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Abstract 

Large-scale recommendation systems have become indispensable components of 
modern digital platforms, processing billions of user interactions daily to deliver 
personalized content and services. The computational demands of recommendation 
model inference in production environments present significant challenges, 
particularly when deploying across heterogeneous hardware architectures. This 
review examines cross-hardware optimization strategies for large-scale 
recommendation model inference, focusing on techniques that enable efficient 
deployment across graphics processing units (GPUs), central processing units (CPUs), 
tensor processing units (TPUs), and field-programmable gate arrays (FPGAs). We 
systematically analyze recent advances in model compression, including quantization 
and pruning techniques specifically designed for recommendation models. The paper 
explores hardware-aware neural architecture search (NAS) methods that optimize 
model structures for target hardware platforms while maintaining prediction accuracy. 
We investigate dynamic resource allocation strategies and load balancing mechanisms 
that improve throughput in multi-device production systems. Additionally, we examine 
emerging heterogeneous computing frameworks that enable seamless model 
deployment across diverse hardware infrastructures. Our analysis reveals that 
successful cross-hardware optimization requires careful consideration of model 
architecture, hardware characteristics, and system-level constraints. The review 
identifies critical research gaps in real-time inference optimization, automated 
hardware selection, and energy-efficient deployment strategies. We conclude that 
integrated optimization approaches combining multiple techniques offer the most 
promising path toward efficient large-scale recommendation system deployment in 
heterogeneous production environments. 
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Introduction 

Modern recommendation systems constitute the backbone of contemporary digital 
ecosystems, powering personalized experiences across e-commerce platforms, streaming 
services, social media networks, and content distribution systems. These systems process 
enormous volumes of user interaction data, generating billions of inference requests daily to 
predict user preferences and deliver tailored recommendations in real-time. The 
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computational intensity of large-scale recommendation model inference has escalated 
dramatically as model architectures have evolved from simple collaborative filtering 
approaches to sophisticated deep learning (DL) frameworks incorporating neural 
collaborative filtering, attention mechanisms, and multi-modal feature representations. The 
deployment of these complex models in production environments demands substantial 
computational resources, creating significant challenges for system architects and machine 
learning (ML) engineers who must balance prediction accuracy with inference latency, 
throughput requirements, and operational costs [1]. 

The heterogeneous nature of modern computing infrastructure introduces additional 
complexity to recommendation system deployment. Production environments typically 
comprise diverse hardware architectures including graphics processing units (GPUs), central 
processing units (CPUs), tensor processing units (TPUs), and field-programmable gate arrays 
(FPGAs), each offering distinct computational characteristics, memory hierarchies, and 
performance profiles [2]. This hardware diversity arises from practical considerations 
including legacy system integration, cost optimization, availability constraints, and workload-
specific performance requirements. Organizations frequently maintain hybrid infrastructure 
combining cloud-based resources with on-premises hardware, further complicating 
deployment strategies and necessitating optimization approaches that can adapt to varying 
computational substrates [3]. The challenge of efficient cross-hardware deployment becomes 
particularly acute when considering the scale at which modern recommendation systems 
operate, where even marginal improvements in inference efficiency can translate to 
substantial reductions in operational expenses and enhanced user experience through 
reduced latency [4]. 

Cross-hardware optimization strategies aim to maximize recommendation model 
performance across diverse hardware platforms while maintaining prediction quality and 
meeting stringent latency requirements imposed by interactive applications. These strategies 
encompass multiple optimization dimensions including model architecture design, numerical 
precision selection, memory access pattern optimization, and runtime scheduling decisions 
[5]. Recent advances in hardware-aware neural architecture search (NAS) have enabled 
automated discovery of model architectures optimized for specific hardware targets, while 
developments in quantization and pruning techniques have demonstrated that substantial 
computational savings can be achieved with minimal accuracy degradation [6]. Dynamic 
resource allocation mechanisms allow production systems to distribute inference workloads 
across heterogeneous hardware pools based on real-time availability and performance 
characteristics, improving overall system utilization and throughput [7]. The convergence of 
these optimization techniques with emerging frameworks for heterogeneous computing 
creates new opportunities for efficient large-scale recommendation system deployment that 
were previously impractical or economically infeasible [8]. 

The economic implications of cross-hardware optimization extend beyond direct 
computational costs to encompass energy consumption, cooling infrastructure requirements, 
and hardware procurement strategies. Large-scale recommendation systems deployed by 
major technology companies can consume megawatts of power during peak operation, 
making energy efficiency a critical consideration alongside raw performance metrics [9]. The 
ability to leverage diverse hardware platforms effectively enables organizations to optimize 
their infrastructure investments by deploying models on the most cost-efficient hardware for 
specific workload characteristics while maintaining service level agreements for latency and 
throughput [10]. Furthermore, cross-hardware optimization capabilities provide strategic 
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flexibility in procurement decisions, reducing vendor lock-in and enabling organizations to 
capitalize on emerging hardware technologies as they become available. The total cost of 
ownership for recommendation system infrastructure depends critically on achieving optimal 
hardware utilization across the entire deployment spectrum, making cross-hardware 
optimization not merely a technical challenge but a fundamental business imperative. 

