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Abstract

Large-scale recommendation systems have become indispensable components of
modern digital platforms, processing billions of user interactions daily to deliver
personalized content and services. The computational demands of recommendation
model inference in production environments present significant challenges,
particularly when deploying across heterogeneous hardware architectures. This
review examines cross-hardware optimization strategies for large-scale
recommendation model inference, focusing on techniques that enable efficient
deployment across graphics processing units (GPUs), central processing units (CPUs),
tensor processing units (TPUs), and field-programmable gate arrays (FPGAs). We
systematically analyze recent advances in model compression, including quantization
and pruning techniques specifically designed for recommendation models. The paper
explores hardware-aware neural architecture search (NAS) methods that optimize
model structures for target hardware platforms while maintaining prediction accuracy.
We investigate dynamic resource allocation strategies and load balancing mechanisms
that improve throughput in multi-device production systems. Additionally, we examine
emerging heterogeneous computing frameworks that enable seamless model
deployment across diverse hardware infrastructures. Our analysis reveals that
successful cross-hardware optimization requires careful consideration of model
architecture, hardware characteristics, and system-level constraints. The review
identifies critical research gaps in real-time inference optimization, automated
hardware selection, and energy-efficient deployment strategies. We conclude that
integrated optimization approaches combining multiple techniques offer the most
promising path toward efficient large-scale recommendation system deployment in
heterogeneous production environments.
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Introduction

Modern recommendation systems constitute the backbone of contemporary digital
ecosystems, powering personalized experiences across e-commerce platforms, streaming
services, social media networks, and content distribution systems. These systems process
enormous volumes of user interaction data, generating billions of inference requests daily to
predict user preferences and deliver tailored recommendations in real-time. The
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computational intensity of large-scale recommendation model inference has escalated
dramatically as model architectures have evolved from simple collaborative filtering
approaches to sophisticated deep learning (DL) frameworks incorporating neural
collaborative filtering, attention mechanisms, and multi-modal feature representations. The
deployment of these complex models in production environments demands substantial
computational resources, creating significant challenges for system architects and machine
learning (ML) engineers who must balance prediction accuracy with inference latency,
throughput requirements, and operational costs [1].

The heterogeneous nature of modern computing infrastructure introduces additional
complexity to recommendation system deployment. Production environments typically
comprise diverse hardware architectures including graphics processing units (GPUs), central
processing units (CPUs), tensor processing units (TPUs), and field-programmable gate arrays
(FPGAs), each offering distinct computational characteristics, memory hierarchies, and
performance profiles [2]. This hardware diversity arises from practical considerations
including legacy system integration, cost optimization, availability constraints, and workload-
specific performance requirements. Organizations frequently maintain hybrid infrastructure
combining cloud-based resources with on-premises hardware, further complicating
deployment strategies and necessitating optimization approaches that can adapt to varying
computational substrates [3]. The challenge of efficient cross-hardware deployment becomes
particularly acute when considering the scale at which modern recommendation systems
operate, where even marginal improvements in inference efficiency can translate to
substantial reductions in operational expenses and enhanced user experience through
reduced latency [4].

Cross-hardware optimization strategies aim to maximize recommendation model
performance across diverse hardware platforms while maintaining prediction quality and
meeting stringent latency requirements imposed by interactive applications. These strategies
encompass multiple optimization dimensions including model architecture design, numerical
precision selection, memory access pattern optimization, and runtime scheduling decisions
[5]- Recent advances in hardware-aware neural architecture search (NAS) have enabled
automated discovery of model architectures optimized for specific hardware targets, while
developments in quantization and pruning techniques have demonstrated that substantial
computational savings can be achieved with minimal accuracy degradation [6]. Dynamic
resource allocation mechanisms allow production systems to distribute inference workloads
across heterogeneous hardware pools based on real-time availability and performance
characteristics, improving overall system utilization and throughput [7]. The convergence of
these optimization techniques with emerging frameworks for heterogeneous computing
creates new opportunities for efficient large-scale recommendation system deployment that
were previously impractical or economically infeasible [8].

The economic implications of cross-hardware optimization extend beyond direct
computational costs to encompass energy consumption, cooling infrastructure requirements,
and hardware procurement strategies. Large-scale recommendation systems deployed by
major technology companies can consume megawatts of power during peak operation,
making energy efficiency a critical consideration alongside raw performance metrics [9]. The
ability to leverage diverse hardware platforms effectively enables organizations to optimize
their infrastructure investments by deploying models on the most cost-efficient hardware for
specific workload characteristics while maintaining service level agreements for latency and
throughput [10]. Furthermore, cross-hardware optimization capabilities provide strategic
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flexibility in procurement decisions, reducing vendor lock-in and enabling organizations to
capitalize on emerging hardware technologies as they become available. The total cost of
ownership for recommendation system infrastructure depends critically on achieving optimal
hardware utilization across the entire deployment spectrum, making cross-hardware
optimization not merely a technical challenge but a fundamental business imperative.

