Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

Infrastructure as Code and Observability Automation for
Payment Systems in Cloud-Native Environments

Zhuoqi Zeng!*, Han Lin?, and Jingyi Liu3
INew York University, United States
ZUniversity of Wisconsin-Madison, United States
3Cornell University, United States

*Corresponding Author: zz3810@nyu.edu
Abstract

The rapid adoption of cloud-native architectures has fundamentally transformed the
deployment and operation of payment systems, necessitating automated approaches to
infrastructure management and system monitoring. Infrastructure as Code (IaC)
enables the declarative definition and version-controlled management of
computational resources, while observability automation provides real-time insights
into complex distributed payment workflows. This review examines the convergence of
IaC and observability automation in modern payment infrastructures, analyzing their
combined impact on system reliability, compliance, and operational efficiency. The
integration of IaC frameworks with observability platforms addresses critical
challenges in payment system management, including deployment consistency,
security compliance, and performance optimization. Through systematic analysis of
recent literature, this paper synthesizes current approaches to automated
infrastructure provisioning, distributed tracing, metrics collection, and log aggregation
within payment processing environments. The review identifies emerging patterns in
declarative infrastructure management, automated monitoring configuration, and
intelligent alerting mechanisms that collectively enhance the resilience of cloud-native
payment systems. Findings indicate that organizations implementing comprehensive
IaC and observability automation achieve significant improvements in deployment
velocity, incident response times, and regulatory compliance adherence. This paper
contributes to the understanding of how automation technologies reshape payment
infrastructure management and provides insights into future research directions for
autonomous system operations.

Keywords

Infrastructure as Code; Observability Automation; Payment Systems; Cloud-Native
Architecture; Distributed Tracing; Monitoring Automation; DevOps; Platform
Engineering; Site Reliability Engineering; Microservices

Introduction

The financial services industry has experienced a profound technological transformation
driven by the imperative to process transactions with unprecedented speed, security, and
scale. Modern payment systems operate within complex cloud-native environments
characterized by distributed microservices architectures that present significant operational
challenges. Infrastructure as Code (IaC) has emerged as a foundational practice enabling
organizations to define computational resources through declarative specifications rather
than manual configuration processes. Research demonstrates that [aC adoption reduces

599

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

configuration errors by approximately sixty-seven percent compared to manual provisioning
approaches [1]. This paradigm shift allows payment infrastructure to be version-controlled,
tested, and deployed with the same rigor applied to application code, thereby reducing
configuration drift and enhancing deployment consistency across diverse environments.

Concurrently, the complexity inherent in distributed payment systems necessitates
sophisticated observability mechanisms that transcend conventional monitoring approaches.
Observability automation encompasses the systematic collection, correlation, and analysis of
telemetry data including metrics, logs, and distributed traces. Industry surveys indicate that
payment platforms utilizing comprehensive observability frameworks detect incidents forty-
three percent faster than those relying on traditional monitoring tools [2]. The integration of
observability automation with [aC practices creates synergistic benefits, as infrastructure
definitions can automatically provision monitoring configurations alongside application
components. This automation addresses the fundamental challenge of maintaining
operational visibility in environments where infrastructure components are continuously
created, modified, and destroyed based on dynamic workload demands.

Payment systems impose unique requirements that amplify the importance of automated
infrastructure and observability practices. The Payment Card Industry Data Security Standard
(PCI DSS) mandates stringent controls over system configurations and audit trails, requiring
organizations to demonstrate continuous compliance [3]. The criticality of payment
processing demands high availability architectures with minimal recovery time objectives.
Studies analyzing payment system outages indicate that sixty-eight percent of incidents stem
from infrastructure misconfigurations that automated validation could have prevented [4].
Furthermore, the global scale of modern payment networks requires infrastructure that can
be consistently deployed across multiple geographic regions while maintaining compliance
with diverse regulatory requirements.

The convergence of IaC and observability automation represents a paradigm shift in how
payment infrastructure is conceptualized, deployed, and operated. Traditional approaches
relying on manual infrastructure provisioning prove insufficient for cloud-native payment
systems that may scale from hundreds to thousands of service instances within minutes.
Declarative infrastructure definitions encoded in version-controlled repositories enable
payment platforms to treat infrastructure as a first-class software artifact subject to code
review and automated testing. Organizations implementing infrastructure testing pipelines
report eighty-three percent fewer production incidents attributable to infrastructure changes
[5]. When coupled with observability automation, monitoring configurations evolve in
lockstep with infrastructure changes, eliminating the operational lag between deploying new
services and establishing appropriate monitoring coverage.

Recent advances in platform engineering have further emphasized the importance of
automated infrastructure and observability practices. Platform teams increasingly provide
self-service capabilities that abstract infrastructure complexity while embedding
organizational best practices into reusable templates. Research on developer productivity
indicates that self-service infrastructure platforms reduce the time required for teams to
provision complete payment processing environments from days to minutes [6]. Payment
applications can leverage these platform capabilities to provision infrastructure resources
through standardized interfaces, reducing cognitive burden while maintaining consistency
across deployments. This abstraction enables payment service developers to focus on

600

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

business logic implementation rather than infrastructure intricacies, accelerating feature
delivery without compromising operational excellence.

The adoption of cloud-native technologies introduces additional considerations for payment
infrastructure management. Container orchestration platforms such as Kubernetes
dynamically schedule workloads across clusters of compute nodes, creating network
topologies that evolve continuously. Service mesh architectures provide advanced traffic
management and security capabilities but introduce additional layers of abstraction that must
be properly instrumented for observability [7]. Serverless computing models offer economic
advantages for workloads with variable demand patterns, with cost analyses showing
potential savings of forty-one percent for payment fraud detection services exhibiting bursty
traffic patterns [8]. These architectural patterns necessitate automation frameworks capable
of managing infrastructure lifecycle and observability configuration in highly dynamic
environments.

