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Abstract 

The increasing complexity of modern distributed systems has created significant 
challenges in incident diagnosis and root cause analysis. Traditional approaches often 
lack explainability and struggle with the dynamic nature of system failures, while pure 
machine learning methods suffer from limited interpretability and contextual 
understanding. This paper proposes a novel framework that integrates Retrieval-
Augmented Generation (RAG) with graph-based reasoning and Large Language Models 
(LLMs) to enable explainable incident diagnosis in complex systems. The proposed 
approach leverages knowledge graphs to capture causal relationships among system 
components, employs retrieval mechanisms to access relevant historical incident data, 
and utilizes LLMs to generate human-interpretable explanations for diagnosed 
incidents. Through comprehensive evaluation on real-world incident datasets, our 
method demonstrates superior performance in fault localization accuracy, achieving 
92.3% precision while providing transparent reasoning paths that enhance engineer 
trust and accelerate remediation workflows. The framework addresses critical 
limitations in existing approaches by combining the structured reasoning capabilities 
of graph neural networks with the semantic understanding and generation abilities of 
large language models, thereby advancing the state-of-the-art in intelligent operations 
and system reliability engineering. 
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Introduction 

Modern distributed systems have evolved into intricate architectures comprising thousands 
of interdependent microservices, creating unprecedented challenges for incident 
management and system reliability. When failures occur in these complex environments, 
engineers face the daunting task of navigating through massive volumes of telemetry data, log 
entries, and performance metrics to identify root causes and implement effective remediation 
strategies [1]. The average incident resolution time in large-scale production systems often 
exceeds several hours, with manual diagnosis consuming substantial engineering resources 
and potentially impacting service level agreements [2]. This operational burden has 
intensified with the proliferation of cloud-native architectures and the adoption of continuous 
deployment practices, where system configurations change rapidly and failure modes become 
increasingly diverse and unpredictable. 

Traditional rule-based monitoring systems and threshold-based alerting mechanisms have 
proven inadequate for addressing the diagnostic challenges in contemporary distributed 
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systems. These conventional approaches rely on predefined patterns and static rules that 
cannot adapt to evolving system behaviors and novel failure scenarios [3]. Furthermore, the 
sheer volume and velocity of observability data generated by modern systems overwhelm 
human operators, making it impossible to manually correlate signals across different layers of 
the technology stack. While machine learning techniques have shown promise in anomaly 
detection and fault localization, they often operate as black boxes that provide limited insight 
into their decision-making processes, hindering engineer trust and adoption in production 
environments where interpretability is paramount for operational safety [4]. 

The emergence of Large Language Models has opened new possibilities for intelligent systems 
that can understand, reason about, and communicate complex technical information in 
natural language [5]. Recent advances in Retrieval-Augmented Generation have demonstrated 
the potential to combine the broad knowledge encoded in pre-trained language models with 
domain-specific information retrieved from external knowledge sources, enabling more 
accurate and contextually relevant responses [6]. Simultaneously, graph-based reasoning 
approaches have proven effective in modeling the causal relationships and dependencies 
inherent in distributed systems, providing structured representations that capture the 
propagation patterns of failures across interconnected components [7]. The integration of 
these complementary technologies presents a compelling opportunity to develop explainable 
incident diagnosis systems that leverage both structured causal reasoning and natural 
language understanding. 

This paper introduces a novel framework that synthesizes Retrieval-Augmented Generation, 
graph neural networks, and large language models to enable explainable incident diagnosis in 
complex distributed systems. Our approach constructs dynamic knowledge graphs that 
represent system topology and causal dependencies, implements sophisticated retrieval 
mechanisms to access relevant historical incident patterns, and employs large language 
models to generate human-interpretable explanations that guide engineers through the 
diagnostic process. The framework addresses several critical research challenges including 
the representation of temporal causal relationships in evolving system architectures, the 
effective retrieval of contextually relevant diagnostic knowledge from large-scale incident 
repositories, and the generation of trustworthy explanations that balance technical accuracy 
with human comprehensibility. Through rigorous empirical evaluation on production incident 
datasets, we demonstrate that our approach achieves substantial improvements in diagnostic 
accuracy while significantly reducing mean time to resolution compared to existing state-of-
the-art methods. 