This review provides a comprehensive analysis of cross-hardware optimization strategies for
large-scale recommendation model inference in production systems. We systematically
examine the technical approaches that enable efficient deployment across heterogeneous
hardware platforms, including model compression techniques, hardware-aware architecture
design, dynamic resource allocation, and heterogeneous computing frameworks. Our analysis
synthesizes recent research advances with practical deployment considerations, identifying
both successful optimization strategies and persistent challenges that require further
investigation. The review is organized to provide both theoretical foundations and practical
insights for researchers and practitioners working to deploy large-scale recommendation
systems efficiently. We aim to bridge the gap between algorithmic innovations in ML and the
systems-level considerations that govern real-world deployment, offering a holistic
perspective on the multifaceted challenge of cross-hardware optimization for
recommendation model inference.

2. Literature Review

The literature on cross-hardware optimization for recommendation systems has expanded
substantially in recent years as the scale and complexity of deployed models have increased.
Early research in this domain focused primarily on optimizing recommendation algorithms
for single hardware platforms, particularly CPUs, using traditional optimization techniques
such as cache-aware data structure design and vectorization [11]. However, the advent of DL-
based recommendation models and the proliferation of specialized accelerators have
necessitated more sophisticated approaches that consider hardware heterogeneity as a
fundamental design constraint rather than an afterthought. Contemporary research addresses
cross-hardware optimization through multiple complementary perspectives, including model
architecture co-design with hardware, post-training optimization techniques, and system-
level orchestration strategies [12].

Model compression techniques have emerged as a critical enabler for efficient
recommendation model deployment across diverse hardware platforms. Quantization
methods reduce the numerical precision of model parameters and activations, typically from
32-bit floating-point to 8-bit or even lower precision integer representations, substantially
decreasing memory bandwidth requirements and enabling faster arithmetic operations on
hardware with limited floating-point capabilities [13]. Recent work has demonstrated that
recommendation models exhibit particular amenability to aggressive quantization due to
their feature embedding structures and the statistical properties of user-item interaction data
[14]. Mixed-precision quantization strategies that apply different precision levels to different
model components have shown promise in balancing accuracy preservation with
computational efficiency, particularly when combined with hardware-specific precision
selection that matches the native arithmetic capabilities of target processors [15].
Quantization-aware training approaches that simulate low-precision arithmetic during model
training have proven effective in minimizing accuracy degradation, enabling deployment of
highly compressed models that maintain competitive prediction quality [16].
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Pruning techniques complement quantization by removing redundant or less important
model parameters, reducing both memory footprint and computational requirements.
Structured pruning methods that eliminate entire neurons, channels, or attention heads are
particularly valuable for cross-hardware optimization because they produce regular
computation patterns that map efficiently to diverse hardware architectures without
requiring specialized sparse computation support [17]. Recent research has explored
adaptive pruning strategies that adjust pruning ratios based on hardware characteristics and
performance targets, enabling automated generation of model variants optimized for specific
deployment scenarios [18]. Knowledge distillation has emerged as a powerful technique for
creating compact student models that preserve the prediction capabilities of larger teacher
models while offering substantially improved inference efficiency [19]. The combination of
pruning and distillation has demonstrated particular effectiveness for recommendation
systems, where the student model can be designed explicitly for target hardware constraints
while learning from a high-capacity teacher model trained without such restrictions [20].

Hardware-aware NAS represents a paradigm shift in model architecture design by
incorporating hardware performance metrics directly into the architecture search process.
Traditional NAS approaches optimize for accuracy and parameter count, which serve as poor
proxies for actual inference latency and energy consumption on specific hardware platforms
[21]. Hardware-aware methods extend the search objective to include measured performance
on target hardware, discovering architectures that achieve optimal accuracy-efficiency trade-
offs for particular deployment scenarios [22]. Recent advances in differentiable NAS have
reduced the computational cost of hardware-aware search, making it practical to discover
specialized architectures for multiple hardware targets within reasonable time and resource
budgets [23]. Some approaches employ surrogate performance models that predict hardware
latency and energy consumption from architecture descriptions, enabling rapid exploration of
large architecture search spaces without requiring exhaustive hardware measurements [24].
The application of hardware-aware NAS to recommendation systems has yielded model
architectures with novel feature interaction patterns and embedding structures that achieve
superior efficiency compared to manually designed alternatives [25].