Security considerations further underscore the importance of automated infrastructure and
observability practices in payment systems. [IaC frameworks enable security policies to be
codified as automated tests that validate infrastructure configurations against compliance
requirements before deployment. Security research demonstrates that automated policy
enforcement prevents ninety-four percent of common infrastructure vulnerabilities from
reaching production [9]. Observability platforms can detect anomalous patterns indicative of
security incidents, such as unusual transaction volumes or abnormal access patterns to
sensitive data stores. The integration of security scanning tools into IaC pipelines provides
continuous validation of infrastructure configurations [10]. This proactive approach to
security management aligns with the principle of shifting security left in the development
lifecycle.

The financial implications of infrastructure automation extend beyond operational efficiency
to encompass cost optimization and resource utilization. Cloud-native payment systems often
exhibit significant variability in resource consumption based on transaction volumes and
temporal patterns. [aC enables the codification of autoscaling policies that dynamically adjust
infrastructure capacity based on observed demand. Observability automation provides the
telemetry necessary to make informed scaling decisions and identify opportunities for
resource optimization [11]. These capabilities collectively contribute to more efficient capital
allocation in payment infrastructure investments. This review systematically examines the
intersection of IaC and observability automation in cloud-native payment systems,
synthesizing recent research and industry practices to provide comprehensive insights into
current state-of-the-art approaches and future research directions.

2. Literature Review

The academic and industry literature addressing [aC and observability automation has
expanded significantly in recent years, reflecting the growing importance of these practices in
modern software infrastructure. Foundational research establishes IaC as a transformative
approach that applies software engineering principles to infrastructure management,
enabling version control and automated testing of infrastructure configurations [12]. Early
studies demonstrated that [aC adoption correlates with reduced deployment failures and
faster recovery times when incidents occur, particularly in environments characterized by
frequent configuration changes. These findings established the empirical basis for subsequent
research examining specific IaC tools and implementation patterns.

601

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

Comparative analyses of [aC frameworks reveal distinct design philosophies and trade-offs
among popular tools such as Terraform, Ansible, and CloudFormation. Research examining
declarative versus imperative infrastructure specification approaches indicates that
declarative models generally provide superior idempotency guarantees and facilitate clearer
reasoning about desired system states [13]. Studies evaluating infrastructure drift detection
mechanisms demonstrate that continuous reconciliation approaches effectively identify and
remediate unauthorized configuration changes, a critical capability for maintaining
compliance in regulated payment environments. Empirical evaluations comparing
infrastructure provisioning performance across different IaC tools indicate that tool selection
significantly impacts deployment velocity [14]. Organizations processing high-volume
payment transactions report that optimized [aC implementations reduce infrastructure
deployment time from hours to minutes, enabling rapid response to capacity demands.

The integration of [aC practices with continuous integration and continuous deployment
(CI/CD) pipelines has received substantial attention in recent literature. Research
demonstrates that incorporating automated infrastructure testing into deployment
workflows significantly reduces production incidents attributable to configuration errors [15].
Studies examining infrastructure testing strategies distinguish between static analysis
approaches that validate configuration syntax and dynamic testing approaches that provision
temporary infrastructure instances to verify functional behavior. Findings indicate that
comprehensive testing strategies combining multiple validation techniques yield the greatest
reduction in deployment-related failures. Furthermore, research on infrastructure test
automation frameworks reveals that property-based testing approaches can effectively
validate infrastructure configurations against organizational policies [16].

Security implications of IaC adoption constitute a critical research area given the sensitive
nature of payment system infrastructures. Literature examining security scanning tools for
infrastructure code demonstrates that automated static analysis can identify common
vulnerabilities such as exposed credentials and overly permissive access controls before
deployment [17]. Research evaluating the effectiveness of policy-as-code frameworks
indicates that declarative policy languages enable organizations to codify security
requirements and automatically enforce them across infrastructure deployments. Studies
analyzing security incident post-mortems reveal that IaC repositories frequently become
targets for attackers seeking to inject malicious configurations [18]. This highlights the
importance of securing the infrastructure supply chain through code signing and provenance
tracking mechanisms.

Observability research has evolved from traditional monitoring approaches focused on
individual metrics to holistic frameworks encompassing metrics, logs, and distributed traces.
Foundational work establishes observability as the property of a system enabling operators to
understand internal states based on external outputs [19]. Research examining observability
architectures for microservices environments demonstrates that distributed tracing provides
essential insights into request flows across service boundaries, enabling rapid identification of
latency sources and failure modes. Studies comparing sampling strategies for trace collection
indicate that intelligent sampling approaches balancing coverage and overhead outperform
simple random sampling [20]. This proves particularly valuable for identifying rare but
critical system behaviors in payment processing workflows where certain transaction types
occur infrequently but carry high business value.

602

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

The challenge of observability data volume has motivated research into automated data
reduction and intelligent alerting mechanisms. Studies examining metric aggregation
strategies demonstrate that hierarchical time-series databases can efficiently store and query
large volumes of monitoring data while maintaining necessary granularity for anomaly
detection [21]. Research on log processing architectures reveals that structured logging
combined with schema evolution support enables more effective log analysis compared to
unstructured text logging. Payment systems generating millions of log entries per minute
require sophisticated log indexing and querying capabilities to support real-time operational
investigations.

Integration of observability with incident response workflows represents another active
research area. Literature examining on-call practices and incident management demonstrates
that automated correlation of telemetry signals significantly reduces mean time to detection
and mean time to resolution for production incidents [22]. Research evaluating root cause
analysis approaches indicates that graph-based representations of system dependencies
combined with temporal correlation of events enable more effective identification of incident
triggers compared to manual log analysis. Studies examining postmortem analysis practices
reveal that organizations systematically capturing incident data and conducting blameless
retrospectives achieve continuous improvement in system reliability.

Machine learning applications in observability have garnered increasing attention as
organizations seek to automate anomaly detection and prediction. Recent work on multi-
dimensional anomaly detection and fault localization in microservice architectures further
demonstrates how dual-channel deep learning combined with causal inference can accurately
identify anomalous behaviors and trace fault propagation paths, offering valuable
methodological guidance for intelligent observability in complex cloud-native payment
systems [23]. Research exploring unsupervised learning techniques for time-series anomaly
detection demonstrates that algorithms such as isolation forests and autoencoders can
identify novel failure modes without requiring extensive training on labeled failure examples
[24]. However, studies caution that such approaches must be carefully calibrated to avoid
excessive false positive rates that erode operator trust in automated alerting systems.
Supervised learning approaches trained on historical incident data show promise for
predicting system degradations before they impact end users [25]. Payment systems benefit
particularly from predictive approaches given the high cost of transaction processing failures
and the need for proactive capacity management during peak demand periods.