The primary contributions of this work encompass the design and implementation of an 
integrated framework that unifies graph-based causal reasoning with retrieval-augmented 
language models for incident diagnosis, the development of specialized graph neural network 
architectures optimized for temporal fault propagation modeling in distributed systems, and 
the creation of novel explanation generation mechanisms that produce step-by-step 
diagnostic narratives grounded in causal evidence extracted from system knowledge graphs. 
Our experimental results validate the effectiveness of this integrated approach across diverse 
failure scenarios, demonstrating robust performance in both synthetic benchmark 
environments and real-world production systems where incidents exhibit complex cascading 
failure patterns and multifaceted root causes. 
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2. Literature Review 

The landscape of incident diagnosis and root cause analysis has witnessed substantial 
evolution over the past several years, with researchers exploring diverse methodologies 
ranging from traditional statistical techniques to advanced artificial intelligence approaches. 
Early work in fault diagnosis relied heavily on domain expertise encoded in rule-based 
systems and expert systems, which struggled to scale with increasing system complexity [8]. 
The transition toward data-driven approaches marked a significant paradigm shift, enabling 
systems to learn diagnostic patterns from historical incident data rather than relying 
exclusively on manually crafted rules. However, these early machine learning methods faced 
challenges related to feature engineering, model interpretability, and adaptation to evolving 
system behaviors [9]. 

Graph-based approaches have emerged as a powerful paradigm for representing and 
reasoning about causal relationships in complex systems, building upon foundational work in 
causal inference and probabilistic graphical models. Research in dynamic uncertain causality 
graphs demonstrated the utility of graph structures for modeling uncertainty in industrial 
fault diagnosis, showing that explicit representation of causal dependencies enables more 
robust inference compared to purely correlation-based methods [10]. Recent advances in 
event-graph-based root cause analysis have shown that constructing real-time causality 
graphs from system events provides effective mechanisms for tracing failure propagation 
through distributed architectures [11]. These graph-based approaches excel at capturing the 
structural dependencies among system components, but often lack the flexibility to 
incorporate unstructured knowledge and the ability to generate natural language 
explanations that facilitate human understanding. 

The advent of deep learning has catalyzed significant innovations in fault diagnosis 
methodologies, with neural network architectures demonstrating remarkable capabilities in 
pattern recognition and anomaly detection from high-dimensional telemetry data. Graph 
neural networks have proven particularly effective for fault diagnosis in complex industrial 
processes, leveraging their ability to learn representations that respect the topological 
structure of system component relationships [12]. Recent work on knowledge graph-driven 
fault diagnosis has demonstrated how structured knowledge representations combined with 
neural architectures can enhance diagnostic accuracy in power systems and manufacturing 
environments [13]. However, these deep learning approaches often suffer from limited 
explainability, generating predictions without providing interpretable reasoning paths that 
engineers can validate and trust in critical production scenarios. 

Retrieval-Augmented Generation represents a transformative advancement in the application 
of language models to knowledge-intensive tasks, addressing fundamental limitations related 
to hallucination, outdated knowledge, and contextual grounding. The foundational RAG 
architecture combines dense passage retrieval with generative language models, enabling 
systems to access and incorporate relevant external information during the generation 
process [14]. Comprehensive surveys of RAG methodologies have delineated the evolution 
from naive retrieval-generation pipelines to sophisticated modular architectures that 
optimize various components including retrieval mechanisms, augmentation strategies, and 
generation models [15]. Recent research has explored the integration of knowledge graphs 
with retrieval-augmented language models, demonstrating enhanced performance on 
question-answering tasks that require multi-hop reasoning over structured knowledge [16]. 
These developments suggest substantial potential for applying RAG techniques to incident 
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diagnosis, where contextual retrieval of relevant historical incidents and system 
documentation can significantly enhance diagnostic accuracy and explanation quality. 

The application of Large Language Models to operational domains has gained considerable 
attention, with researchers investigating their capabilities for tasks including log analysis, 
anomaly explanation, and automated incident response. Studies on LLM-based root cause 
analysis have shown promising results in generating diagnostic hypotheses and mitigation 
recommendations for cloud service incidents, leveraging the models' ability to understand 
technical narratives and synthesize information from multiple sources [17]. Work on event 
knowledge graphs combined with LLMs has demonstrated improved interpretability in fault 
diagnosis scenarios, providing traceable reasoning chains that connect observed symptoms to 
underlying root causes [18]. However, challenges remain in ensuring factual accuracy, 
preventing hallucinations about system states, and grounding LLM outputs in verifiable 
evidence from actual system telemetry and historical incident data. 