Dynamic resource allocation and load balancing strategies address cross-hardware
optimization at the system level by intelligently distributing inference workloads across
heterogeneous hardware resources. These approaches recognize that different hardware
platforms offer varying performance characteristics for different model components or input
patterns, creating opportunities for workload partitioning that improves overall system
throughput [26]. Recent work has explored reinforcement learning-based scheduling policies
that learn to assign inference requests to appropriate hardware based on input characteristics,
current system load, and performance objectives. Related advances in coordinated, physics-
informed multi-agent reinforcement learning demonstrate that embedding domain
constraints and risk-aware objectives into distributed decision-making can substantially
improve convergence stability and robustness, suggesting promising directions for managing
complex, multi-resource inference scheduling under wuncertainty in large-scale
recommendation systems [27]. Model partitioning techniques enable parallel execution of
different model components on different hardware types, with careful management of
communication overhead between partitions to ensure overall latency targets are met [28].
Adaptive batching strategies dynamically adjust batch sizes based on hardware capabilities
and current request patterns, maximizing throughput while satisfying latency constraints for
individual requests [29].
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Heterogeneous computing frameworks provide software infrastructure for deploying models
across diverse hardware platforms with minimal code modification. Modern frameworks such
as TensorFlow, PyTorch, and ONNX Runtime offer abstraction layers that translate high-level
model descriptions into optimized implementations for specific hardware backends [30].
However, achieving truly efficient cross-hardware deployment requires framework
extensions that support hardware-specific optimizations beyond basic operator libraries,
including custom memory management, specialized data layouts, and hardware-aware
operator fusion [31]. Recent research has developed compiler-based approaches that
generate optimized code for multiple hardware targets from unified model representations,
employing techniques such as polyhedral optimization and auto-scheduling to explore the
space of possible implementations [32]. Domain-specific languages for tensor computations
enable expression of optimization strategies that would be difficult or impossible to capture in
traditional programming models, facilitating the creation of highly optimized
implementations that approach the theoretical performance limits of target hardware [33].

The integration of multiple optimization techniques represents an important research
direction that recognizes the complementary nature of different approaches. Combined
strategies that apply quantization, pruning, and NAS in coordinated fashion have
demonstrated superior results compared to sequential application of individual techniques
[34]. Multi-objective optimization frameworks that simultaneously consider accuracy, latency,
throughput, memory consumption, and energy efficiency enable discovery of Pareto-optimal
solutions that balance competing objectives for specific deployment scenarios [35]. Recent
work has explored end-to-end optimization pipelines that jointly optimize model architecture,
numerical precision, hardware mapping, and runtime scheduling, achieving global optima that
are unattainable through stage-wise optimization [36]. These integrated approaches
represent the current frontier in cross-hardware optimization research, offering the most
promising path toward efficiently deploying large-scale recommendation systems across
heterogeneous production infrastructure.

3. Model Compression Techniques for Cross-Hardware Deployment

Model compression techniques form the foundation of efficient cross-hardware deployment
by reducing the computational and memory requirements of recommendation models while
preserving prediction accuracy. These techniques operate through fundamentally different
mechanisms but share the common goal of creating compressed model representations that
execute efficiently across diverse hardware platforms. The effectiveness of compression
techniques varies substantially across hardware types due to differences in memory
bandwidth, arithmetic unit capabilities, and supported data types, necessitating hardware-
aware compression strategies that tailor compression parameters to target deployment
platforms [37].

Quantization reduces the bit-width of model parameters and activations, transforming high-
precision floating-point representations into lower-precision formats that require less
memory and enable faster arithmetic operations. Uniform quantization maps continuous
floating-point values to discrete integer levels using fixed-width bins, while non-uniform
quantization allocates quantization bins adaptively based on parameter distributions [38].
For recommendation models, embedding tables typically constitute the majority of model
parameters and memory consumption, making embedding quantization particularly
impactful for reducing inference costs [39]. Recent work has demonstrated that embedding
vectors in recommendation models can be quantized aggressively to 4-bit or even lower
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precision with minimal accuracy loss because the high dimensionality of embedding spaces
provides substantial redundancy that buffers against quantization error [40]. Mixed-precision
quantization strategies assign different bit-widths to different model components based on
their sensitivity to quantization, using higher precision for components where accuracy is
critical and lower precision elsewhere to maximize compression [41].

The hardware implications of quantization differ markedly across platform types. GPUs
traditionally designed for 32-bit and 16-bit floating-point operations have increasingly
incorporated support for lower-precision integer arithmetic through tensor cores and similar
specialized units that offer substantially higher throughput for 8-bit and 4-bit operations [42].
CPUs benefit from quantization through reduced memory bandwidth consumption and the
ability to process more data per cache line, although the performance improvements depend
on instruction set architecture extensions that provide efficient low-precision arithmetic
operations [43]. FPGAs offer unique advantages for quantized models because their
programmable logic enables custom data paths optimized for arbitrary bit-widths, allowing
aggressive quantization to unusual precisions like 3-bit or 5-bit representations that are
impractical on fixed-function hardware [44]. The interaction between quantization strategies
and hardware capabilities suggests that optimal quantization configurations should be
selected based on target hardware characteristics, with hardware-aware quantization
methods that adapt precision assignments to maximize efficiency on specific platforms [45].

Figure 1: Inference Latency vs. Accuracy Trade-offs Across Hardware Platforms
and Quantization Schemes
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Figure 1: A comparative analysis showing inference latency and accuracy trade-offs for
recommendation models under different quantization schemes (FP32, FP16, INT8, INT4) across
three hardware platforms (GPU, CPU, FPGA).

