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Abstract:  

Reconfigurable mechanisms can achieve multi-task execution through structural 
switching, but determining the optimal reconfiguration strategy in complex 
environments remains a major challenge. This study proposes an intelligent task 
planning method based on reinforcement learning. The structural switching process is 
modeled as a Markov decision process, where the action space corresponds to topology 
changes and the reward function jointly considers task completion rate and energy 
consumption. A deep Q-network is employed to train the optimal switching strategy. 
Experiments conducted in 15 task environments demonstrate that the proposed method 
achieves a 35% improvement in task completion rate and an 18% reduction in average 
energy consumption compared with baseline search algorithms. Moreover, after 
training, the decision-making speed on the simulation platform is approximately 10 
times faster than that of traditional search methods. These results confirm that 
reinforcement learning can significantly enhance both efficiency and adaptability in 
reconfigurable mechanisms, providing an effective pathway for intelligent control of 
reconfigurable robots and adaptive mechanical systems. 
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1. Introduction 

Reconfigurable mechanisms, capable of performing multiple tasks through topological 

transformation, have attracted considerable attention in robotic manipulation, spacecraft 

deployment, and intelligent manufacturing [1]. Unlike conventional fixed-topology 

mechanisms, they provide enhanced flexibility and adaptability, enabling functional extension 

across diverse tasks and environments with limited hardware resources [ 2]. With the 

advancement of intelligent control and adaptive machinery, task planning and topology 

switching have become critical issues for the practical application of reconfigurable 

mechanisms [3]. Earlier studies explored graph theory and heuristic algorithms to describe and 

solve topology switching problems. Directed graph–based mapping methods partially reduced 

the complexity of topological searches [4], while heuristic search and genetic algorithms were 

applied to switching optimization in multi-task environments [5]. However, these approaches 

are often constrained by low computational efficiency and slow convergence when facing large 

state spaces or rapidly increasing task demands [6]. 
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Reinforcement learning (RL) has recently emerged as a promising alternative, enabling agents 

to learn decision-making strategies through interaction with the environment. RL-based 

frameworks have been introduced into task planning for reconfigurable mechanisms [ 7]. For 

instance, deep Q-networks (DQNs) have been applied to autonomous switching of  multi-mode 

mechanisms, improving planning efficiency [8], while hybrid strategies combining 

reinforcement learning and evolutionary algorithms have optimized reconfiguration schemes 

under complex task scenarios [9]. Policy gradient and hierarchical RL methods have also been 

investigated to enhance scalability and robustness [10,11]. These efforts demonstrate the 

potential of RL in addressing the high-dimensional complexity of task planning and topology 

switching. Despite these advances, several challenges remain. Most existing studies are 

restricted to small-scale simulations and lack systematic validation across multiple tasks and 

environments, which limits generalization [12]. Furthermore, task planning objectives have 

been primarily focused on task completion, with less attention paid to energy efficiency, 

operational robustness, and real-time adaptability [13]. Decision-making speed also remains 

insufficient to satisfy real-time requirements, particularly in dynamic environments with 

frequent task switching [14]. 

To overcome these limitations, this study proposes a reinforcement learning–based task 

planning framework for reconfigurable mechanisms. The task environment is formulated as a 

Markov decision process (MDP), with topology switching represented in the action space. A 

reward function combining task completion rate and energy consumption is designed, and a 

deep Q-network (DQN) is trained for policy optimization. Experiments conducted across 15 

task environments demonstrated that the proposed method improved task completion rates 

by 35%, reduced average energy consumption by 18%, and achieved a decision speed nearly 

ten times faster than traditional search-based algorithms. The findings provide an RL-driven 

framework that balances multi-objective optimization with real-time performance, offering 

new technical support for reconfigurable robotic systems and adaptive mechanical platforms.  