This review provides a comprehensive analysis of cross-hardware optimization strategies for 
large-scale recommendation model inference in production systems. We systematically 
examine the technical approaches that enable efficient deployment across heterogeneous 
hardware platforms, including model compression techniques, hardware-aware architecture 
design, dynamic resource allocation, and heterogeneous computing frameworks. Our analysis 
synthesizes recent research advances with practical deployment considerations, identifying 
both successful optimization strategies and persistent challenges that require further 
investigation. The review is organized to provide both theoretical foundations and practical 
insights for researchers and practitioners working to deploy large-scale recommendation 
systems efficiently. We aim to bridge the gap between algorithmic innovations in ML and the 
systems-level considerations that govern real-world deployment, offering a holistic 
perspective on the multifaceted challenge of cross-hardware optimization for 
recommendation model inference. 

2. Literature Review 

The literature on cross-hardware optimization for recommendation systems has expanded 
substantially in recent years as the scale and complexity of deployed models have increased. 
Early research in this domain focused primarily on optimizing recommendation algorithms 
for single hardware platforms, particularly CPUs, using traditional optimization techniques 
such as cache-aware data structure design and vectorization [11]. However, the advent of DL-
based recommendation models and the proliferation of specialized accelerators have 
necessitated more sophisticated approaches that consider hardware heterogeneity as a 
fundamental design constraint rather than an afterthought. Contemporary research addresses 
cross-hardware optimization through multiple complementary perspectives, including model 
architecture co-design with hardware, post-training optimization techniques, and system-
level orchestration strategies [12]. 

Model compression techniques have emerged as a critical enabler for efficient 
recommendation model deployment across diverse hardware platforms. Quantization 
methods reduce the numerical precision of model parameters and activations, typically from 
32-bit floating-point to 8-bit or even lower precision integer representations, substantially 
decreasing memory bandwidth requirements and enabling faster arithmetic operations on 
hardware with limited floating-point capabilities [13]. Recent work has demonstrated that 
recommendation models exhibit particular amenability to aggressive quantization due to 
their feature embedding structures and the statistical properties of user-item interaction data 
[14]. Mixed-precision quantization strategies that apply different precision levels to different 
model components have shown promise in balancing accuracy preservation with 
computational efficiency, particularly when combined with hardware-specific precision 
selection that matches the native arithmetic capabilities of target processors [15]. 
Quantization-aware training approaches that simulate low-precision arithmetic during model 
training have proven effective in minimizing accuracy degradation, enabling deployment of 
highly compressed models that maintain competitive prediction quality [16]. 
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Pruning techniques complement quantization by removing redundant or less important 
model parameters, reducing both memory footprint and computational requirements. 
Structured pruning methods that eliminate entire neurons, channels, or attention heads are 
particularly valuable for cross-hardware optimization because they produce regular 
computation patterns that map efficiently to diverse hardware architectures without 
requiring specialized sparse computation support [17]. Recent research has explored 
adaptive pruning strategies that adjust pruning ratios based on hardware characteristics and 
performance targets, enabling automated generation of model variants optimized for specific 
deployment scenarios [18]. Knowledge distillation has emerged as a powerful technique for 
creating compact student models that preserve the prediction capabilities of larger teacher 
models while offering substantially improved inference efficiency [19]. The combination of 
pruning and distillation has demonstrated particular effectiveness for recommendation 
systems, where the student model can be designed explicitly for target hardware constraints 
while learning from a high-capacity teacher model trained without such restrictions [20]. 

Hardware-aware NAS represents a paradigm shift in model architecture design by 
incorporating hardware performance metrics directly into the architecture search process. 
Traditional NAS approaches optimize for accuracy and parameter count, which serve as poor 
proxies for actual inference latency and energy consumption on specific hardware platforms 
[21]. Hardware-aware methods extend the search objective to include measured performance 
on target hardware, discovering architectures that achieve optimal accuracy-efficiency trade-
offs for particular deployment scenarios [22]. Recent advances in differentiable NAS have 
reduced the computational cost of hardware-aware search, making it practical to discover 
specialized architectures for multiple hardware targets within reasonable time and resource 
budgets [23]. Some approaches employ surrogate performance models that predict hardware 
latency and energy consumption from architecture descriptions, enabling rapid exploration of 
large architecture search spaces without requiring exhaustive hardware measurements [24]. 
The application of hardware-aware NAS to recommendation systems has yielded model 
architectures with novel feature interaction patterns and embedding structures that achieve 
superior efficiency compared to manually designed alternatives [25]. 