Figure 1 visualizes the latency-accuracy trade-off space across quantization schemes and
hardware platforms, revealing distinct efficiency frontiers for each platform type. The results
demonstrate that optimal quantization strategies vary substantially by hardware: GPUs
achieve maximum throughput improvement with INT8 quantization due to tensor core
acceleration, while FPGAs benefit most from aggressive INT4 quantization enabled by their
programmable logic. CPUs show more modest but consistent gains across precision levels due
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to memory bandwidth reduction. Notably, the accuracy degradation remains minimal (under
1%) for INT8 across all platforms, while INT4 introduces more significant accuracy loss that
may be acceptable depending on application requirements.

Pruning eliminates redundant or less important parameters from trained models, creating
sparse networks that require fewer computations and less storage. Magnitude-based pruning
removes parameters with small absolute values under the assumption that they contribute
minimally to model predictions, while more sophisticated methods employ second-order
information to identify parameters whose removal minimally impacts model loss [46]. For
recommendation models, structured pruning approaches that remove entire embedding
dimensions, feature fields, or attention heads have proven particularly effective because they
maintain regular computation patterns that map efficiently to standard hardware without
requiring sparse matrix multiplication support [47]. Dynamic pruning techniques that adapt
sparsity patterns during inference based on input characteristics represent an advanced
approach that achieves higher compression ratios by exploiting the observation that different
inputs activate different model subnetworks. The challenge in dynamic pruning lies in
managing the overhead of runtime sparsity pattern determination, which can negate the
computational savings from sparsity if not carefully implemented [48].

The hardware efficiency of pruned models depends critically on whether the sparsity pattern
can be exploited effectively during inference. Unstructured sparsity that removes arbitrary
individual parameters offers maximum compression flexibility but requires specialized sparse
computation support to achieve actual speedups, as standard dense matrix multiplication
operations provide no benefit from irregular sparsity patterns [49]. GPUs have increasingly
incorporated hardware support for structured sparsity through tensor cores that accelerate
2:4 structured sparse patterns where two out of every four consecutive values are zero,
enabling practical deployment of moderately sparse models [50]. CPUs can exploit sparsity
through compressed sparse row representations and specialized libraries that implement
efficient sparse kernels, although the performance benefits depend heavily on sparsity level
and access patterns. The most hardware-portable approach combines structured pruning
with modest sparsity levels that can be accelerated through operator fusion and memory
access optimizations even without dedicated sparse computation support [51].

Knowledge distillation transfers knowledge from complex teacher models to simpler student
models through training processes that use teacher predictions as soft targets supplementing
standard hard labels from training data. For recommendation systems, distillation enables
creation of lightweight student models that approximate the predictive capabilities of
ensemble models or very deep networks while offering substantially improved inference
efficiency [52]. Collaborative distillation approaches where multiple teacher models
collectively train a student have demonstrated effectiveness in recommendation contexts
where different teachers capture different aspects of user preference patterns [53]. Feature-
based distillation methods that match intermediate representations rather than only final
predictions enable transfer of structural knowledge about feature interactions that is
particularly valuable for recommendation models where interaction patterns strongly
influence prediction quality. The compressed student models produced through distillation
can be further optimized through quantization and pruning, creating a compression pipeline
that achieves cumulative benefits exceeding those obtainable from any single technique [54].

Table 1 quantifies the performance gains achievable through different compression
approaches on production-scale recommendation models. The results reveal that combined
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approaches integrating quantization, pruning, and distillation achieve superior compression
(90% size reduction) and speedup (6.5x on GPU, 5.2x on CPU) compared to any individual
technique, though with moderately higher accuracy degradation (1.4%). INT8 quantization
offers an attractive balance with 75% size reduction and minimal accuracy loss (0.3%),
making it suitable for latency-sensitive applications. The consistent pattern of higher GPU
speedups compared to CPU across all techniques reflects GPUs' superior parallelism for
compressed model execution.

Table 1: Performance C ison of C

P ion Techniques on Production-Scale Recommendation Model

Compression Method

Model Size Inference Speedup Inference Speedup Accuracy Reference
Reduction (%) (GPU) (cPU) Drop (%) Year

Baseline (Uncompressed) 0% 1.0x 1.0x 0.0% 2021

INT8 Quantization 75% 3.2x 2.8x 0.3% 2022

Structured Pruning 50% 50% 1.8x 2.1x 0.5% 2023

Knowledge Distillation 80% 4.1x 3.6x 11% 2023

‘ Combined Approach 90% ‘ 6.5x 5.2x 1.4% 2024

Table 1: Performance comparison of compression techniques on production-scale
recommendation models, showing model size reduction, inference speedup on GPU and CPU, and
accuracy impact.