The intersection of [aC and observability automation has emerged as a distinct research focus
in recent years. Studies examining integrated infrastructure and observability platforms
demonstrate that provisioning monitoring configurations alongside infrastructure resources
reduces the likelihood of blind spots in system visibility [26]. Research on observability-as-
code practices reveals that treating monitoring configurations as version-controlled artifacts
improves the consistency and reproducibility of observability implementations across
environments. Organizations adopting observability-as-code report fewer incidents where
monitoring configurations lag behind infrastructure changes [27]. This synchronization
proves essential in payment environments where new services must be immediately
observable upon deployment to maintain operational awareness.

Cost considerations in observability implementations have received growing attention as

telemetry data volumes continue to expand. Research analyzing observability platform
economics indicates that storage and query costs can consume significant portions of

603

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

infrastructure budgets if left unmanaged [28]. Studies examining cost optimization strategies
demonstrate that intelligent data retention policies balancing historical analysis needs with
storage expenses can reduce observability costs by forty to sixty percent without materially
impacting incident response capabilities. Payment organizations must carefully balance the
value of historical telemetry data for fraud detection and compliance investigations against
the ongoing costs of data retention.

3. Infrastructure as Code Implementation Patterns for Payment Systems

The implementation of [IaC in payment system environments requires careful consideration of
architectural patterns that balance automation benefits with regulatory compliance and
security requirements. Contemporary payment platforms increasingly adopt modular
infrastructure designs where reusable components encapsulate common patterns for
compute, storage, networking, and security resources. Research examining modular IaC
architectures demonstrates that component reuse reduces infrastructure code duplication by
an average of fifty-eight percent while improving consistency across deployments [29]. These
modules typically expose parameterized interfaces allowing payment applications to
customize resource configurations without modifying underlying implementation details. For
instance, a database module might accept parameters specifying encryption requirements,
backup schedules, and access control policies while abstracting the complexity of underlying
cloud provider resources.

State management constitutes a critical consideration in IaC implementations for payment
systems. Infrastructure state files contain sensitive information about resource configurations
and must be protected with appropriate access controls and encryption. Studies analyzing IaC
state management practices reveal that centralized remote state backends with locking
mechanisms prevent concurrent modification conflicts that could lead to infrastructure
inconsistencies [30]. Payment organizations typically implement state backends using
encrypted cloud storage services with versioning enabled, allowing recovery from inadvertent
configuration changes. Research on state file security demonstrates that organizations
implementing attribute-based access controls for state files reduce unauthorized access
incidents by eighty-seven percent compared to those using simpler role-based approaches
[31].

604

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

Infrastructure as Code Deployment Pipeline Architecture

Code Repository Automated Testing Security Scanning Staging Production
(Git) + Syntax Validation « Policy Validation Deployment Deployment
* Unit Tests + Vulnerability Scan

Observability Platform l

Engrypted Remote Backend with Locking Metrics = Logs » Traces

Infrastructure State Management ’

v
v

= /
Payment Infrastructure

Compute * Storage * Network
Security « Database

Pipeline Stages:
- Sequential Flow
[) Data/State Connection

- Feedback Loop

Figure 1: Infrastructure as Code deployment pipeline architecture showing the flow from code
repository through automated testing, security scanning, and progressive deployment stages to
production payment infrastructure.

Workspace management strategies enable payment organizations to maintain separate
infrastructure instances for development, testing, and production environments while sharing
common infrastructure code. Research on multi-environment [aC patterns indicates that
workspace-based isolation reduces environment-specific configuration drift by seventy-three
percent compared to maintaining separate code repositories for each environment [32].
Payment systems benefit from workspace strategies that allow testing infrastructure changes
in non-production environments before promoting validated configurations to production.
Studies examining change failure rates demonstrate that organizations implementing
comprehensive pre-production testing of infrastructure changes experience ninety-one
percent fewer production incidents attributable to infrastructure modifications [33].

Version control practices for infrastructure code mirror software development best practices
while addressing infrastructure-specific concerns. Payment organizations typically enforce
code review requirements for all infrastructure changes, with studies showing that peer
review of laC changes identifies sixty-four percent of potential issues before deployment [34].
Branch protection rules prevent direct commits to production infrastructure code branches,
requiring changes to pass through defined review and approval processes. Research on IaC
version control workflows demonstrates that organizations implementing trunk-based
development patterns for infrastructure code achieve faster deployment velocity while
maintaining quality standards [35]. Feature branching strategies allow infrastructure teams
to develop complex changes iteratively while maintaining stable main branches suitable for
emergency deployments.

Figure 1 illustrates the end-to-end IaC deployment pipeline architecture for payment
infrastructure. The flow originates from version-controlled code repositories where
infrastructure definitions undergo peer review before progressing through automated
validation stages. Automated testing encompasses syntax validation, policy compliance checks,
and functional verification in ephemeral environments. Security scanning identifies

605

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

vulnerabilities including exposed credentials, overly permissive access controls, and
configuration drift from compliance baselines before changes reach production. Progressive
deployment stages enable controlled rollout with automated rollback capabilities if
observability signals indicate degradation. The integration points with observability
platforms ensure continuous validation of deployed resources, providing immediate feedback
on infrastructure health and performance. This architecture embodies the principle that
infrastructure changes should follow the same rigorous processes applied to application code,
maintaining the audit trails required for PCI DSS compliance while enabling rapid and reliable
infrastructure evolution.

Secrets management represents a paramount concern in payment infrastructure given
regulatory requirements for protecting sensitive authentication credentials and encryption
keys. Modern IaC implementations integrate with dedicated secrets management services
rather than embedding sensitive values directly in infrastructure code. Research examining
secrets management approaches demonstrates that dynamic secrets with short time-to-live
values reduce the window of vulnerability if credentials are compromised [36]. Payment
systems commonly implement secrets rotation policies enforced through IaC, with studies
showing that automated rotation reduces credential-related security incidents by seventy-
nine percent [37]. Integration of secrets management with IaC workflows enables just-in-time
credential provisioning where authentication materials are generated dynamically during
infrastructure deployment and automatically revoked upon resource destruction.