Dynamic resource allocation and load balancing strategies address cross-hardware 
optimization at the system level by intelligently distributing inference workloads across 
heterogeneous hardware resources. These approaches recognize that different hardware 
platforms offer varying performance characteristics for different model components or input 
patterns, creating opportunities for workload partitioning that improves overall system 
throughput [26]. Recent work has explored reinforcement learning-based scheduling policies 
that learn to assign inference requests to appropriate hardware based on input characteristics, 
current system load, and performance objectives. Related advances in coordinated, physics-
informed multi-agent reinforcement learning demonstrate that embedding domain 
constraints and risk-aware objectives into distributed decision-making can substantially 
improve convergence stability and robustness, suggesting promising directions for managing 
complex, multi-resource inference scheduling under uncertainty in large-scale 
recommendation systems [27]. Model partitioning techniques enable parallel execution of 
different model components on different hardware types, with careful management of 
communication overhead between partitions to ensure overall latency targets are met [28]. 
Adaptive batching strategies dynamically adjust batch sizes based on hardware capabilities 
and current request patterns, maximizing throughput while satisfying latency constraints for 
individual requests [29]. 
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Heterogeneous computing frameworks provide software infrastructure for deploying models 
across diverse hardware platforms with minimal code modification. Modern frameworks such 
as TensorFlow, PyTorch, and ONNX Runtime offer abstraction layers that translate high-level 
model descriptions into optimized implementations for specific hardware backends [30]. 
However, achieving truly efficient cross-hardware deployment requires framework 
extensions that support hardware-specific optimizations beyond basic operator libraries, 
including custom memory management, specialized data layouts, and hardware-aware 
operator fusion [31]. Recent research has developed compiler-based approaches that 
generate optimized code for multiple hardware targets from unified model representations, 
employing techniques such as polyhedral optimization and auto-scheduling to explore the 
space of possible implementations [32]. Domain-specific languages for tensor computations 
enable expression of optimization strategies that would be difficult or impossible to capture in 
traditional programming models, facilitating the creation of highly optimized 
implementations that approach the theoretical performance limits of target hardware [33]. 

The integration of multiple optimization techniques represents an important research 
direction that recognizes the complementary nature of different approaches. Combined 
strategies that apply quantization, pruning, and NAS in coordinated fashion have 
demonstrated superior results compared to sequential application of individual techniques 
[34]. Multi-objective optimization frameworks that simultaneously consider accuracy, latency, 
throughput, memory consumption, and energy efficiency enable discovery of Pareto-optimal 
solutions that balance competing objectives for specific deployment scenarios [35]. Recent 
work has explored end-to-end optimization pipelines that jointly optimize model architecture, 
numerical precision, hardware mapping, and runtime scheduling, achieving global optima that 
are unattainable through stage-wise optimization [36]. These integrated approaches 
represent the current frontier in cross-hardware optimization research, offering the most 
promising path toward efficiently deploying large-scale recommendation systems across 
heterogeneous production infrastructure. 

3. Model Compression Techniques for Cross-Hardware Deployment 

Model compression techniques form the foundation of efficient cross-hardware deployment 
by reducing the computational and memory requirements of recommendation models while 
preserving prediction accuracy. These techniques operate through fundamentally different 
mechanisms but share the common goal of creating compressed model representations that 
execute efficiently across diverse hardware platforms. The effectiveness of compression 
techniques varies substantially across hardware types due to differences in memory 
bandwidth, arithmetic unit capabilities, and supported data types, necessitating hardware-
aware compression strategies that tailor compression parameters to target deployment 
platforms [37]. 

Quantization reduces the bit-width of model parameters and activations, transforming high-
precision floating-point representations into lower-precision formats that require less 
memory and enable faster arithmetic operations. Uniform quantization maps continuous 
floating-point values to discrete integer levels using fixed-width bins, while non-uniform 
quantization allocates quantization bins adaptively based on parameter distributions [38]. 
For recommendation models, embedding tables typically constitute the majority of model 
parameters and memory consumption, making embedding quantization particularly 
impactful for reducing inference costs [39]. Recent work has demonstrated that embedding 
vectors in recommendation models can be quantized aggressively to 4-bit or even lower 
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precision with minimal accuracy loss because the high dimensionality of embedding spaces 
provides substantial redundancy that buffers against quantization error [40]. Mixed-precision 
quantization strategies assign different bit-widths to different model components based on 
their sensitivity to quantization, using higher precision for components where accuracy is 
critical and lower precision elsewhere to maximize compression [41]. 

The hardware implications of quantization differ markedly across platform types. GPUs 
traditionally designed for 32-bit and 16-bit floating-point operations have increasingly 
incorporated support for lower-precision integer arithmetic through tensor cores and similar 
specialized units that offer substantially higher throughput for 8-bit and 4-bit operations [42]. 
CPUs benefit from quantization through reduced memory bandwidth consumption and the 
ability to process more data per cache line, although the performance improvements depend 
on instruction set architecture extensions that provide efficient low-precision arithmetic 
operations [43]. FPGAs offer unique advantages for quantized models because their 
programmable logic enables custom data paths optimized for arbitrary bit-widths, allowing 
aggressive quantization to unusual precisions like 3-bit or 5-bit representations that are 
impractical on fixed-function hardware [44]. The interaction between quantization strategies 
and hardware capabilities suggests that optimal quantization configurations should be 
selected based on target hardware characteristics, with hardware-aware quantization 
methods that adapt precision assignments to maximize efficiency on specific platforms [45]. 