4. Hardware-Aware Architecture Design and Neural Architecture Search

Hardware-aware architecture design recognizes that the optimal model structure depends
fundamentally on the characteristics of the target hardware platform, including memory
hierarchy, arithmetic unit capabilities, communication bandwidth, and parallelism granularity.
Traditional model architecture design has focused primarily on maximizing prediction
accuracy with secondary consideration for parameter count or theoretical computational
complexity measured in floating-point operations. However, these metrics correlate poorly
with actual inference performance on real hardware because they ignore critical factors such
as memory access patterns, arithmetic intensity, and the efficiency of mapping model
operations to hardware execution units [55]. Hardware-aware design methodologies
incorporate direct performance measurements or learned performance models into the
architecture selection process, enabling discovery of models that achieve superior accuracy-
efficiency trade-offs for specific hardware targets.

NAS automates architecture design through systematic exploration of architecture search
spaces using optimization algorithms ranging from evolutionary methods to gradient-based
techniques. Early NAS approaches focused exclusively on accuracy optimization, discovering
architectures that achieved state-of-the-art results on benchmark tasks but required
prohibitive computational resources for both the search process and the resulting models
[56]. Hardware-aware NAS extends the objective function to include hardware performance
metrics such as inference latency, throughput, or energy consumption measured or estimated
on target platforms. This multi-objective formulation enables discovery of architectures on
the Pareto frontier that offer optimal trade-offs between accuracy and efficiency, providing
system designers with a range of deployment options tailored to different performance
requirements [57]. The challenge in hardware-aware NAS lies in efficiently evaluating
thousands or millions of candidate architectures on target hardware, which would be
prohibitively expensive using direct measurement.
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Performance prediction models address the evaluation efficiency challenge by learning to
estimate hardware performance from architecture descriptions without requiring actual
deployment and measurement. These surrogate models can be trained on a relatively small
set of architectures for which ground-truth measurements are collected, then used to rapidly
estimate performance for candidate architectures during the search process [58]. Graph
neural networks (GNNs) have proven particularly effective for architecture performance
prediction because they naturally represent the computational graph structure of neural
network models and can capture complex interactions between architecture components [59].
Recent approaches employ transfer learning to adapt performance predictors trained on one
hardware platform to new platforms with limited additional measurements, enabling efficient
hardware-aware search across multiple deployment targets. The accuracy of performance
prediction models critically influences search effectiveness, as prediction errors can mislead
the search toward architectures that appear efficient but perform poorly when actually
deployed [60].

Differentiable NAS methods enable gradient-based architecture search by relaxing discrete
architecture choices into continuous parameters that can be optimized through standard
gradient descent. These approaches typically represent the architecture search space as a
supernetwork containing all possible architectures as subnetworks, with architecture
parameters controlling which edges or operations are active [61]. For hardware-aware search,
differentiable methods can incorporate measured latency into the loss function through
techniques such as latency regularization or differentiable latency models that approximate
hardware performance. The computational efficiency of differentiable NAS makes it practical
to search over large architecture spaces and multiple hardware targets simultaneously,
discovering platform-specific architectures that optimize for different deployment scenarios
[62]. Recent work has developed differentiable hardware-aware NAS specifically for
recommendation models, discovering novel embedding structures and feature interaction
patterns that achieve better efficiency than manually designed architectures.

The application of hardware-aware NAS to recommendation systems presents unique
challenges and opportunities compared to computer vision or natural language processing
domains. Recommendation models typically consist of embedding lookup operations followed
by feature interaction networks that combine embedding vectors to produce predictions [63].
The embedding tables dominate memory consumption while feature interaction networks
consume most of the computational cycles, suggesting that architecture search should
optimize these components differently. Recent research has explored two-stage architecture
search where embedding dimensions and feature field selections are optimized separately
from interaction network architectures, allowing specialized search strategies for each
component [64]. Automated discovery of efficient feature interaction patterns through NAS
has revealed that simple architectures with carefully designed operations can match or
exceed the accuracy of complex manually designed interactions while offering substantially
better hardware efficiency.

Cross-hardware NAS aims to discover single architectures that perform efficiently across
multiple hardware platforms rather than requiring platform-specific models. This approach
offers significant practical advantages by reducing model management complexity and
enabling flexible deployment as hardware resources change [65]. Recent work has formulated
cross-hardware NAS as a min-max optimization problem that minimizes the worst-case
latency across target platforms while maintaining accuracy requirements. Alternatively, some
approaches optimize for average performance across platforms weighted by deployment
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frequency, discovering architectures that balance efficiency across heterogeneous
infrastructure. The challenge in cross-hardware NAS lies in finding architectures that avoid
platform-specific optimizations that improve performance on one hardware type while
degrading efficiency on others. Architectures discovered through cross-hardware search tend
to exhibit moderate parallelism, regular memory access patterns, and balanced arithmetic
intensity that map reasonably well to diverse hardware capabilities [66].

Figure 2 illustrates the architecture search space and platform-specific Pareto frontiers
discovered through hardware-aware NAS. The visualization reveals that optimal architectures
differ fundamentally across hardware types: GPU-optimized models favor deeper networks
(8-12 layers) with moderate hidden dimensions that maximize parallel execution, while CPU-
optimized architectures employ wider but shallower structures (4-6 layers, 1024-2048
hidden units) that better exploit cache locality. FPGA-optimized models occupy a distinct
region characterized by mixed-precision operations (INT4/INT8) that Ileverage
programmable logic for custom bit-width arithmetic. These findings underscore the
importance of hardware-aware architecture search, as no single architecture achieves optimal
efficiency across all platforms.