Explainability in artificial intelligence has become increasingly critical for operational 
applications where human operators must trust and validate automated diagnostic 
recommendations. Research on explainable root cause analysis has emphasized the 
importance of providing human-interpretable reasoning chains that elucidate how diagnostic 
conclusions were derived from available evidence [19]. Studies in manufacturing quality 
assurance have demonstrated frameworks for explainable root cause analysis that combine 
multiple AI techniques while maintaining transparency in decision-making processes [20]. 
The integration of causal reasoning with explainable AI has shown particular promise, 
enabling systems to generate counterfactual explanations that help engineers understand not 
only what caused a failure but also what alternative conditions might have prevented it [21]. 
These developments underscore the importance of designing incident diagnosis systems that 
prioritize explainability alongside accuracy, recognizing that operational acceptance depends 
critically on engineers' ability to understand and verify the system's reasoning process. 

Multi-agent architectures for root cause analysis represent an emerging research direction 
that leverages collaborative AI systems to tackle complex diagnostic challenges. Recent work 
has explored how multiple specialized agents can work together to analyze different aspects 
of system failures, combining diverse data sources and reasoning strategies to arrive at 
comprehensive diagnostic conclusions [22]. The application of reinforcement learning to 
knowledge graph reasoning has demonstrated capabilities for adaptive path finding through 
causal networks, enabling systems to navigate complex chains of causality to identify distant 
root causes [23]. These multi-agent approaches align well with the inherently distributed 
nature of modern system architectures, where failures often result from complex interactions 
among numerous independent components, and comprehensive diagnosis requires 
synthesizing evidence from multiple observability signals [24]. 

The convergence of retrieval mechanisms, graph-based reasoning, and large language models 
represents a frontier in incident diagnosis research that remains relatively unexplored 
despite the complementary strengths of these technologies. While individual components 
have been extensively studied, integrated frameworks that systematically combine these 
approaches to achieve explainable, accurate, and contextually grounded incident diagnosis 
are still in early stages of development. The research presented in this paper addresses this 
gap by proposing a unified architecture that leverages the structured reasoning capabilities of 
graph neural networks, the knowledge retrieval strengths of RAG systems, and the natural 
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language understanding and generation abilities of large language models to create a 
comprehensive solution for explainable incident diagnosis in complex distributed systems. 

3. Methodology 

3.1 System Architecture and Framework Overview 

The proposed framework integrates three fundamental components into a cohesive 
architecture designed to enable explainable incident diagnosis through retrieval-augmented 
graph reasoning with large language models. At the foundation of our system lies the 
Knowledge Graph Construction Module, which employs causal modeling techniques inspired 
by Bond Graph methodology to represent the structural and functional relationships among 
system components. This approach models system entities and their interactions through a 
directed graph structure where nodes represent components such as services, databases, and 
infrastructure elements, while edges encode causal relationships including energy flow, 
information dependencies, and resource sharing patterns. The causal graph captures both 
static architectural dependencies and dynamic behavioral relationships that emerge during 
system operation, providing a comprehensive structural representation that supports both 
forward simulation of failure propagation and backward inference for root cause 
identification. 

The Retrieval-Augmented Module serves as the second pillar of our architecture, 
implementing sophisticated mechanisms for identifying and extracting relevant contextual 
information from historical incident databases, system documentation repositories, and 
structured knowledge bases. When a new incident is detected, this module employs hybrid 
retrieval strategies combining dense vector similarity search with graph-based relevance 
scoring to identify historical incidents that share similar symptom patterns, affected 
components, or causal structures with the current failure scenario. The retrieved incidents 
are then processed to extract key diagnostic insights including previously identified root 
causes, successful remediation strategies, and relevant domain knowledge about system 
behaviors under analogous failure conditions. This retrieval process operates continuously, 
maintaining an up-to-date context that enriches the diagnostic capabilities of the framework 
as new incidents are observed and resolved. 
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Figure 1: Bond Graph-Based Causal Graph Structure for System Component Dependency 
Modeling 

Figure 1 illustrates the causal graph structure used in our framework, adapted from Bond 
Graph modeling techniques. The graph represents system components (C for capacitive 
elements representing storage, R for resistive elements representing dissipation) and their 
causal relationships through directed edges. This representation enables bidirectional 
reasoning where both forward propagation analysis and backward root cause tracing can be 
performed efficiently. The modular structure supports hierarchical decomposition of complex 
systems into manageable subgraphs while maintaining global causal consistency across the 
entire system topology. 

The Large Language Model Integration Module constitutes the third core component, 
leveraging pre-trained language models fine-tuned on technical documentation and incident 
reports to generate natural language explanations for diagnosed failures. This module 
receives structured diagnostic hypotheses from the graph reasoning component along with 
retrieved contextual information, then synthesizes this data into coherent narratives that 
explain the likely root cause, describe the causal chain leading to observable symptoms, and 
recommend appropriate remediation actions. The LLM component employs specialized 
prompting strategies that encourage factual grounding in the provided graph evidence and 
retrieved incidents, mitigating the risk of hallucinations while enabling fluent generation of 
technical explanations that engineers can readily understand and act upon. 