 

Figure 1: A comparative analysis showing inference latency and accuracy trade-offs for 
recommendation models under different quantization schemes (FP32, FP16, INT8, INT4) across 
three hardware platforms (GPU, CPU, FPGA).   

Figure 1 visualizes the latency-accuracy trade-off space across quantization schemes and 
hardware platforms, revealing distinct efficiency frontiers for each platform type. The results 
demonstrate that optimal quantization strategies vary substantially by hardware: GPUs 
achieve maximum throughput improvement with INT8 quantization due to tensor core 
acceleration, while FPGAs benefit most from aggressive INT4 quantization enabled by their 
programmable logic. CPUs show more modest but consistent gains across precision levels due 
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to memory bandwidth reduction. Notably, the accuracy degradation remains minimal (under 
1%) for INT8 across all platforms, while INT4 introduces more significant accuracy loss that 
may be acceptable depending on application requirements. 

Pruning eliminates redundant or less important parameters from trained models, creating 
sparse networks that require fewer computations and less storage. Magnitude-based pruning 
removes parameters with small absolute values under the assumption that they contribute 
minimally to model predictions, while more sophisticated methods employ second-order 
information to identify parameters whose removal minimally impacts model loss [46]. For 
recommendation models, structured pruning approaches that remove entire embedding 
dimensions, feature fields, or attention heads have proven particularly effective because they 
maintain regular computation patterns that map efficiently to standard hardware without 
requiring sparse matrix multiplication support [47]. Dynamic pruning techniques that adapt 
sparsity patterns during inference based on input characteristics represent an advanced 
approach that achieves higher compression ratios by exploiting the observation that different 
inputs activate different model subnetworks. The challenge in dynamic pruning lies in 
managing the overhead of runtime sparsity pattern determination, which can negate the 
computational savings from sparsity if not carefully implemented [48]. 

The hardware efficiency of pruned models depends critically on whether the sparsity pattern 
can be exploited effectively during inference. Unstructured sparsity that removes arbitrary 
individual parameters offers maximum compression flexibility but requires specialized sparse 
computation support to achieve actual speedups, as standard dense matrix multiplication 
operations provide no benefit from irregular sparsity patterns [49]. GPUs have increasingly 
incorporated hardware support for structured sparsity through tensor cores that accelerate 
2:4 structured sparse patterns where two out of every four consecutive values are zero, 
enabling practical deployment of moderately sparse models [50]. CPUs can exploit sparsity 
through compressed sparse row representations and specialized libraries that implement 
efficient sparse kernels, although the performance benefits depend heavily on sparsity level 
and access patterns. The most hardware-portable approach combines structured pruning 
with modest sparsity levels that can be accelerated through operator fusion and memory 
access optimizations even without dedicated sparse computation support [51]. 

Knowledge distillation transfers knowledge from complex teacher models to simpler student 
models through training processes that use teacher predictions as soft targets supplementing 
standard hard labels from training data. For recommendation systems, distillation enables 
creation of lightweight student models that approximate the predictive capabilities of 
ensemble models or very deep networks while offering substantially improved inference 
efficiency [52]. Collaborative distillation approaches where multiple teacher models 
collectively train a student have demonstrated effectiveness in recommendation contexts 
where different teachers capture different aspects of user preference patterns [53]. Feature-
based distillation methods that match intermediate representations rather than only final 
predictions enable transfer of structural knowledge about feature interactions that is 
particularly valuable for recommendation models where interaction patterns strongly 
influence prediction quality. The compressed student models produced through distillation 
can be further optimized through quantization and pruning, creating a compression pipeline 
that achieves cumulative benefits exceeding those obtainable from any single technique [54]. 

Table 1 quantifies the performance gains achievable through different compression 
approaches on production-scale recommendation models. The results reveal that combined 
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approaches integrating quantization, pruning, and distillation achieve superior compression 
(90% size reduction) and speedup (6.5x on GPU, 5.2x on CPU) compared to any individual 
technique, though with moderately higher accuracy degradation (1.4%). INT8 quantization 
offers an attractive balance with 75% size reduction and minimal accuracy loss (0.3%), 
making it suitable for latency-sensitive applications. The consistent pattern of higher GPU 
speedups compared to CPU across all techniques reflects GPUs' superior parallelism for 
compressed model execution. 

 

Table 1: Performance comparison of compression techniques on production-scale 
recommendation models, showing model size reduction, inference speedup on GPU and CPU, and 
accuracy impact.  

4. Hardware-Aware Architecture Design and Neural Architecture Search 

Hardware-aware architecture design recognizes that the optimal model structure depends 
fundamentally on the characteristics of the target hardware platform, including memory 
hierarchy, arithmetic unit capabilities, communication bandwidth, and parallelism granularity. 
Traditional model architecture design has focused primarily on maximizing prediction 
accuracy with secondary consideration for parameter count or theoretical computational 
complexity measured in floating-point operations. However, these metrics correlate poorly 
with actual inference performance on real hardware because they ignore critical factors such 
as memory access patterns, arithmetic intensity, and the efficiency of mapping model 
operations to hardware execution units [55]. Hardware-aware design methodologies 
incorporate direct performance measurements or learned performance models into the 
architecture selection process, enabling discovery of models that achieve superior accuracy-
efficiency trade-offs for specific hardware targets. 