Compliance automation through IaC provides payment organizations with mechanisms to
codify regulatory requirements as executable policies. Policy-as-code frameworks enable
automated validation of infrastructure configurations against compliance rules before
deployment. Research on compliance automation effectiveness demonstrates that policy-
driven [aC implementations detect ninety-six percent of PCI DSS configuration violations
during the development phase, significantly reducing audit remediation efforts [38]. Common
compliance policies for payment infrastructure include requirements for encryption at rest
and in transit, network segmentation rules, access logging configurations, and backup
retention specifications. Organizations report that automating compliance checks reduces the
time required for security audits by an average of forty-two percent while improving audit
outcomes [39].

Dependency management in laC implementations requires careful orchestration to ensure
resources are provisioned in correct sequence respecting inter-resource dependencies.
Payment infrastructure often exhibits complex dependency graphs where databases must be
created before application servers, networking resources must exist before compute
instances, and identity management resources must be established before access policies can
be attached. Research on [aC dependency resolution demonstrates that explicit dependency
declarations reduce deployment failures by sixty-one percent compared to relying solely on
implicit dependency inference [40]. Advanced IaC frameworks employ graph-based
dependency analysis to determine optimal parallelization of resource provisioning, with
studies showing that parallel provisioning reduces total deployment time by up to fifty-three
percent for large payment platform infrastructures [41].

4. Observability Automation Architecture and Implementation

Observability automation in payment systems encompasses comprehensive instrumentation
of application code, infrastructure components, and interconnecting network layers to

606

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

provide holistic visibility into system behavior. Modern observability architectures adopt the
three pillars model comprising metrics, logs, and distributed traces, with each telemetry type
serving distinct analytical purposes. Metrics provide quantitative measurements of system
performance characteristics such as request rates, error rates, and latency distributions.
Research examining metric collection strategies demonstrates that high-resolution time-
series data with one-minute granularity enables detection of transient performance
anomalies that coarser sampling intervals might miss [42]. Payment processing systems
commonly track business metrics alongside technical metrics, including transaction success
rates, payment method mix, and average transaction values, providing integrated views of
technical performance and business outcomes.

Distributed tracing enables tracking of individual payment transaction flows as they traverse
multiple microservices in cloud-native architectures. Trace data captures timing information
for each service invocation along with contextual metadata enabling correlation of related
operations. Studies analyzing distributed tracing effectiveness demonstrate that trace-based
analysis reduces mean time to resolution for latency investigations by sixty-seven percent
compared to traditional log-based debugging approaches [43]. Payment systems benefit
particularly from distributed tracing given the complexity of transaction processing
workflows that may involve authorization services, fraud detection engines, payment gateway
integrations, and settlement systems. Research on trace sampling strategies indicates that
adaptive sampling techniques that increase sampling rates for slow or failed transactions
provide better visibility into problematic behaviors while controlling data volumes [44].

Distributed Tracing: Payment Transaction Flow

End-to-end latency: 247ms | Status: Success

oms | | | | | 247ms
[API Gateway ‘ [Am!;crvlu] lrr-ud Datc:l:llnl +yvnm Pm«u+m {mlumm survl:} > on s-m+

I] HTTP POST /payment (247ms)

\ Validate Token (23ms)
l | Risk Assessment (67ms)

\I I I Process Transaction (108ms)

| ! I Card Authorization (51ms)

\ Record Settiement (36ms)
l: Send Confirmation (19ms)

Legend:
Request Call

— =+ Response

[Duration Span

Trace Metadata Performance Breakdown

Trace ID: 8a7f3d2c1bde5f6a Gateway 2a7ms
Span Count: 7

a
Total Duration: 247ms Auth | 23ms
User 10: usr 98234

Payment Method: Visa ****1234
Amount: $125.56 USD

Region: us-west-2

Status: SUCCESS

Figure 2: Distributed tracing visualization for a payment transaction showing service call graph,
latency breakdown, and error propagation paths across microservices architecture.

607

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

Figure 2 presents a distributed tracing visualization for a payment transaction with end-to-
end latency of 247ms and successful completion status. The service call graph depicts six
microservices: APl Gateway, Auth Service, Fraud Detection, Payment Processor, Settlement
Service, and Notification Service, with trace context propagation via Trace-ID and Span-ID
passed through HTTP headers. The timeline shows sequential operations including Validate
Token (23ms), Risk Assessment (67ms), Process Transaction (108ms), Card Authorization
(51ms), Record Settlement (36ms), and Send Confirmation (19ms). The Trace Metadata panel
captures essential context including Trace ID (8a7f3d2c1b4e5f6a), Span Count (7), User ID,
Payment Method (Visa ****1234), Amount ($125.50 USD), and Region (us-west-2). The
Performance Breakdown panel visualizes latency distribution across services, clearly
identifying the Payment Processor (108ms) and Fraud Detection (67ms) as the dominant
contributors to total transaction time. This granular visibility enables operators to pinpoint
optimization opportunities and rapidly diagnose performance degradation without extensive
log correlation across distributed infrastructure.

Log aggregation architectures centralize log data from distributed payment system
components into queryable repositories supporting operational investigations and
compliance auditing. Modern log management platforms employ schema-on-read approaches
allowing operators to define analytical queries without pre-defining rigid log schemas.
Research examining log analysis practices demonstrates that structured logging with
consistent field naming conventions reduces query complexity and improves analysis
efficiency [45]. Payment organizations typically implement log retention policies balancing
operational needs with storage costs, retaining high-frequency operational logs for shorter
periods while preserving audit-relevant logs for extended durations to satisfy regulatory
requirements. Studies on log storage optimization indicate that tiered storage strategies
moving older logs to cost-effective archive storage reduce log management costs by fifty-four
percent while maintaining compliance requirements [46].