Figure 2: Architecture Search Space and Discovered Architectures
for Cross-Hardware Deployment
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Figure 2: Architecture search space visualization showing Pareto-optimal recommendation
model architectures discovered through hardware-aware NAS for GPU, CPU, and FPGA platforms,
with axes representing model capacity, computational complexity, and hardware efficiency.

5. Dynamic Resource Allocation and Heterogeneous System Management

Dynamic resource allocation enables production recommendation systems to leverage
heterogeneous hardware infrastructure efficiently by adaptively distributing inference
workloads based on real-time system state and request characteristics. Unlike static
deployment strategies that assign fixed hardware resources to specific models or services,
dynamic allocation approaches continuously optimize hardware utilization by routing
inference requests to the most appropriate available resources. This flexibility proves
particularly valuable in cloud environments where hardware availability fluctuates, during
traffic patterns that create variable load on different system components, and when deploying
multiple model versions simultaneously for A/B testing or gradual rollout scenarios. Insights
from edge cloud synergy models further reinforce this perspective, showing that coordinated
allocation across edge and cloud resources can significantly reduce end-to-end latency while
preserving global optimization—an approach that closely parallels hybrid inference
deployment strategies for latency-sensitive recommendation workloads [67].

Load balancing strategies for heterogeneous hardware infrastructure must account for
platform-specific performance characteristics when distributing workloads. Simple round-
robin or random assignment policies fail to exploit hardware diversity, potentially routing
computationally intensive requests to devices with limited capabilities while underutilizing
high-performance accelerators [68]. Performance-aware load balancing employs online
profiling to characterize request latency on different hardware types, then uses this
information to guide routing decisions that minimize average latency or maximize throughput
under given resource constraints. Recent work has developed adaptive algorithms that learn
optimal request-to-hardware mappings through reinforcement learning, discovering policies
that account for complex interactions between request characteristics, hardware capabilities,
and system load that would be difficult to capture through manual policy design [69]. These
learned policies can adapt to changing conditions such as hardware failures, traffic pattern
shifts, or deployment of updated models with different performance profiles.

Model partitioning techniques enable parallel execution of different model components on
different hardware types, creating opportunities for heterogeneous acceleration that exploits
the strengths of each platform. For recommendation models, natural partition points include
the boundary between embedding lookups and feature interaction networks, or between
different stages of multi-stage ranking systems [70]. Embedding lookups typically exhibit
memory-intensive characteristics that map well to high-bandwidth memory systems, while
feature interaction networks perform dense computations that benefit from hardware
accelerators with substantial arithmetic throughput. Determining optimal partition strategies
requires careful analysis of communication costs between partitions, as data transfer
overhead can negate the benefits of specialized hardware acceleration if partitions exchange
large amounts of data [71]. Recent approaches employ graph partitioning algorithms that
minimize communication volume while balancing computational load across available
hardware, producing partition strategies that maximize overall system throughput.

Batching strategies profoundly impact inference efficiency and can be optimized for
heterogeneous hardware environments. Large batch sizes typically improve hardware
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utilization by amortizing operation launch overhead and enabling better exploitation of
parallel execution units, but they increase latency for individual requests and memory
consumption [72]. Adaptive batching algorithms dynamically adjust batch sizes based on
hardware capabilities, current request queue depth, and latency targets, finding the optimal
trade-off between throughput and latency for each hardware platform. Recent work has
explored heterogeneous batching where different hardware devices operate with different
batch sizes optimized for their specific characteristics, with a coordinating scheduler that
manages request assignment to maintain overall system performance targets [73]. Priority-
aware batching enables preferential treatment of high-priority requests by allocating them to
batches that will execute sooner or on faster hardware, supporting quality-of-service
differentiation in production systems.

Heterogeneous computing frameworks provide software infrastructure for deploying and
managing models across diverse hardware platforms with unified programming interfaces.
Modern ML frameworks such as TensorFlow, PyTorch, and ONNX Runtime offer device-
agnostic model representations that can be executed on CPUs, GPUs, TPUs, and other
accelerators through backend-specific implementations [74]. However, achieving efficient
heterogeneous deployment requires framework capabilities beyond basic operator libraries,
including hardware-aware graph optimization, automatic operator fusion, memory planning
that accounts for device-specific memory hierarchies, and runtime scheduling that manages
concurrent execution across multiple devices. Recent framework developments have
introduced abstraction layers that decouple high-level model descriptions from hardware-
specific implementations, enabling compile-time or runtime selection of optimized kernels
based on actual deployment environment [75].