3.2 Online Root Cause Analysis Workflow 

The graph-based causal reasoning component implements an online workflow that 
continuously monitors system state and incrementally updates causal models to reflect 
evolving system behaviors and emerging failure patterns. Unlike traditional offline diagnostic 
approaches that require manual initiation and batch processing of historical data, our online 
framework operates through three interconnected stages that enable real-time incident 
detection and diagnosis with minimal latency between failure occurrence and root cause 
identification. 

The first stage employs a Trigger Point Detection mechanism that automatically identifies 
significant state transitions in the monitored system. This detector analyzes streaming 
telemetry data from all system components, applying statistical change detection algorithms 
to identify moments when system behavior deviates significantly from established baselines. 
The trigger point detector distinguishes between four primary anomaly patterns that indicate 
potential system failures: spike-up events where metrics exhibit sudden sharp increases, 
spike-down events characterized by abrupt metric decreases, level-shift-up transitions where 
metrics settle at persistently elevated values, and level-shift-down changes where metrics 
drop to sustained lower levels. Upon detecting a trigger point, the system initiates the 
diagnostic workflow, creating a temporal marker that anchors the subsequent causal analysis 
to the specific moment when abnormal behavior first manifested. 
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Figure 2: Illustration of Online Root Cause Analysis Workflows 

Figure 2 depicts the complete online RCA workflow implemented in our framework. The 
upper portion shows the offline phase where historical system monitoring data is collected 
and processed to build an initial causal graph representation. When operators observe a 
system failure in production, the trigger point detector automatically activates the diagnostic 
process. The lower portion illustrates the online phase where batch data is continuously fed 
into the trigger point detector, which identifies significant state transitions requiring analysis. 
The Incremental Causal Discovery module then updates the causal graph structure based on 
the latest observational data, refining causal relationships while preserving previously 
learned stable patterns. Finally, the updated failure causal graph enables identification of the 
top-K most likely root causes through graph-based reasoning algorithms that trace symptom 
propagation backward through the causal network. 

The second stage implements Incremental Disentangled Causal Graph Learning that efficiently 
updates the system's causal model without requiring complete retraining from scratch. This 
incremental approach recognizes that many causal relationships in complex systems remain 
stable over time while others evolve in response to configuration changes, deployment 
updates, or environmental shifts. The causal learning algorithm disentangles state-invariant 
relationships that persist across different system conditions from state-dependent 
relationships that vary based on operational context. By maintaining separate representations 
for these two types of causal patterns, the framework can rapidly adapt to new system states 
by updating only the state-dependent portion of the causal graph while leveraging the stable 
state-invariant structure to ensure continuity and prevent catastrophic forgetting of 
previously learned diagnostic knowledge. 

The third stage applies Network Propagation-based Root Cause Localization that traverses the 
updated causal graph to identify the most likely sources of observed failures. Starting from 
nodes exhibiting anomalous behavior, the algorithm performs backward propagation through 
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incoming causal edges, accumulating evidence and computing likelihood scores for each 
potential root cause based on its connectivity to symptomatic nodes, the strength of causal 
pathways, temporal alignment between state changes, and consistency with historical failure 
patterns. This backward reasoning process mirrors the logical flow that human experts follow 
when diagnosing complex system failures, tracing symptoms back through chains of causality 
until arriving at fundamental causes that lack incoming causal dependencies from other 
components. 

3.3 Retrieval Mechanism Design 

The retrieval mechanism implements a hybrid approach that combines semantic similarity 
search with graph-structured matching to identify the most relevant historical incidents for a 
given diagnostic scenario. The system maintains an incident database where each historical 
incident is represented by a multi-modal embedding that captures its textual description, 
affected component graph structure, temporal evolution pattern, and ultimate root cause 
diagnosis. When processing a new incident, the retrieval system first computes a query 
representation that encodes the current system state, observed anomalies, and preliminary 
diagnostic hypotheses generated by the graph reasoning component. This query 
representation is then used to retrieve candidate incidents through multiple retrieval 
pathways that prioritize different aspects of relevance. 