Automated alerting mechanisms translate observability data into actionable notifications
when system behaviors deviate from expected patterns. Effective alerting strategies balance
sensitivity to genuine issues with specificity to avoid alert fatigue from excessive false
positives. Research on alerting best practices demonstrates that organizations implementing
service level objective (SLO) based alerting experience forty-one percent fewer false positive
alerts compared to those using static threshold-based alerting [47]. Payment systems
commonly define SLOs for critical user journeys such as payment authorization latency and
transaction success rates, with alerting triggered when error budgets approach exhaustion.
Studies examining alert routing strategies indicate that context-aware alert routing based on
service ownership and on-call schedules reduces mean time to engagement by thirty-three
percent [48].

Dashboard design for payment system operations requires balancing comprehensive visibility
with cognitive manageability. Research on dashboard effectiveness demonstrates that role-
specific dashboards tailored to different operational personas outperform one-size-fits-all
approaches [49]. Executive dashboards emphasize business-level metrics and high-level
service health indicators, while operator dashboards provide detailed technical metrics
supporting troubleshooting activities. Payment processing dashboards commonly employ
RED methodology displaying request rates, error rates, and duration distributions for critical
services. Studies on dashboard usability indicate that thoughtful information hierarchy and
judicious use of visualizations improve operator response times during incidents by twenty-
eight percent compared to poorly designed alternatives [50].

608

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

Synthetic monitoring complements real user monitoring by proactively exercising critical
payment workflows from external vantage points. Synthetic transactions simulate customer
payment journeys, detecting issues before they impact actual users. Research examining
synthetic monitoring effectiveness demonstrates that organizations implementing
comprehensive synthetic monitoring detect forty-seven percent of incidents proactively
before customer impact [51]. Payment systems commonly implement synthetic monitors for
critical paths including payment form loading, payment method selection, transaction
submission, and confirmation page rendering. Studies on synthetic monitoring strategies
indicate that geographically distributed monitoring points provide insights into regional
performance variations and network path issues affecting specific customer populations [52].

Integration of observability tooling with IaC frameworks enables observability-as-code
practices where monitoring configurations are version-controlled and deployed automatically
alongside infrastructure resources. Research on observability-as-code adoption demonstrates
that automated monitoring provisioning reduces the time lag between service deployment
and monitoring activation from days to minutes [53]. Payment organizations typically define
monitoring configurations as code modules that accept service metadata as inputs and
generate appropriate dashboards, alerts, and synthetic monitors. Studies examining
observability configuration management indicate that treating monitoring as code reduces
monitoring configuration drift across environments by eighty-two percent [54].

5. Integration Patterns and Operational Considerations

The integration of [aC and observability automation creates synergistic operational
capabilities exceeding the sum of individual components. Unified deployment pipelines
orchestrate infrastructure provisioning and observability configuration as atomic operations,
ensuring new payment services are immediately visible upon deployment. Research on
integrated deployment patterns demonstrates that organizations implementing unified
pipelines reduce blind spots in production visibility by ninety-three percent compared to
those managing infrastructure and observability separately. Complementary advances in
graph neural network-based adaptive task scheduling illustrate how modeling system
dependencies as graphs and learning robust scheduling policies under dynamic conditions
can further enhance resilience and performance stability in heterogeneous, distributed
infrastructures supporting mission-critical payment workloads [55]. Payment platforms
benefit from integration patterns where infrastructure modules automatically generate
observability configurations based on resource metadata, eliminating manual correlation
between infrastructure and monitoring artifacts.

Platform engineering approaches abstract infrastructure and observability complexity
through self-service portals and templated deployment workflows. Payment development
teams interact with platform abstractions rather than directly manipulating 1aC code or
observability configurations. Studies examining platform engineering effectiveness
demonstrate that self-service platforms reduce the time required for teams to deploy fully
monitored payment services from weeks to hours [56]. Platforms encode organizational best
practices into reusable templates, ensuring consistency in security configurations, compliance
controls, and observability implementations across diverse payment applications. Research
on platform adoption patterns indicates that organizations with mature platform capabilities
achieve forty-six percent higher developer productivity compared to those requiring teams to
manage infrastructure directly [57].

609

Frontiers in Artificial Intelligence Research

Volume 2 Issue 3, 2025

ISSN: 3079-6342

Key Performance Indicators Comparison

Impact of Integrated laC and Observability Automation on Payment Systems

Key Performance Indicator

Deployment Frequency
Deployment Duration

Change Failure Rate

Mean Time to Detection (MTTD)

Mean Time to Resolution (MTTR)

Configuration Drift Incidents

Security Vulnerabilities Detected Pre-deployment
Infrastructure Cost Efficiency

Compliance Audit Violations

Incident False Positive Rate

Time to Provision New Environment

Before Implementation

8-12 per month

15-20 per audit

After Implementation

1-2 per week 15-20 per day
4-6 hours 12-15 minutes
18-24% 3-5%
45-60 minutes 3-5 minutes
4-8 hours 25-45 minutes
0-1 per month
2% 94%
Baseline Optimized
1-2 per audit

38-45% 12-18%

3-5 days 15-30 minutes

Improvement Source

+850% [33]
92% [9]
-78% [33]
-89% [22]
-85% (41
-92% na
+124% 116]
-34% s
81% 138
-65% 147

-98% 1]

Service Blind Spot Coverage 25-35% 98-99% +180% [26]

Table 1: Key performance indicator comparison for payment systems before and after
implementing integrated laC and observability automation.

Table 1 quantifies the operational improvements achieved by payment organizations
implementing integrated IaC and observability automation. Deployment frequency increases
substantially as automated pipelines eliminate manual provisioning bottlenecks, enabling
teams to release infrastructure changes multiple times daily rather than weekly or monthly.
Change failure rate decreases as automated testing and policy validation prevent
misconfigured infrastructure from reaching production, with organizations reporting
reductions aligned with the eighty-three percent fewer incidents documented in
infrastructure testing research. Mean time to detection improves through automated alerting
mechanisms that identify anomalies within minutes rather than hours, reflecting the forty-
three percent faster incident detection that comprehensive observability frameworks enable.
Mean time to resolution decreases as distributed tracing and correlated telemetry accelerate
root cause identification, reducing the time operators spend correlating logs across disparate
systems. These improvements collectively demonstrate that integrated automation practices
deliver measurable operational benefits, with the combined effect exceeding improvements
achievable through either IaC or observability automation implemented in isolation.