NAS automates architecture design through systematic exploration of architecture search 
spaces using optimization algorithms ranging from evolutionary methods to gradient-based 
techniques. Early NAS approaches focused exclusively on accuracy optimization, discovering 
architectures that achieved state-of-the-art results on benchmark tasks but required 
prohibitive computational resources for both the search process and the resulting models 
[56]. Hardware-aware NAS extends the objective function to include hardware performance 
metrics such as inference latency, throughput, or energy consumption measured or estimated 
on target platforms. This multi-objective formulation enables discovery of architectures on 
the Pareto frontier that offer optimal trade-offs between accuracy and efficiency, providing 
system designers with a range of deployment options tailored to different performance 
requirements [57]. The challenge in hardware-aware NAS lies in efficiently evaluating 
thousands or millions of candidate architectures on target hardware, which would be 
prohibitively expensive using direct measurement. 
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Performance prediction models address the evaluation efficiency challenge by learning to 
estimate hardware performance from architecture descriptions without requiring actual 
deployment and measurement. These surrogate models can be trained on a relatively small 
set of architectures for which ground-truth measurements are collected, then used to rapidly 
estimate performance for candidate architectures during the search process [58]. Graph 
neural networks (GNNs) have proven particularly effective for architecture performance 
prediction because they naturally represent the computational graph structure of neural 
network models and can capture complex interactions between architecture components [59]. 
Recent approaches employ transfer learning to adapt performance predictors trained on one 
hardware platform to new platforms with limited additional measurements, enabling efficient 
hardware-aware search across multiple deployment targets. The accuracy of performance 
prediction models critically influences search effectiveness, as prediction errors can mislead 
the search toward architectures that appear efficient but perform poorly when actually 
deployed [60]. 

Differentiable NAS methods enable gradient-based architecture search by relaxing discrete 
architecture choices into continuous parameters that can be optimized through standard 
gradient descent. These approaches typically represent the architecture search space as a 
supernetwork containing all possible architectures as subnetworks, with architecture 
parameters controlling which edges or operations are active [61]. For hardware-aware search, 
differentiable methods can incorporate measured latency into the loss function through 
techniques such as latency regularization or differentiable latency models that approximate 
hardware performance. The computational efficiency of differentiable NAS makes it practical 
to search over large architecture spaces and multiple hardware targets simultaneously, 
discovering platform-specific architectures that optimize for different deployment scenarios 
[62]. Recent work has developed differentiable hardware-aware NAS specifically for 
recommendation models, discovering novel embedding structures and feature interaction 
patterns that achieve better efficiency than manually designed architectures. 

The application of hardware-aware NAS to recommendation systems presents unique 
challenges and opportunities compared to computer vision or natural language processing 
domains. Recommendation models typically consist of embedding lookup operations followed 
by feature interaction networks that combine embedding vectors to produce predictions [63]. 
The embedding tables dominate memory consumption while feature interaction networks 
consume most of the computational cycles, suggesting that architecture search should 
optimize these components differently. Recent research has explored two-stage architecture 
search where embedding dimensions and feature field selections are optimized separately 
from interaction network architectures, allowing specialized search strategies for each 
component [64]. Automated discovery of efficient feature interaction patterns through NAS 
has revealed that simple architectures with carefully designed operations can match or 
exceed the accuracy of complex manually designed interactions while offering substantially 
better hardware efficiency. 

Cross-hardware NAS aims to discover single architectures that perform efficiently across 
multiple hardware platforms rather than requiring platform-specific models. This approach 
offers significant practical advantages by reducing model management complexity and 
enabling flexible deployment as hardware resources change [65]. Recent work has formulated 
cross-hardware NAS as a min-max optimization problem that minimizes the worst-case 
latency across target platforms while maintaining accuracy requirements. Alternatively, some 
approaches optimize for average performance across platforms weighted by deployment 
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frequency, discovering architectures that balance efficiency across heterogeneous 
infrastructure. The challenge in cross-hardware NAS lies in finding architectures that avoid 
platform-specific optimizations that improve performance on one hardware type while 
degrading efficiency on others. Architectures discovered through cross-hardware search tend 
to exhibit moderate parallelism, regular memory access patterns, and balanced arithmetic 
intensity that map reasonably well to diverse hardware capabilities [66]. 

Figure 2 illustrates the architecture search space and platform-specific Pareto frontiers 
discovered through hardware-aware NAS. The visualization reveals that optimal architectures 
differ fundamentally across hardware types: GPU-optimized models favor deeper networks 
(8-12 layers) with moderate hidden dimensions that maximize parallel execution, while CPU-
optimized architectures employ wider but shallower structures (4-6 layers, 1024-2048 
hidden units) that better exploit cache locality. FPGA-optimized models occupy a distinct 
region characterized by mixed-precision operations (INT4/INT8) that leverage 
programmable logic for custom bit-width arithmetic. These findings underscore the 
importance of hardware-aware architecture search, as no single architecture achieves optimal 
efficiency across all platforms. 
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Figure 2: Architecture search space visualization showing Pareto-optimal recommendation 
model architectures discovered through hardware-aware NAS for GPU, CPU, and FPGA platforms, 
with axes representing model capacity, computational complexity, and hardware efficiency.  

