
cause, demonstrating diagnostic quality approaching human expert performance. In several
interesting cases totaling 14 incidents, the automated system identified correct root causes
that were initially overlooked by human diagnosticians due to cognitive biases or
unfamiliarity with specific system components, with experts subsequently confirming these
diagnoses after reviewing the system's explanations and supporting evidence, illustrating the
framework's potential to augment and enhance human diagnostic capabilities rather than
merely automating existing processes.

The analysis of failure cases where the system produced incorrect diagnoses revealed several
common patterns that suggest directions for future improvement and highlight current
limitations. A significant proportion of errors (37% of failures) occurred in scenarios
involving rare failure modes with limited historical precedent, where both retrieval
mechanisms struggled to find relevant similar incidents and learned graph reasoning models
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lacked sufficient training examples to recognize the unusual causal patterns. Another class of
errors (28% of failures) involved incidents with highly similar symptomatic presentations but
distinct underlying root causes, where discriminating among competing hypotheses required
deep domain knowledge about specific implementation details or system-specific constraints
not adequately captured in the knowledge graph representation. Some failures (19%)
resulted from temporal misalignment where the causal graph representation failed to capture
fine-grained timing dependencies that were critical for accurate root cause identification, such
as race conditions or timing-sensitive interactions between components. These error patterns
inform ongoing research directions including enhanced knowledge graph construction
techniques that capture richer temporal semantics, improved generalization mechanisms for
rare failure scenarios through transfer learning or synthetic data augmentation, and better
integration of domain constraints and expert rules into the reasoning process.

5. Conclusion

This paper has presented a novel framework for explainable incident diagnosis that integrates
retrieval-augmented generation, graph-based causal reasoning, and large language models
into a cohesive system capable of accurately identifying root causes while providing
transparent explanations that facilitate human understanding and trust. Through
comprehensive evaluation on real-world production incidents spanning diverse failure
scenarios, we have demonstrated that this integrated approach achieves substantial
improvements in diagnostic accuracy, attaining 92.3% precision in root cause identification
while generating explanations rated highly by expert evaluators across multiple quality
dimensions including factual correctness, causal completeness, clarity, and actionability. The
framework successfully addresses critical limitations in existing approaches by combining the
structured reasoning capabilities of graph neural networks with the semantic understanding
and contextual retrieval abilities of modern language models, creating a diagnostic system
that balances technical accuracy with operational usability.

The experimental results validate several key architectural decisions underlying the
framework design, confirming that graph-based causal reasoning provides essential structure
for tracing fault propagation through complex distributed systems, that retrieval mechanisms
enable effective leverage of historical incident knowledge to enhance diagnostic accuracy
through pattern recognition and precedent matching, and that large language models offer
powerful capabilities for generating coherent natural language explanations grounded in
structured evidence from knowledge graphs. The ablation studies systematically
demonstrated the complementary contributions of these components, showing that each
plays a distinct role in achieving the framework's overall diagnostic performance and
explanation quality. The online root cause analysis workflow proved particularly valuable,
enabling automatic detection of system failures through trigger point identification and
continuous refinement of causal models through incremental learning without requiring
manual intervention or batch reprocessing of historical data.

Despite the promising results, several limitations and opportunities for future work have
emerged from this research. The framework's performance on completely novel failure modes
without historical precedent remains an area requiring further improvement, suggesting the
need for techniques that can generalize diagnostic patterns across different failure types
through meta-learning approaches or generate synthetic training data to cover rare scenarios.
The current approach focuses primarily on technical root cause identification and may benefit
from extension to incorporate business impact assessment, risk analysis, and cost-benefit
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evaluation of different remediation strategies, enabling more comprehensive decision support
for incident response that considers both technical and business dimensions. Additionally, the
knowledge graph construction process could be enhanced through more sophisticated online
learning mechanisms that continuously refine the graph structure and causal relationships
based on observed incident outcomes and expert feedback, creating an adaptive system that
improves over time through operational experience.

Future research directions include investigation of multi-agent architectures where
specialized diagnostic agents collaborate to analyze different aspects of system failures
including performance degradation agents, security incident agents, and data quality agents,
potentially improving performance on complex incidents that require diverse types of
reasoning and evidence synthesis. The integration of automated remediation capabilities
represents another promising avenue, extending the framework beyond diagnosis to
encompass automatic execution of validated remediation actions with appropriate safety
constraints and human oversight mechanisms, creating closed-loop incident management
systems. Exploration of transfer learning approaches to enable knowledge sharing across
different organizations and system domains could accelerate deployment of diagnostic
capabilities in new environments where historical incident data may be limited, leveraging
common failure patterns that transcend specific system implementations. Finally, deeper
investigation of the interplay between human operators and Al diagnostic systems through
user studies and field deployments will be essential for understanding how these technologies
can most effectively augment human expertise in real operational contexts.

The work presented in this paper contributes to the growing body of research on artificial
intelligence for operations and site reliability engineering, demonstrating practical
approaches for applying advanced Al technologies to critical operational challenges in
production systems. By achieving strong diagnostic performance while maintaining
explainability and human interpretability, the framework represents a step toward Al
systems that can be trusted and effectively utilized by engineering teams responsible for
maintaining complex distributed systems. The integration of retrieval, reasoning, and
generation capabilities showcased in this work may serve as a template for addressing other
knowledge-intensive operational tasks including security incident response, capacity
planning, and preventive maintenance, suggesting broad applicability of the core architectural
principles. As distributed systems continue to grow in complexity and Al technologies
continue to advance, frameworks that thoughtfully combine multiple Al capabilities while
prioritizing explainability and operational usability will become increasingly essential for
maintaining reliable, high-performance production systems at scale.
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