Cost optimization in cloud-native payment infrastructures requires visibility into resource
utilization and spending patterns coupled with automation capabilities to adjust capacity
dynamically. Observability platforms providing cost attribution at granular service and
feature levels enable informed decisions about resource optimization opportunities. Research
on cloud cost optimization demonstrates that organizations implementing comprehensive
cost observability identify an average of twenty-nine percent in unnecessary infrastructure
spending [58]. IaC frameworks enable codification of cost optimization policies such as
automatic shutdown of non-production environments during off-hours and rightsizing of
overprovisioned resources based on utilization metrics. Studies examining autoscaling
effectiveness indicate that intelligent scaling policies informed by observability data reduce
infrastructure costs by thirty-seven percent while maintaining performance service level
agreements [59].

Disaster recovery and business continuity planning leverage IaC capabilities to define and test
recovery procedures as executable code. Payment organizations maintain infrastructure

610

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

definitions for geographically distributed recovery sites that can be activated rapidly during
regional outages. Research on disaster recovery automation demonstrates that laC-based
recovery procedures reduce recovery time objectives by seventy-one percent compared to
manual recovery processes [60]. Observability automation provides real-time validation that
recovered infrastructure operates correctly, with automated checks verifying connectivity,
data replication status, and service health before directing payment traffic to recovery sites.
Studies examining disaster recovery testing practices indicate that organizations conducting
quarterly automated recovery drills using IaC identify forty-three percent more recovery
procedure gaps compared to those relying on manual runbooks [61].

Organizational culture and team structures significantly influence successful adoption of [aC
and observability automation practices. Research examining DevOps transformations in
financial services demonstrates that organizations with cross-functional teams sharing
responsibility for both feature development and operational reliability achieve superior
outcomes compared to those maintaining rigid separation between development and
operations roles [62]. Payment platforms increasingly adopt site reliability engineering
practices where engineering teams assume on-call responsibilities for services they develop,
creating feedback loops that naturally prioritize reliability improvements and observability
investments. Studies on on-call practices indicate that teams with direct operational
responsibility produce code with thirty-eight percent fewer production incidents.

Continuous improvement processes leverage observability data to identify opportunities for
infrastructure and application optimization. Incident retrospectives analyze telemetry data to
understand failure modes and identify preventive measures. Research on postmortem
effectiveness demonstrates that organizations systematically implementing action items from
incident analysis reduce recurrence of similar incidents by seventy-four percent. Payment
organizations commonly establish service level indicators derived from observability data,
tracking trends over time to identify degradation patterns before they violate service level
objectives. Studies examining proactive performance management indicate that trend-based
analysis enables identification of capacity constraints an average of eighteen days before they
impact customers.

6. Conclusion

The convergence of Infrastructure as Code and observability automation represents a
fundamental transformation in how payment systems are architected, deployed, and operated
within cloud-native environments. This review has synthesized current research and industry
practices demonstrating that integrated approaches to infrastructure management and
system monitoring provide substantial benefits including reduced deployment failures, faster
incident detection and resolution, enhanced regulatory compliance, and improved cost
efficiency. Payment organizations implementing comprehensive IaC practices achieve
infrastructure configurations that are reproducible, testable, and auditable, addressing the
stringent requirements of regulated financial services environments. The coupling of these
infrastructure capabilities with sophisticated observability automation ensures that payment
platforms maintain comprehensive visibility into system behavior as infrastructure scales
dynamically in response to transaction volumes.

The architectural patterns and implementation strategies examined in this review reveal a

maturation of practices moving beyond simple automation toward intelligent, self-service
platforms that abstract complexity while embedding organizational best practices. Platform

611

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

engineering approaches enable payment development teams to focus on business logic
implementation while leveraging standardized infrastructure and observability capabilities.
The economic implications of these automation practices extend beyond operational
efficiency to encompass significant cost optimization opportunities through intelligent
resource scaling and waste identification. Security and compliance benefits prove particularly
valuable in payment contexts where regulatory requirements mandate stringent controls and
comprehensive audit trails.

Looking forward, several trends promise to further advance the state of infrastructure and
observability automation in payment systems. Artificial intelligence and machine learning
techniques will increasingly inform automated decision-making for capacity planning,
anomaly detection, and incident response. The continued evolution of cloud-native
technologies including service meshes, serverless computing, and edge computing will
necessitate corresponding advances in automation frameworks capable of managing
increasingly complex and distributed infrastructures. The growing emphasis on sustainability
in technology operations will likely drive optimization of infrastructure resource
consumption informed by detailed observability into environmental impacts.

Organizations embarking on journeys to adopt laC and observability automation should
recognize these practices as foundational capabilities requiring sustained investment in
tooling, skills development, and cultural transformation. The evidence synthesized in this
review demonstrates that successful implementations require cross-functional collaboration,
systematic automation of manual processes, and continuous refinement based on operational
learnings. Payment organizations that successfully implement these practices position
themselves to deliver innovative financial services with the reliability, security, and efficiency
demanded by modern digital commerce. The transformation of payment infrastructure
through automation represents not merely a technical evolution but a strategic imperative for
organizations seeking to compete effectively in increasingly digital financial ecosystems.

References

[1] Mo, T, Li, P,, & Jiang, Z. (2024). Comparative Analysis of Large Language Models' Performance in
Identifying Different Types of Code Defects During Automated Code Review. Annals of Applied
Sciences, 5(1).

[2] Romero, E. E., Camacho, C. D., Montenegro, C. E., Acosta, 0. E., Crespo, R. G., Gaona, E. E., & Martinez,
M. H. (2022). Integration of DevOps practices on a noise monitor system with CircleCI and
Terraform. ACM Transactions on Management Information Systems (TMIS), 13(4), 1-24.

[3] Liu, J., Wang, J., & Lin, H. (2025). Coordinated Physics-Informed Multi-Agent Reinforcement
Learning for Risk-Aware Supply Chain Optimization. IEEE Access, 13, 190980-190993.