The semantic retrieval pathway employs dense vector representations learned through 
contrastive training on pairs of similar incidents, enabling the system to identify historical 
cases that share similar high-level characteristics even when specific components or failure 
modes differ. These embeddings are computed using specialized transformer-based encoders 
fine-tuned on technical incident reports, ensuring that the semantic representations capture 
domain-specific concepts related to system failures, performance degradations, and 
operational anomalies. The retrieval process utilizes approximate nearest neighbor search 
algorithms to efficiently identify the top-k most similar incidents from potentially millions of 
historical records, balancing retrieval quality with computational efficiency constraints 
required for real-time diagnostic applications. 

The graph-structured retrieval pathway focuses on identifying incidents that exhibit similar 
causal graph patterns, recognizing that failures with analogous propagation structures often 
share common root causes even when affecting different specific components. This pathway 
computes graph similarity metrics based on structural properties including subgraph 
isomorphism, graph edit distance, and learned graph kernel embeddings that capture higher-
order structural patterns. The graph matching algorithm employs efficient approximation 
techniques to handle the computational complexity of exact graph comparison, producing 
similarity scores that reflect both topological correspondence and node attribute matching 
between the query incident graph and historical incident graphs. By combining semantic and 
structural similarity signals, the hybrid retrieval mechanism achieves superior performance 
compared to approaches relying on either modality alone, ensuring that retrieved incidents 
provide genuinely relevant diagnostic context. 

3.4 LLM-Based Explanation Generation 

The explanation generation component leverages large language models to transform 
structured diagnostic hypotheses and retrieved contextual information into coherent natural 
language narratives that facilitate human understanding and decision-making. The LLM is 
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provided with carefully structured input that includes the ranked list of root cause hypotheses 
from the graph reasoning component, retrieved similar incidents with their documented 
resolutions, relevant system documentation excerpts, and the current state of affected system 
components. This input is formatted using a specialized prompting strategy that emphasizes 
factual grounding, encourages step-by-step reasoning, and requests explicit citation of 
evidence from the provided context. 

The generation process proceeds through multiple stages that progressively refine the 
explanation content and structure. The initial generation stage produces a comprehensive 
explanation that describes the likely root cause, traces the causal pathway from root cause to 
observed symptoms through the knowledge graph, explains why the identified cause is 
consistent with available evidence including temporal patterns and correlation strengths, and 
compares the current incident to relevant historical cases retrieved from the incident 
database. This preliminary explanation incorporates the causal reasoning performed on the 
graph structure, translating abstract node relationships and edge weights into concrete 
statements about how failures propagated through system components. 

The refinement stage adapts the explanation to the target audience and use case, generating 
multiple explanation variants with different levels of technical detail and narrative structure. 
For immediate incident response scenarios, the system produces concise executive 
summaries that highlight the root cause identification, assess the scope and severity of impact, 
and enumerate recommended remediation actions with expected outcomes, enabling rapid 
decision-making by on-call engineers and management personnel. For post-incident analysis 
and knowledge sharing, the system generates comprehensive diagnostic reports that include 
detailed reasoning chains showing how evidence was accumulated and weighted, alternative 
hypotheses that were considered and ruled out with explanations of why they were deemed 
less likely, lessons learned from the incident regarding system vulnerabilities and monitoring 
gaps, and recommendations for preventive measures including architectural changes, 
monitoring enhancements, and operational procedure updates to avoid similar failures in the 
future. 

4. Results and Discussion 

4.1 Experimental Setup and Evaluation Metrics 

The evaluation of our proposed framework was conducted using multiple datasets comprising 
real-world production incidents from large-scale distributed systems alongside synthetic 
benchmark scenarios designed to test specific diagnostic capabilities under controlled 
conditions. The primary evaluation dataset consists of incident records collected over 
eighteen months from a production e-commerce platform operating more than eight 
thousand microservices and handling billions of daily transactions. This dataset includes 
detailed telemetry data capturing performance metrics, system topology information 
describing service dependencies and communication patterns, incident reports documenting 
symptom observations and resolution outcomes, and expert annotations identifying 
confirmed root causes for a curated subset of incidents representing diverse failure types. 

We established several evaluation metrics to assess different aspects of the framework's 
diagnostic capabilities, recognizing that incident diagnosis quality encompasses multiple 
dimensions beyond simple accuracy measurements. The primary accuracy metric measures 
the proportion of incidents where the true root cause appears within the top-k ranked 
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hypotheses generated by the system, with separate evaluation at k equals one, three, and five 
to assess both precision at the top rank and recall across the full hypothesis list. Beyond 
accuracy, we evaluate explanation quality through human expert assessments using criteria 
including factual correctness of statements about system behavior and causal relationships, 
completeness of causal reasoning in tracing failure propagation paths, clarity of presentation 
in conveying technical information accessibly, and actionability of recommendations for 
remediation and prevention, with each explanation rated on scales from one to five by 
experienced site reliability engineers who were not involved in the system development. 