5. Dynamic Resource Allocation and Heterogeneous System Management 

Dynamic resource allocation enables production recommendation systems to leverage 
heterogeneous hardware infrastructure efficiently by adaptively distributing inference 
workloads based on real-time system state and request characteristics. Unlike static 
deployment strategies that assign fixed hardware resources to specific models or services, 
dynamic allocation approaches continuously optimize hardware utilization by routing 
inference requests to the most appropriate available resources. This flexibility proves 
particularly valuable in cloud environments where hardware availability fluctuates, during 
traffic patterns that create variable load on different system components, and when deploying 
multiple model versions simultaneously for A/B testing or gradual rollout scenarios. Insights 
from edge cloud synergy models further reinforce this perspective, showing that coordinated 
allocation across edge and cloud resources can significantly reduce end-to-end latency while 
preserving global optimization—an approach that closely parallels hybrid inference 
deployment strategies for latency-sensitive recommendation workloads [67]. 

Load balancing strategies for heterogeneous hardware infrastructure must account for 
platform-specific performance characteristics when distributing workloads. Simple round-
robin or random assignment policies fail to exploit hardware diversity, potentially routing 
computationally intensive requests to devices with limited capabilities while underutilizing 
high-performance accelerators [68]. Performance-aware load balancing employs online 
profiling to characterize request latency on different hardware types, then uses this 
information to guide routing decisions that minimize average latency or maximize throughput 
under given resource constraints. Recent work has developed adaptive algorithms that learn 
optimal request-to-hardware mappings through reinforcement learning, discovering policies 
that account for complex interactions between request characteristics, hardware capabilities, 
and system load that would be difficult to capture through manual policy design [69]. These 
learned policies can adapt to changing conditions such as hardware failures, traffic pattern 
shifts, or deployment of updated models with different performance profiles. 

Model partitioning techniques enable parallel execution of different model components on 
different hardware types, creating opportunities for heterogeneous acceleration that exploits 
the strengths of each platform. For recommendation models, natural partition points include 
the boundary between embedding lookups and feature interaction networks, or between 
different stages of multi-stage ranking systems [70]. Embedding lookups typically exhibit 
memory-intensive characteristics that map well to high-bandwidth memory systems, while 
feature interaction networks perform dense computations that benefit from hardware 
accelerators with substantial arithmetic throughput. Determining optimal partition strategies 
requires careful analysis of communication costs between partitions, as data transfer 
overhead can negate the benefits of specialized hardware acceleration if partitions exchange 
large amounts of data [71]. Recent approaches employ graph partitioning algorithms that 
minimize communication volume while balancing computational load across available 
hardware, producing partition strategies that maximize overall system throughput. 

Batching strategies profoundly impact inference efficiency and can be optimized for 
heterogeneous hardware environments. Large batch sizes typically improve hardware 
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utilization by amortizing operation launch overhead and enabling better exploitation of 
parallel execution units, but they increase latency for individual requests and memory 
consumption [72]. Adaptive batching algorithms dynamically adjust batch sizes based on 
hardware capabilities, current request queue depth, and latency targets, finding the optimal 
trade-off between throughput and latency for each hardware platform. Recent work has 
explored heterogeneous batching where different hardware devices operate with different 
batch sizes optimized for their specific characteristics, with a coordinating scheduler that 
manages request assignment to maintain overall system performance targets [73]. Priority-
aware batching enables preferential treatment of high-priority requests by allocating them to 
batches that will execute sooner or on faster hardware, supporting quality-of-service 
differentiation in production systems. 

Heterogeneous computing frameworks provide software infrastructure for deploying and 
managing models across diverse hardware platforms with unified programming interfaces. 
Modern ML frameworks such as TensorFlow, PyTorch, and ONNX Runtime offer device-
agnostic model representations that can be executed on CPUs, GPUs, TPUs, and other 
accelerators through backend-specific implementations [74]. However, achieving efficient 
heterogeneous deployment requires framework capabilities beyond basic operator libraries, 
including hardware-aware graph optimization, automatic operator fusion, memory planning 
that accounts for device-specific memory hierarchies, and runtime scheduling that manages 
concurrent execution across multiple devices. Recent framework developments have 
introduced abstraction layers that decouple high-level model descriptions from hardware-
specific implementations, enabling compile-time or runtime selection of optimized kernels 
based on actual deployment environment [75]. 

Resource allocation policies must consider not only computational performance but also 
energy efficiency and cost optimization in production deployments. Different hardware types 
offer varying energy efficiency profiles, with specialized accelerators typically providing 
better performance per watt than general-purpose processors for appropriate workloads [76]. 
Power-aware scheduling algorithms that incorporate energy consumption models into 
allocation decisions can substantially reduce operational costs in large-scale deployments 
where electricity costs constitute a significant fraction of total cost of ownership. Cloud 
deployment scenarios introduce additional complexity because different instance types have 
different pricing models, availability patterns, and performance characteristics [77]. Cost-
aware allocation strategies that consider pricing information alongside performance metrics 
enable organizations to optimize their cloud spending while maintaining service level 
objectives for latency and throughput. 