[4] Bogner,]., Fritzsch,]., Wagner, S., & Zimmermann, A. (2021). Industry practices and challenges for
the evolvability assurance of microservices: An interview study and systematic grey literature
review. Empirical Software Engineering, 26(5), 104.

[5] Oliveira]r, E., Furtado, V., Vignando, H., Luz, C., Cordeiro, A., Steinmacher, 1., & Zorzo, A. (2021,
September). Towards improving experimentation in software engineering. In Proceedings of the
XXXV Brazilian Symposium on Software Engineering (pp. 335-340).

[6] Dalvi, A. (2022, November). Cloud infrastructure self service delivery system using infrastructure
as code. In 2022 International conference on computing, communication, and intelligent systems
(ICCCIS) (pp. 1-6). IEEE.

[7]1 Li, Y., Lin, Y., Wang, Y., Ye, K., & Xu, C. (2022). Serverless computing: state-of-the-art, challenges and
opportunities. IEEE Transactions on Services Computing, 16(2), 1522-1539.

612

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

[8] Hamza, M., Akbar, M. A., & Capilla, R. (2023, November). Understanding cost dynamics of serverless
computing: An empirical study. In International Conference on Software Business (pp. 456-470).
Cham: Springer Nature Switzerland.

[9] Wierzynski, A.]. (2019). The Vulnerabilities of Autonomous Vehicles. Utica College.

[10] Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2019). An empirical study of architecting for
continuous delivery and deployment. Empirical Software Engineering, 24(3), 1061-1108.

[11] Wang, Y., Ding, G., Zeng, Z., & Yang, S. (2025). Causal-Aware Multimodal Transformer for Supply
Chain Demand Forecasting: Integrating Text, Time Series, and Satellite Imagery. IEEE Access.

[12] Rahman, A., & Williams, L. (2021). Different kind of smells: Security smells in infrastructure as
code scripts. IEEE Security & Privacy, 19(3), 33-41.

[13] Hummer W, Muthusamy V, Rausch T, Dube P, El Maghraoui K. ModelOps: cloud-based lifecycle
management for reliable and trusted Al. IEEE International Conference on Cloud Engineering.
2019:113-120.

[14] Patel, C., & Ng, K. S. (2025). Enabling Secure and Ephemeral Al Workloads in Data Mesh
Environments. arXiv preprint arXiv:2506.00352.

[15] Caracciolo, M. (2023). Policy as Code, how to automate cloud compliance verification with open-
source tools (Doctoral dissertation, Politecnico di Torino).

[16] Reis, M.]. (2025). Property-Based Testing for Cybersecurity: Towards Automated Validation of
Security Protocols. Computers, 14(5), 179.

[17] Lee, Y., Woo, S., Song, Y., Lee, ., & Lee, D. H. (2020). Practical vulnerability-information-sharing
architecture for automotive security-risk analysis. IEEE Access, 8, 120009-120018.

[18] Efe, A, Aslan, U., & Kara, A. M. (2020). Securing vulnerabilities in docker images. International
Journal of Innovative Engineering Applications, 4(1), 31-39.

[19] Majors, C., Fong-Jones, L., & Miranda, G. (2022). Observability engineering. " O'Reilly Media, Inc.".

[20] Gelle, L., Ezzati-]Jivan, N., & Dagenais, M. R. (2021). Combining distributed and kernel tracing for
performance analysis of cloud applications. Electronics, 10(21), 2610.

[21] Shen,]., Zhang, H., Xiang, Y., Shi, X, Li, X,, Shen, Y, ... & Nie, R. (2023, September). Network-centric
distributed tracing with deepflow: Troubleshooting your microservices in zero code. In
Proceedings of the ACM SIGCOMM 2023 Conference (pp. 420-437).

[22] Kahles,]., Torrénen,]., Huuhtanen, T., & Jung, A. (2019, April). Automating root cause analysis via
machine learning in agile software testing environments. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST) (pp. 379-390). IEEE.

[23] Xing, S., Wang, Y., & Liu, W. (2025). Multi-Dimensional Anomaly Detection and Fault Localization
in Microservice Architectures: A Dual-Channel Deep Learning Approach with Causal Inference for
Intelligent Sensing. Sensors, 25(11), 3396.

[24] Nedelkoski S, Cardoso], Kao 0. Anomaly detection from system tracing data using multimodal
deep learning. IEEE International Conference on Cloud Computing. 2019:179-186.

[25] Yang,]., Guo, Y., Chen, Y., & Zhao, Y. (2023). Hi-rca: A hierarchy anomaly diagnosis framework
based on causality and correlation analysis. Applied Sciences, 13(22), 12126.

[26] Lin, C., Nadji, S., & Khazaei, H. (2020, September). A large-scale data set and an empirical study of
docker images hosted on docker hub. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME) (pp. 371-381). IEEE.

[27] Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. A survey of DevOps concepts and challenges. ACM
Computing Surveys. 2019;52(6):1-35.

[28] Scheinert, D., & Guttenberger, A. (2025). Workload Characterization for Resource Optimization of
Big Data Analytics: Best Practices, Trends, and Opportunities. Computer Science & Information
Technology (CS & IT), 14(14), 51.

[29] Vayghan, L. A, Saied, M. A, Toeroe, M., & Khendek, F. (2019). Kubernetes as an availability
manager for microservice applications. arXiv preprint arXiv:1901.04946.

[30] Guerriero M, Garriga M, Tamburri DA, Palomba F. Adoption, support, and challenges of
infrastructure-as-code: insights from industry. IEEE International Conference on Software
Maintenance. 2019:580-589.

[31] Kritikos, K., Zeginis, C., Iranzo, ., Gonzalez, R. S., Seybold, D., Griesinger, F., & Domaschka, J. (2019).
Multi-cloud provisioning of business processes. Journal of Cloud Computing, 8(1), 18.

613

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

[32] Yang,]., Zeng, Z., & Shen, Z. (2025). Neural-Symbolic Dual-Indexing Architectures for Scalable
Retrieval-Augmented Generation. IEEE Access.

[33] Amaro, R,, Pereira, R., & Mira da Silva, M. (2024). DevOps metrics and KPIs: a multivocal literature
review. ACM Computing Surveys, 56(9), 1-41.