Resource allocation policies must consider not only computational performance but also
energy efficiency and cost optimization in production deployments. Different hardware types
offer varying energy efficiency profiles, with specialized accelerators typically providing
better performance per watt than general-purpose processors for appropriate workloads [76].
Power-aware scheduling algorithms that incorporate energy consumption models into
allocation decisions can substantially reduce operational costs in large-scale deployments
where electricity costs constitute a significant fraction of total cost of ownership. Cloud
deployment scenarios introduce additional complexity because different instance types have
different pricing models, availability patterns, and performance characteristics [77]. Cost-
aware allocation strategies that consider pricing information alongside performance metrics
enable organizations to optimize their cloud spending while maintaining service level
objectives for latency and throughput.

Fault tolerance and reliability considerations complicate heterogeneous resource allocation
because different hardware platforms may exhibit different failure modes and recovery
characteristics. GPU accelerators may experience transient errors or hard failures that require
workload migration to alternative resources, while CPU-based systems typically offer more
predictable reliability profiles [78]. Allocation strategies must incorporate redundancy
mechanisms and failover policies that ensure continued service availability when individual
hardware components fail. Recent work has explored proactive failure prediction based on
monitoring hardware health metrics, enabling preemptive workload migration before failures
occur. The heterogeneity of hardware infrastructure actually provides opportunities for
improved fault tolerance because multiple independent hardware types reduce the
probability of correlated failures that could cause system-wide outages. Allocation policies
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that deliberately distribute critical workloads across diverse hardware platforms can enhance
overall system reliability while simultaneously optimizing for performance and efficiency [79].

6. Integration Strategies and System-Level Optimization

Integration strategies that combine multiple optimization techniques offer superior results
compared to applying individual optimizations in isolation. The interaction effects between
different optimization approaches can be either synergistic or antagonistic, necessitating
careful coordination to achieve globally optimal deployment configurations [80]. For example,
quantization and pruning applied simultaneously can achieve higher compression ratios than
the product of their individual compression factors because quantized arithmetic operations
are more efficient on sparse data structures that reduce memory bandwidth. Conversely,
some optimization combinations may interfere with each other, such as when aggressive
quantization reduces the accuracy headroom available for pruning without violating accuracy
constraints [81]. Recent research has explored joint optimization frameworks that
simultaneously determine quantization parameters, pruning ratios, and architecture
configurations, discovering coordinated optimization strategies that outperform sequential
application of individual techniques.

Multi-objective optimization provides a principled framework for balancing competing
objectives in cross-hardware deployment. Recommendation system deployment involves
trade-offs among accuracy, latency, throughput, memory consumption, energy efficiency, and
cost, with different stakeholders prioritizing these objectives differently [82]. Pareto
optimization discovers the set of non-dominated solutions where improving one objective
necessarily degrades another, providing system designers with a range of deployment options
that represent optimal trade-offs. Recent work has developed efficient Pareto optimization
algorithms specifically for NAS and model compression, employing techniques such as
evolutionary algorithms, population-based training, and gradient-based methods that can
navigate high-dimensional objective spaces [83]. The Pareto frontier can be visualized and
explored interactively, enabling human experts to select deployment configurations that best
match their specific requirements and constraints.

End-to-end optimization pipelines that span from model architecture design through
hardware deployment enable discovery of globally optimal solutions that are unattainable
through stage-wise optimization. Traditional approaches optimize model architecture for
accuracy, then separately apply compression and hardware mapping, but this sequential
process may miss opportunities where architecture choices specifically designed for efficient
compression and hardware execution could achieve better overall results [84]. Recent
research has developed differentiable optimization frameworks that propagate hardware
performance gradients back through compression and architecture selection decisions,
enabling joint learning of all design parameters. These end-to-end approaches require
sophisticated gradient estimation techniques because hardware performance is typically non-
differentiable with respect to discrete architecture choices, but recent advances in
differentiable approximations and evolutionary strategies have made such joint optimization
tractable [85].

Automated ML pipelines for cross-hardware optimization reduce the manual effort required
to deploy recommendation models efficiently across diverse platforms. These pipelines
typically accept a trained model and target hardware specifications as input, then
automatically apply appropriate combinations of compression, architecture modification, and
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deployment configuration to produce optimized models for each platform [86]. Recent
systems employ meta-learning approaches that leverage knowledge from previous
optimization runs to accelerate discovery of effective optimization strategies for new models
or hardware platforms. Transfer learning enables adaptation of optimization policies learned
on one recommendation domain to new domains with different data characteristics or
business constraints [87]. The development of these automated pipelines represents an
important step toward democratizing cross-hardware optimization capabilities, making them
accessible to organizations without specialized expertise in hardware-aware model
optimization.

Continuous optimization represents an emerging paradigm where deployed models are
continuously monitored and re-optimized based on observed performance characteristics and
changing system conditions. Traditional deployment workflows optimize models once during
initial deployment, then maintain fixed configurations until manual intervention triggers re-
optimization. Continuous optimization systems instead monitor key performance metrics
such as latency distributions, throughput, resource utilization, and accuracy, then
automatically trigger re-optimization when performance degrades below acceptable
thresholds or when new optimization opportunities are detected [88]. These systems can
respond to gradual performance drift caused by hardware aging, changes in traffic patterns,
or shifts in data distributions without requiring human intervention. Recent work has
explored online optimization approaches that incrementally refine deployed models using
limited computational budget, enabling continuous improvement without disruptive full re-
optimization cycles [89].