Fault tolerance and reliability considerations complicate heterogeneous resource allocation 
because different hardware platforms may exhibit different failure modes and recovery 
characteristics. GPU accelerators may experience transient errors or hard failures that require 
workload migration to alternative resources, while CPU-based systems typically offer more 
predictable reliability profiles [78]. Allocation strategies must incorporate redundancy 
mechanisms and failover policies that ensure continued service availability when individual 
hardware components fail. Recent work has explored proactive failure prediction based on 
monitoring hardware health metrics, enabling preemptive workload migration before failures 
occur. The heterogeneity of hardware infrastructure actually provides opportunities for 
improved fault tolerance because multiple independent hardware types reduce the 
probability of correlated failures that could cause system-wide outages. Allocation policies 
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that deliberately distribute critical workloads across diverse hardware platforms can enhance 
overall system reliability while simultaneously optimizing for performance and efficiency [79]. 

6. Integration Strategies and System-Level Optimization 

Integration strategies that combine multiple optimization techniques offer superior results 
compared to applying individual optimizations in isolation. The interaction effects between 
different optimization approaches can be either synergistic or antagonistic, necessitating 
careful coordination to achieve globally optimal deployment configurations [80]. For example, 
quantization and pruning applied simultaneously can achieve higher compression ratios than 
the product of their individual compression factors because quantized arithmetic operations 
are more efficient on sparse data structures that reduce memory bandwidth. Conversely, 
some optimization combinations may interfere with each other, such as when aggressive 
quantization reduces the accuracy headroom available for pruning without violating accuracy 
constraints [81]. Recent research has explored joint optimization frameworks that 
simultaneously determine quantization parameters, pruning ratios, and architecture 
configurations, discovering coordinated optimization strategies that outperform sequential 
application of individual techniques. 

Multi-objective optimization provides a principled framework for balancing competing 
objectives in cross-hardware deployment. Recommendation system deployment involves 
trade-offs among accuracy, latency, throughput, memory consumption, energy efficiency, and 
cost, with different stakeholders prioritizing these objectives differently [82]. Pareto 
optimization discovers the set of non-dominated solutions where improving one objective 
necessarily degrades another, providing system designers with a range of deployment options 
that represent optimal trade-offs. Recent work has developed efficient Pareto optimization 
algorithms specifically for NAS and model compression, employing techniques such as 
evolutionary algorithms, population-based training, and gradient-based methods that can 
navigate high-dimensional objective spaces [83]. The Pareto frontier can be visualized and 
explored interactively, enabling human experts to select deployment configurations that best 
match their specific requirements and constraints. 

End-to-end optimization pipelines that span from model architecture design through 
hardware deployment enable discovery of globally optimal solutions that are unattainable 
through stage-wise optimization. Traditional approaches optimize model architecture for 
accuracy, then separately apply compression and hardware mapping, but this sequential 
process may miss opportunities where architecture choices specifically designed for efficient 
compression and hardware execution could achieve better overall results [84]. Recent 
research has developed differentiable optimization frameworks that propagate hardware 
performance gradients back through compression and architecture selection decisions, 
enabling joint learning of all design parameters. These end-to-end approaches require 
sophisticated gradient estimation techniques because hardware performance is typically non-
differentiable with respect to discrete architecture choices, but recent advances in 
differentiable approximations and evolutionary strategies have made such joint optimization 
tractable [85]. 

Automated ML pipelines for cross-hardware optimization reduce the manual effort required 
to deploy recommendation models efficiently across diverse platforms. These pipelines 
typically accept a trained model and target hardware specifications as input, then 
automatically apply appropriate combinations of compression, architecture modification, and 
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deployment configuration to produce optimized models for each platform [86]. Recent 
systems employ meta-learning approaches that leverage knowledge from previous 
optimization runs to accelerate discovery of effective optimization strategies for new models 
or hardware platforms. Transfer learning enables adaptation of optimization policies learned 
on one recommendation domain to new domains with different data characteristics or 
business constraints [87]. The development of these automated pipelines represents an 
important step toward democratizing cross-hardware optimization capabilities, making them 
accessible to organizations without specialized expertise in hardware-aware model 
optimization. 

Continuous optimization represents an emerging paradigm where deployed models are 
continuously monitored and re-optimized based on observed performance characteristics and 
changing system conditions. Traditional deployment workflows optimize models once during 
initial deployment, then maintain fixed configurations until manual intervention triggers re-
optimization. Continuous optimization systems instead monitor key performance metrics 
such as latency distributions, throughput, resource utilization, and accuracy, then 
automatically trigger re-optimization when performance degrades below acceptable 
thresholds or when new optimization opportunities are detected [88]. These systems can 
respond to gradual performance drift caused by hardware aging, changes in traffic patterns, 
or shifts in data distributions without requiring human intervention. Recent work has 
explored online optimization approaches that incrementally refine deployed models using 
limited computational budget, enabling continuous improvement without disruptive full re-
optimization cycles [89]. 