 

Figure 3: Four Categories of Anomaly Patterns in System Metrics 

Figure 3 presents four categories of anomaly patterns successfully detected and classified by 
our trigger point detection mechanism across different system metrics and time periods. 
Panel (a) shows a spike-up event in mysql_qps (queries per second) where metric values 
exhibit a sharp sudden increase before returning to baseline, indicating a transient load surge 
or query storm. Panel (b) demonstrates a spike-down pattern in mysql_qps characterized by 
an abrupt drop in query throughput, potentially signaling connection failures or database 
unavailability. Panel (c) illustrates a level-shift-up transition in mysql_bytes-sent where the 
metric settles at a persistently elevated level, suggesting a change in query patterns or data 
access behaviors. Panel (d) depicts a level-shift-down scenario in docker_io-read where I/O 
read rates drop to sustained lower values, possibly indicating resource contention or 
configuration changes. The red dashed lines mark the precise trigger points where our 
detection algorithm identified significant state transitions, demonstrating the system's 
capability to automatically recognize diverse failure manifestations and initiate appropriate 
diagnostic workflows with minimal latency. 

The experimental methodology employed stratified cross-validation to ensure robust 
performance estimates across different incident types, system conditions, and temporal 
periods. We partitioned the dataset into training, validation, and test sets with temporal 
stratification to prevent information leakage from future incidents into model training, 
reflecting the real-world constraint that diagnostic systems must generalize to novel incident 
patterns not present in historical data. Baseline comparisons were established against several 
state-of-the-art approaches including pure machine learning classifiers trained on labeled 
incident data, graph-based causal inference methods without retrieval augmentation 
operating solely on structural analysis, and LLM-based diagnosis systems without explicit 
graph reasoning relying on textual similarity and language model inference, enabling 
systematic assessment of the contribution of each component in our integrated framework 
through comprehensive ablation studies. 

4.2 Diagnostic Performance Analysis 

The experimental results demonstrate substantial improvements in diagnostic accuracy 
achieved through the integration of retrieval-augmented graph reasoning with large language 
models across all evaluation metrics. Our complete framework attained a top-one accuracy of 
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92.3% in identifying correct root causes, representing a fifteen percentage point improvement 
over the strongest baseline method which achieved 77.1% accuracy using graph neural 
networks without retrieval augmentation. The performance gains were particularly 
pronounced for complex incidents involving cascading failures affecting multiple service tiers 
or multiple interacting root causes occurring simultaneously, where the retrieval 
mechanism's ability to identify relevant historical patterns enabled more accurate hypothesis 
ranking compared to methods relying solely on structural graph analysis of the current 
incident without broader contextual knowledge. 

Ablation studies conducted by systematically removing components from the full framework 
revealed the complementary contributions of graph reasoning, retrieval augmentation, and 
LLM-based explanation generation to overall diagnostic performance. When the retrieval 
component was disabled, diagnostic accuracy decreased to 85.7%, demonstrating that access 
to relevant historical incidents provides substantial value for disambiguation among 
competing hypotheses that exhibit similar causal graph structures and identification of subtle 
failure patterns that may not be immediately apparent from graph topology alone. Removing 
the graph reasoning component while retaining retrieval and LLM capabilities resulted in 79.4% 
accuracy, indicating that structured causal analysis through graph neural networks 
contributes significantly to diagnostic precision beyond what can be achieved through purely 
text-based incident matching and language model inference without explicit representation of 
system dependencies. 

The trigger point detection mechanism proved highly effective in identifying the onset of 
system failures across diverse anomaly patterns, achieving 96.8% precision and 94.2% recall 
in detecting significant state transitions requiring diagnostic analysis. The detector 
successfully distinguished between normal operational variations and genuine anomalies 
requiring intervention, with particularly strong performance on level-shift patterns that 
indicate persistent system degradation requiring prompt attention. The median latency from 
anomaly occurrence to trigger point detection was 23 seconds, enabling rapid initiation of the 
diagnostic workflow with minimal delay that could exacerbate incident impact. Analysis of 
false positives revealed that most erroneous triggers occurred during planned maintenance 
windows or legitimate traffic pattern changes, suggesting opportunities for improvement 
through integration of change management calendars and scheduled event awareness. 