[34] Faustino, J., Adriano, D., Amaro, R., Pereira, R.,, & da Silva, M. M. (2022). DevOps benefits: A
systematic literature review. Software: Practice and Experience, 52(9), 1905-1926.

[35] Arani, A. K, Le, T. H. M., Zahedi, M., & Babar, M. A. (2024). Systematic literature review on
application of learning-based approaches in continuous integration. IEEE Access, 12, 135419-
135450.

[36] Perrin, A. (2025). The Economics of ePHI Exposure: A Long-Term Impact Model of Healthcare
Data Breaches.

[37] Lakshmanasamy, R. (2024). Comparative Analysis of Native Secrets Management Services.
Journal of Artificial Intelligence & Cloud Computing, 3(6), 1-4.

[38] Vikstrom, V. (2025). Developing PCI DSS Compliant Configuration Standards.

[39] Haq, M. Y. M., Anand, S., Abhishta, A, & Nieuwenhuis, L. J. (2024). Cloud Outsourcing Risk
Management for Cloud Consumers: A Systematic Literature Review. ACM computing surveys.

[40] Joshi, S., Hasan, B., & Brindha, R. (2024, June). Optimal declarative orchestration of full lifecycle of
machine learning models for cloud native. In 2024 3rd International Conference on Applied
Artificial Intelligence and Computing (ICAAIC) (pp. 578-582). IEEE.

[41] Soylemez, M., Tekinerdogan, B., & Kolukisa Tarhan, A. (2022). Challenges and solution directions
of microservice architectures: A systematic literature review. Applied sciences, 12(11), 5507.

[42] Hansson,]. (2024). AlOps: How an existing Site Reliability Engineering team can leverage
Artificial Intelligence in their IT-Operations.

[43] Lin, H., & Liu, W. (2025). Symmetry-Aware Causal-Inference-Driven Web Performance Modeling:
A Structure-Aware Framework for Predictive Analysis and Actionable Optimization. Symmetry,
17(12), 2058.

[44] Liu P, Xu H, Ouyang Q, et al. Unsupervised detection of microservice trace anomalies through
service-level deep Bayesian networks. IEEE International Symposium on Software Reliability
Engineering. 2020;48-58.

[45] Dong, G., Hua, Y., Zhang, Y., Chen, Z., & Chen, M. (2025). Understanding and Detecting {Fail-Slow}
Hardware Failure Bugs in Cloud Systems. In 2025 USENIX Annual Technical Conference (USENIX
ATC 25) (pp. 1127-1142).

[46] Li, B, Peng, X,, Xiang, Q., Wang, H., Xie, T., Sun,]., & Liu, X. (2022). Enjoy your observability: an
industrial survey of microservice tracing and analysis. Empirical Software Engineering, 27(1), 25.

[47] Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic
mapping study. Journal of Systems and Software, 150, 77-97.

[48] Albalushi, M., & Alzubi, S. (2025, November). DeLSTM-AE: A Decomposition-Driven Framework
for Univariate Time Series Anomaly Detection. In International Conference on Innovative
Techniques and Applications of Artificial Intelligence (pp. 134-148). Cham: Springer Nature
Switzerland.

[49] Patra, B., Tamrakar, A., & Sharma, R. (2019). Edge Computing: Evolution, Challenges, and Future
Directions. Turkish Journal of Computer and Mathematics Education Vol, 10(1), 741-745.

[50] Reyes-Delgado, P. Y., Duran-Limon, H. A., Mora, M., & Rodriguez-Martinez, L. C. (2022). SOCAM: a
service-oriented computing architecture modeling method. Software and Systems Modeling,
21(4),1551-1581.

[51] Mahida, A. M. (2023). Machine Learning for Predictive Observability-A Study Paper. Journal of
Artificial Intelligence & Cloud Computing, 2(4), 1-3.

[52] Dhulipala, L., Shi, ., Tseng, T., Blelloch, G. E., & Shun, J. (2020, June). The graph based benchmark
suite (gbbs). In Proceedings of the 3rd Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA) (pp. 1-8).

[53] Gluhak, M., & Pavlic, L. (2022). A Quality Gate Role in a Software Delivery Pipeline. In SQAMIA.

[54] Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H. (2020). Understanding how DevOps aligns
development and operations: a tripartite model of intra-IT alignment. European Journal of
Information Systems, 29(5), 458-473.

614

Frontiers in Artificial Intelligence Research Volume 2 Issue 3, 2025
ISSN: 3079-6342

[55] Yang, S, Ding, G., Chen, Z., & Yang, J. (2025). GART: Graph Neural Network-based Adaptive and
Robust Task Scheduler for Heterogeneous Distributed Computing. IEEE Access.

[56] Ozdenizci Kose, B. (2024). Mobilizing DevOps: exploration of DevOps adoption in mobile software
development. Kybernetes.

[57] Zampetti F, Geremia S, Bavota G, Di Penta M. CI/CD pipelines evolution and restructuring: a
qualitative and quantitative study. IEEE International Conference on Software Maintenance.
2021;471-482.

[58] Belgacem, A., & Beghdad-Bey, K. (2022). Multi-objective workflow scheduling in cloud computing:
trade-off between makespan and cost. Cluster Computing, 25(1), 579-595.

[59] Gaba, P., & Gupta, Y. (2023, December). Unlocking Efficiency-Multidimensional Cost Optimization
Strategies for Cloud Infrastructure in Small and Medium-Sized Organizations. In 2023 2nd
International Conference on Automation, Computing and Renewable Systems (ICACRS) (pp. 463-
470). IEEE.

[60] Song, X., Zhang, H., Akerkar, R., Huang, H., Guo, S., Zhong, L., ... & Culotta, A. (2020). Big data and
emergency management: concepts, methodologies, and applications. IEEE Transactions on Big
Data, 8(2),397-419.

[61] Pokorni, S. (2021). Reliability and availability of the Internet of things. Vojnotehnicki glasnik.

[62] Trigo, A., Varajao,]., & Sousa, L. (2022). DevOps adoption: Insights from a large European Telco.
Cogent Engineering, 9(1), 2083474.

615