The systems perspective on cross-hardware optimization emphasizes that deployment 
efficiency depends not only on individual model optimizations but also on how multiple 
models and system components interact within the overall infrastructure. Production 
recommendation systems typically deploy multiple models for different purposes such as 
candidate generation, ranking, and re-ranking, with complex dependencies between these 
stages [90]. Joint optimization across the entire recommendation pipeline can achieve better 
end-to-end performance than optimizing each component independently because it accounts 
for how upstream optimizations affect downstream model inputs and computational budgets 
[91]. Resource sharing mechanisms that enable multiple models to efficiently share hardware 
resources, embedding tables, and intermediate computations can substantially improve 
overall system efficiency. Recent research has developed holistic optimization frameworks 
that consider the entire recommendation system as a single optimization target, discovering 
coordinated deployment strategies that balance resource allocation across all components to 
maximize overall business metrics. 

7. Conclusion 

This comprehensive review has examined cross-hardware optimization strategies for large-
scale recommendation model inference in production systems, synthesizing recent advances 
across model compression, hardware-aware architecture design, dynamic resource allocation, 
and system-level integration. The analysis reveals that efficient deployment of 
recommendation models across heterogeneous hardware infrastructure requires a 
multifaceted approach that coordinates optimization at multiple levels, from low-level 
numerical precision selection to high-level system resource management. The most successful 
deployment strategies combine complementary techniques such as quantization, pruning, and 
distillation with hardware-aware architecture search and dynamic resource allocation to 
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achieve substantial improvements in inference efficiency while maintaining prediction 
accuracy. 

Several key findings emerge from this review. First, model compression techniques including 
quantization, pruning, and knowledge distillation have matured to the point where aggressive 
compression with minimal accuracy loss is achievable for recommendation models, enabling 
deployment on resource-constrained hardware platforms. Second, hardware-aware NAS has 
demonstrated the ability to discover novel model architectures that achieve superior 
efficiency compared to manually designed alternatives, particularly when the search process 
explicitly optimizes for target hardware characteristics. Third, dynamic resource allocation 
and load balancing enable production systems to leverage heterogeneous infrastructure 
effectively, improving overall throughput and resource utilization through intelligent 
workload distribution. Fourth, integrated optimization approaches that combine multiple 
techniques in coordinated fashion consistently outperform sequential application of 
individual optimizations, highlighting the importance of considering optimization holistically 
rather than as isolated stages. 

Despite substantial progress in cross-hardware optimization, several important challenges 
remain. The rapid evolution of hardware architectures introduces a moving target for 
optimization research, as new accelerator designs with novel capabilities emerge regularly. 
Developing optimization techniques that generalize across diverse and potentially unknown 
future hardware platforms remains an open research problem. The tension between accuracy 
and efficiency continues to present difficult trade-offs, particularly for applications where 
even small accuracy degradations can significantly impact business metrics. Automated 
methods for determining appropriate accuracy-efficiency trade-offs based on application 
requirements and business constraints would substantially improve the practical applicability 
of cross-hardware optimization. The complexity of production recommendation systems, 
which often comprise multiple models with intricate dependencies, creates challenges for 
holistic optimization that current research has only partially addressed. 

Looking forward, several promising research directions warrant further investigation. The 
development of universal optimization strategies that discover single model configurations 
efficient across all hardware types would simplify deployment workflows and reduce model 
management overhead. Advanced meta-learning approaches that rapidly adapt optimization 
policies to new hardware platforms or recommendation domains could accelerate the 
deployment of efficient models. Continuous optimization systems that automatically maintain 
optimal deployment configurations as system conditions evolve represent an important step 
toward fully autonomous production systems. The integration of hardware co-design 
principles where recommendation model architectures influence future accelerator design 
could create a virtuous cycle of optimization that benefits both software and hardware 
development. Finally, the expansion of cross-hardware optimization to encompass not only 
computational efficiency but also energy consumption, carbon footprint, and total cost of 
ownership would align technical optimization with broader sustainability and economic 
objectives. 

The field of cross-hardware optimization for recommendation systems has advanced 
significantly in recent years, progressing from primarily theoretical research to practical 
deployment in large-scale production systems. As recommendation models continue to grow 
in complexity and scale, the importance of efficient cross-hardware deployment will only 
increase. The techniques and principles reviewed in this paper provide a solid foundation for 
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deploying large-scale recommendation systems efficiently across heterogeneous 
infrastructure, while the identified research challenges offer clear directions for future work. 
Success in this domain requires continued collaboration between ML researchers, systems 
engineers, and hardware architects to develop optimization approaches that address the full 
complexity of production deployment while remaining practical and accessible to 
organizations of varying technical sophistication. The ultimate goal remains creating 
recommendation systems that deliver personalized experiences to billions of users efficiently, 
sustainably, and cost-effectively across the diverse hardware landscape of modern computing 
infrastructure. 
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