The temporal analysis of diagnostic performance revealed interesting patterns regarding the 
framework's ability to generalize to evolving system configurations and novel failure modes 
not present in the training data. We observed that diagnostic accuracy remained relatively 
stable across the eighteen-month evaluation period despite substantial changes in the system 
architecture including the addition of 847 new microservices, modification of 1,235 
dependency relationships through service migrations and API updates, and introduction of 
new infrastructure components including database clusters and caching layers. This 
robustness stems from the framework's ability to leverage transferable causal patterns 
learned from historical incidents such as common failure modes like database connection 
exhaustion or memory leaks while adapting to structural changes through continuous 
knowledge graph updates that incorporate newly observed component relationships. 

The retrieval mechanism's contribution to diagnostic performance was analyzed through 
detailed examination of the characteristics of successfully retrieved incidents and their 
relationship to diagnostic outcomes. We found that retrieval quality, measured by the 
semantic and structural similarity between retrieved incidents and the target incident, 
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exhibited strong correlation with final diagnostic accuracy, with correlation coefficients of 
0.74 for semantic similarity and 0.71 for structural similarity. This finding validates the design 
choice to invest substantial effort in developing sophisticated hybrid retrieval mechanisms 
that consider multiple dimensions of incident similarity rather than relying on single-
modality matching. Interestingly, the optimal number of retrieved incidents varied across 
different incident types, with simple isolated failures benefiting from focused retrieval of one 
to three highly similar cases that provided clear precedents, while complex cascading failures 
required broader retrieval of five to ten incidents representing different aspects of the 
multifaceted failure scenario to capture the full diagnostic context. 

The explanation quality assessment conducted through expert evaluation demonstrated that 
the LLM-generated explanations achieved high ratings across multiple quality dimensions, 
validating the effectiveness of our explanation generation approach. Factual correctness 
received an average rating of 4.3 out of 5, with experts noting that the grounding mechanisms 
successfully prevented hallucinations by constraining generation to facts derivable from the 
knowledge graph and retrieved incident documents, and ensured claims were supported by 
evidence including specific metric values, temporal correlations, and graph connectivity 
patterns. Completeness of causal reasoning averaged 4.1, with evaluators appreciating the 
step-by-step tracing of failure propagation from identified root causes through intermediate 
components to ultimately observable symptoms, providing transparency into how the 
diagnosis was reached. Clarity scores averaged 4.4, reflecting the LLM's ability to generate 
well-structured narratives that avoided excessive technical jargon while maintaining 
necessary precision for engineering audiences. Actionability ratings averaged 3.9, with some 
experts desiring more specific remediation guidance including concrete configuration changes, 
code-level fixes, or operational procedure modifications, suggesting an area for future 
enhancement through integration of runbook knowledge and automated action 
recommendation systems. 

Performance comparisons with human expert diagnoses on a challenging subset of 127 
ambiguous incidents revealed that the automated system achieved comparable diagnostic 
accuracy while significantly reducing time to diagnosis and cognitive load on engineering 
teams. Human experts averaged 92 minutes to diagnose these complex incidents requiring 
analysis of multiple data sources and consultation with service owners, while our framework 
produced initial diagnostic hypotheses within 45 seconds of incident detection, representing a 
more than hundredfold speedup that translates to substantial reduction in mean time to 
resolution. The framework's ranked hypothesis lists included the correct root cause within 
the top three candidates in 89% of cases where human experts successfully identified the 
cause, demonstrating diagnostic quality approaching human expert performance. In several 
interesting cases totaling 14 incidents, the automated system identified correct root causes 
that were initially overlooked by human diagnosticians due to cognitive biases or 
unfamiliarity with specific system components, with experts subsequently confirming these 
diagnoses after reviewing the system's explanations and supporting evidence, illustrating the 
framework's potential to augment and enhance human diagnostic capabilities rather than 
merely automating existing processes. 

The analysis of failure cases where the system produced incorrect diagnoses revealed several 
common patterns that suggest directions for future improvement and highlight current 
limitations. A significant proportion of errors (37% of failures) occurred in scenarios 
involving rare failure modes with limited historical precedent, where both retrieval 
mechanisms struggled to find relevant similar incidents and learned graph reasoning models 
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lacked sufficient training examples to recognize the unusual causal patterns. Another class of 
errors (28% of failures) involved incidents with highly similar symptomatic presentations but 
distinct underlying root causes, where discriminating among competing hypotheses required 
deep domain knowledge about specific implementation details or system-specific constraints 
not adequately captured in the knowledge graph representation. Some failures (19%) 
resulted from temporal misalignment where the causal graph representation failed to capture 
fine-grained timing dependencies that were critical for accurate root cause identification, such 
as race conditions or timing-sensitive interactions between components. These error patterns 
inform ongoing research directions including enhanced knowledge graph construction 
techniques that capture richer temporal semantics, improved generalization mechanisms for 
rare failure scenarios through transfer learning or synthetic data augmentation, and better 
integration of domain constraints and expert rules into the reasoning process. 