2. Materials and Methods 

2.1 Experimental Environment and Sample Construction 

To validate the proposed reinforcement learning–based task planning method, 15 

representative task environments were designed. These covered linear motion, obstacle 

avoidance, complex assembly, and multi-objective coordination. Each environment consisted 

of several subtask states, with an average of about 200 states and 8–12 topology switching 

actions. A simulation platform built on MATLAB/Simulink and Python was used to collect 

10,000 task–structure switching samples. Each sample included the initial topology, task 

requirements, switching actions, energy consumption, and completion rate indicators, which 

were used for training and testing. The dataset was divided into 70% for training, 15% for 

validation, and 15% for testing to ensure model training stability and generalization cap ability. 

2.2 Markov Decision Process Modeling 

The topology switching of reconfigurable mechanisms was formulated as a Markov decision 

process (MDP). The state space S represented the task requirements and the current topology 

of the mechanism. The action space A described the possible topology switching operations. 
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The reward function R combined task completion rate and energy consumption. The transition 

function of the MDP was defined as [15]: 

π∗(a|s) = argmax
π

𝔼[∑γt
T

t=0

R(st, at)] 

Among them, π∗ represents the optimal policy, γ is the discount factor, and R(st, at) denotes the 

immediate reward obtained by taking action at in state st. The reward function is defined as: 

R = α ⋅ C − β ⋅ E 

where C is the task completion rate, E is the energy consumption, and α and β are weighting 

coefficients used to balance efficiency and energy cost. 

2.3 Reinforcement Learning Training and Comparative Experiments 

A Deep Q-Network (DQN) was used as the reinforcement learning framework. The network 

input is the task–topology state vector, and the output is the Q-values of possible switching 

actions. During training, experience replay and a fixed target network were applied to improve 

convergence stability. The parameter settings were as follows: learning rate 0.001, discount 

factor 0.95, batch size 64, and a maximum of 10510^5105 iterations. In the comparative 

experiments, the proposed method was compared with three baseline approaches: (1) a 

traditional heuristic search algorithm; (2) a genetic algorithm for optimizing switching 

strategies; and (3) a single-objective reinforcement learning method without considering 

energy consumption. All experiments were performed under the same task environments, and 

the comparison focused on task completion rate, average energy consumption and decision 

speed. 

2.4 Quality Control and Experimental Validation 

To ensure the reliability of the experimental results, several quality control measures were 

adopted. First, all simulation samples were checked for consistency during data collection, and 

abnormal data that did not meet physical constraints were removed. Second, cross-validation 

and multiple random initializations were used in the training stage to avoid dependence on a 

single initial condition. Third, in the comparative experiments, each method was executed 20 

times, and the mean and standard deviation were calculated to evaluate stability. Finally, 

beyond the simulation platform, a small physical prototype was built and tested on 

representative tasks to verify the feasibility of the proposed method in real mechanical systems 

[16]. 

3. Results and Discussion 

3.1 System Architecture and Module Verification 

As shown in Fig. 1, an experimental platform for the reconfigurable mechanism was 

constructed using Arduino and multi-motor controllers, with a LiDAR sensor and a computing 

unit integrated for state perception and decision execution. This setup ensured that topology -

switching actions could be recognized and executed in real time, while the modular design 

reduced coupling complexity among hardware components. During system debugging, each 

motor control unit was independently calibrated, and the results showed that the driving 

accuracy was maintained within ±0.2°, which met the requirements for reconfigurable 
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switching. The modular structure and communication mechanism provided a stable physical 

platform for the deployment of reinforcement learning strategies [17]. 

 

Fig. 1. Modular hardware architecture of the reconfigurable mechanism with motor 

controllers, sensors, and computation units. 

3.2 Reinforcement Learning Strategy Modeling and Convergence Performance 

Fig. 2 shows a typical reinforcement learning interaction process, in which states, actions, and 

rewards were iteratively updated between the environment and the agent. The results 

indicated that the Deep Q-Network converged after about 20,000 iterations, with the average 

task completion rate stabilizing at around 92%. Compared with traditional heuristic methods, 

the RL strategy demonstrated clear advantages in convergence speed and performance. 

Specifically, across 15 task environments, the RL strategy reduced the average convergence 

time by 35% and consistently selected lower-energy switching schemes in most tasks. These 

findings confirm the validity of the proposed MDP model and the rationality of the reward 

function design. 

 
Fig. 2. Reinforcement learning interaction loop between agent and environment.  