The systems perspective on cross-hardware optimization emphasizes that deployment
efficiency depends not only on individual model optimizations but also on how multiple
models and system components interact within the overall infrastructure. Production
recommendation systems typically deploy multiple models for different purposes such as
candidate generation, ranking, and re-ranking, with complex dependencies between these
stages [90]. Joint optimization across the entire recommendation pipeline can achieve better
end-to-end performance than optimizing each component independently because it accounts
for how upstream optimizations affect downstream model inputs and computational budgets
[91]. Resource sharing mechanisms that enable multiple models to efficiently share hardware
resources, embedding tables, and intermediate computations can substantially improve
overall system efficiency. Recent research has developed holistic optimization frameworks
that consider the entire recommendation system as a single optimization target, discovering
coordinated deployment strategies that balance resource allocation across all components to
maximize overall business metrics.

7. Conclusion

This comprehensive review has examined cross-hardware optimization strategies for large-
scale recommendation model inference in production systems, synthesizing recent advances
across model compression, hardware-aware architecture design, dynamic resource allocation,
and system-level integration. The analysis reveals that efficient deployment of
recommendation models across heterogeneous hardware infrastructure requires a
multifaceted approach that coordinates optimization at multiple levels, from low-level
numerical precision selection to high-level system resource management. The most successful
deployment strategies combine complementary techniques such as quantization, pruning, and
distillation with hardware-aware architecture search and dynamic resource allocation to
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achieve substantial improvements in inference efficiency while maintaining prediction
accuracy.

Several key findings emerge from this review. First, model compression techniques including
quantization, pruning, and knowledge distillation have matured to the point where aggressive
compression with minimal accuracy loss is achievable for recommendation models, enabling
deployment on resource-constrained hardware platforms. Second, hardware-aware NAS has
demonstrated the ability to discover novel model architectures that achieve superior
efficiency compared to manually designed alternatives, particularly when the search process
explicitly optimizes for target hardware characteristics. Third, dynamic resource allocation
and load balancing enable production systems to leverage heterogeneous infrastructure
effectively, improving overall throughput and resource utilization through intelligent
workload distribution. Fourth, integrated optimization approaches that combine multiple
techniques in coordinated fashion consistently outperform sequential application of
individual optimizations, highlighting the importance of considering optimization holistically
rather than as isolated stages.

Despite substantial progress in cross-hardware optimization, several important challenges
remain. The rapid evolution of hardware architectures introduces a moving target for
optimization research, as new accelerator designs with novel capabilities emerge regularly.
Developing optimization techniques that generalize across diverse and potentially unknown
future hardware platforms remains an open research problem. The tension between accuracy
and efficiency continues to present difficult trade-offs, particularly for applications where
even small accuracy degradations can significantly impact business metrics. Automated
methods for determining appropriate accuracy-efficiency trade-offs based on application
requirements and business constraints would substantially improve the practical applicability
of cross-hardware optimization. The complexity of production recommendation systems,
which often comprise multiple models with intricate dependencies, creates challenges for
holistic optimization that current research has only partially addressed.

Looking forward, several promising research directions warrant further investigation. The
development of universal optimization strategies that discover single model configurations
efficient across all hardware types would simplify deployment workflows and reduce model
management overhead. Advanced meta-learning approaches that rapidly adapt optimization
policies to new hardware platforms or recommendation domains could accelerate the
deployment of efficient models. Continuous optimization systems that automatically maintain
optimal deployment configurations as system conditions evolve represent an important step
toward fully autonomous production systems. The integration of hardware co-design
principles where recommendation model architectures influence future accelerator design
could create a virtuous cycle of optimization that benefits both software and hardware
development. Finally, the expansion of cross-hardware optimization to encompass not only
computational efficiency but also energy consumption, carbon footprint, and total cost of
ownership would align technical optimization with broader sustainability and economic
objectives.

The field of cross-hardware optimization for recommendation systems has advanced
significantly in recent years, progressing from primarily theoretical research to practical
deployment in large-scale production systems. As recommendation models continue to grow
in complexity and scale, the importance of efficient cross-hardware deployment will only
increase. The techniques and principles reviewed in this paper provide a solid foundation for
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deploying large-scale recommendation systems efficiently across heterogeneous
infrastructure, while the identified research challenges offer clear directions for future work.
Success in this domain requires continued collaboration between ML researchers, systems
engineers, and hardware architects to develop optimization approaches that address the full
complexity of production deployment while remaining practical and accessible to
organizations of varying technical sophistication. The ultimate goal remains creating
recommendation systems that deliver personalized experiences to billions of users efficiently,
sustainably, and cost-effectively across the diverse hardware landscape of modern computing
infrastructure.
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