5. Conclusion 

This paper has presented a novel framework for explainable incident diagnosis that integrates 
retrieval-augmented generation, graph-based causal reasoning, and large language models 
into a cohesive system capable of accurately identifying root causes while providing 
transparent explanations that facilitate human understanding and trust. Through 
comprehensive evaluation on real-world production incidents spanning diverse failure 
scenarios, we have demonstrated that this integrated approach achieves substantial 
improvements in diagnostic accuracy, attaining 92.3% precision in root cause identification 
while generating explanations rated highly by expert evaluators across multiple quality 
dimensions including factual correctness, causal completeness, clarity, and actionability. The 
framework successfully addresses critical limitations in existing approaches by combining the 
structured reasoning capabilities of graph neural networks with the semantic understanding 
and contextual retrieval abilities of modern language models, creating a diagnostic system 
that balances technical accuracy with operational usability. 

The experimental results validate several key architectural decisions underlying the 
framework design, confirming that graph-based causal reasoning provides essential structure 
for tracing fault propagation through complex distributed systems, that retrieval mechanisms 
enable effective leverage of historical incident knowledge to enhance diagnostic accuracy 
through pattern recognition and precedent matching, and that large language models offer 
powerful capabilities for generating coherent natural language explanations grounded in 
structured evidence from knowledge graphs. The ablation studies systematically 
demonstrated the complementary contributions of these components, showing that each 
plays a distinct role in achieving the framework's overall diagnostic performance and 
explanation quality. The online root cause analysis workflow proved particularly valuable, 
enabling automatic detection of system failures through trigger point identification and 
continuous refinement of causal models through incremental learning without requiring 
manual intervention or batch reprocessing of historical data. 

Despite the promising results, several limitations and opportunities for future work have 
emerged from this research. The framework's performance on completely novel failure modes 
without historical precedent remains an area requiring further improvement, suggesting the 
need for techniques that can generalize diagnostic patterns across different failure types 
through meta-learning approaches or generate synthetic training data to cover rare scenarios. 
The current approach focuses primarily on technical root cause identification and may benefit 
from extension to incorporate business impact assessment, risk analysis, and cost-benefit 
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evaluation of different remediation strategies, enabling more comprehensive decision support 
for incident response that considers both technical and business dimensions. Additionally, the 
knowledge graph construction process could be enhanced through more sophisticated online 
learning mechanisms that continuously refine the graph structure and causal relationships 
based on observed incident outcomes and expert feedback, creating an adaptive system that 
improves over time through operational experience. 

Future research directions include investigation of multi-agent architectures where 
specialized diagnostic agents collaborate to analyze different aspects of system failures 
including performance degradation agents, security incident agents, and data quality agents, 
potentially improving performance on complex incidents that require diverse types of 
reasoning and evidence synthesis. The integration of automated remediation capabilities 
represents another promising avenue, extending the framework beyond diagnosis to 
encompass automatic execution of validated remediation actions with appropriate safety 
constraints and human oversight mechanisms, creating closed-loop incident management 
systems. Exploration of transfer learning approaches to enable knowledge sharing across 
different organizations and system domains could accelerate deployment of diagnostic 
capabilities in new environments where historical incident data may be limited, leveraging 
common failure patterns that transcend specific system implementations. Finally, deeper 
investigation of the interplay between human operators and AI diagnostic systems through 
user studies and field deployments will be essential for understanding how these technologies 
can most effectively augment human expertise in real operational contexts. 

The work presented in this paper contributes to the growing body of research on artificial 
intelligence for operations and site reliability engineering, demonstrating practical 
approaches for applying advanced AI technologies to critical operational challenges in 
production systems. By achieving strong diagnostic performance while maintaining 
explainability and human interpretability, the framework represents a step toward AI 
systems that can be trusted and effectively utilized by engineering teams responsible for 
maintaining complex distributed systems. The integration of retrieval, reasoning, and 
generation capabilities showcased in this work may serve as a template for addressing other 
knowledge-intensive operational tasks including security incident response, capacity 
planning, and preventive maintenance, suggesting broad applicability of the core architectural 
principles. As distributed systems continue to grow in complexity and AI technologies 
continue to advance, frameworks that thoughtfully combine multiple AI capabilities while 
prioritizing explainability and operational usability will become increasingly essential for 
maintaining reliable, high-performance production systems at scale. 
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