3.3 Task Completion Rate and Energy Consumption Analysis 

Comparative experiments in different task environments showed that the proposed method 

improved the average task completion rate by 35% compared with traditional search 

algorithms, while reducing average energy consumption by 18%. This outcome was achieved 
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by jointly optimizing completion rate and energy consumption in the reward function, which 

enabled the RL strategy not only to find feasible solutions quickly but also to learn to select low-

cost actions during multiple switching processes. Further statistics indicated that when the task 

environment became more complex (e.g., higher obstacle density or longer path length), the 

advantage of the RL strategy was more evident, with energy consumption reductions reaching 

up to 22%. 

3.4 Decision Speed and Real-Time Evaluation 

Performance tests on the simulation platform showed that after training, the rein forcement 

learning method achieved high online inference efficiency, with an average decision time of 

0.15 seconds. This was about ten times faster than traditional search algorithms, which 

required 1.5–2.0 seconds. The speed advantage ensured that the system could adjust its 

topology in real time when the task environment changed suddenly, significantly reducing task 

interruptions caused by switching delays. The experiments also showed that as the number of 

task states increased, the decision time of traditional methods grew exponentially, while the RL 

strategy scaled almost linearly, indicating strong scalability and real-time performance [18]. 

3.5 Engineering Significance, Limitations, and Future Prospects 

Overall, the proposed intelligent task planning method achieved clear improvements in 

completion rate, energy consumption, and real-time performance, providing a foundation for 

the use of reconfigurable mechanisms in complex task environments [19]. However, some 

limitations remain. First, the experiments relied mainly on the simulation platform, and further 

validation on physical prototypes is still required. Second, the reward function focused on 

completion rate and energy consumption, without explicitly considering engineering factors 

such as mechanism wear or switching costs. Third, the current method addressed only discrete 

topology-switching actions, while future research could extend it to continuous action spaces 

or integrate hierarchical reinforcement learning to improve flexibility. Future work will include 

long-term online experiments on physical robotic platforms and the introduction of multi-

objective optimization and interpretability mechanisms to improve the reliability and 

deployability of the strategy in practical applications. 

4. Conclusion 

This study addresses the task planning problem of reconfigurable mechanisms in complex 

environments and proposes a reinforcement learning–based structure switching strategy. By 

modeling the topology switching process as a Markov Decision Process and trainin g with a 

Deep Q-Network, the method achieves joint optimization of task completion rate and energy 

consumption. Experiments in 15 representative task environments show that the proposed 

method significantly improves system performance: the average task completion rate 

increased by 35%, energy consumption decreased by 18%, and decision speed was about 10 

times faster than traditional search algorithms. These results confirm the advantages of 

reinforcement learning in multi-objective optimization and dynamic decision-making, and 

demonstrate its feasibility and effectiveness in reconfigurable robots and adaptive mechanical 

systems. Compared with existing approaches, the main contributions of this study are as 

follows: (1) a unified intelligent task planning framework is proposed that balances completion 
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rate, energy efficiency, and real-time performance; (2) the robustness and stability of the 

reinforcement learning strategy are experimentally verified across different environments; and 

(3) the algorithm is closely integrated with the hardware platform, laying the foundation for 

future engineering applications. Nevertheless, some limitations remain. First, the experiments 

are mainly based on simulation platforms, and factors such as switching delays, hardware wea r, 

and sensor noise in real robot systems have not been fully considered. Second, the reward 

function design is relatively simplified and does not yet include engineering constraints such as 

mechanism lifespan and switching cost. Third, the action space is limited to discrete topology 

switching and does not yet cover continuous structural adjustments or hierarchical control.  

Future work will focus on several directions: expanding to physical robot experiments to verify 

stability and scalability in real tasks; improving the reward function by introducing multi-

objective constraints that better reflect engineering requirements; and exploring hierarchical 

reinforcement learning and transfer learning to enhance generalization across different task 

environments. In summary, this study provides an effective path for intelligent task planning of 

reconfigurable mechanisms, demonstrates the potential application value of reinforcement 

learning in complex mechanical systems, and offers new technical references for inte lligent 

manufacturing and adaptive robotics. 
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