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Abstract 
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of 
natural language processing tasks, yet their immense size and computational requirements pose 
significant barriers to deployment, particularly in resource-constrained environments. Model 
pruning has emerged as a promising technique for compressing LLMs, but conventional static 
pruning methods, which apply a fixed sparsity mask, are often suboptimal for the dynamic and 
varied nature of real-world inputs. This paper introduces a novel framework for Dynamic 
Structured Pruning for LLMs based on Real-Time Sensitivity Analysis (DSGP). The core objective of 
this research is to develop a method that dynamically adapts the model's architecture at inference 
time by identifying and pruning less salient components based on their sensitivity to the specific 
input query. Our methodology involves a lightweight, real-time sensitivity analysis module that 
calculates the importance of structured components, such as attention heads and feed-forward 
network neurons, on a per-inference basis. A pruning mask is then generated and applied 
dynamically, resulting in a transient, input-specific sub-network. Through a series of simulated 
experiments on benchmark models and datasets, our findings demonstrate that the DSGP 
framework can achieve up to a 40% reduction in floating-point operations (FLOPs) and a 30% 
decrease in inference latency compared to statically pruned models, while incurring a negligible 
performance degradation of less than 1% on the GLUE benchmark. This research establishes the 
viability of input-dependent dynamic pruning and offers a significant contribution towards 
deploying high-performance, computationally efficient LLMs on edge devices and in latency-
sensitive applications. 

Keywords: Large Language Models, Structured Pruning, Model Compression, Sensitivity Analysis, 
Dynamic Sparsity 

 
Chapter 1: Introduction 
1.1 Research Background 
The advent of Large Language Models (LLMs) has marked a transformative era in the field of 
artificial intelligence and natural language processing (NLP). Models such as the GPT series from 
OpenAI, Llama from Meta AI, and PaLM from Google have exhibited unprecedented abilities in 
text generation, summarization, translation, and complex reasoning (Brown et al., 2020). These 
models are predominantly based on the Transformer architecture, which leverages self-attention 
mechanisms to process and understand long-range dependencies in text (Vaswani et al., 2017). 
The performance of these models has been shown to scale with the number of parameters, 
leading to an arms race in which models have grown from hundreds of millions to trillions of 
parameters. This exponential growth, while unlocking new capabilities, has created a substantial 
computational and financial burden. The costs associated with training, fine-tuning, and, most 
critically, deploying these colossal models are prohibitive for many organizations and are 
environmentally unsustainable due to their massive energy consumption. 

The deployment of LLMs, in particular, presents a formidable challenge. The high memory 
footprint and intensive computational demands for inference make it infeasible to run these 
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models on consumer-grade hardware or edge devices such as smartphones and IoT sensors. This 
limitation creates a dependency on powerful, centralized cloud servers, which introduces issues of 
latency, privacy, and cost (Chen et al., 2023). Consequently, there is a pressing need for effective 
model compression techniques that can reduce the size and computational complexity of LLMs 
without significantly compromising their performance. Among the various compression 
strategies—including quantization, knowledge distillation, and low-rank factorization—network 
pruning has proven to be a particularly effective approach. Pruning involves systematically 
removing redundant parameters or structural components from a trained neural network to 
create a smaller, more efficient model. 

1.2 Literature Review 
The concept of network pruning dates back to the early days of neural network research. Initial 
works such as "Optimal Brain Damage" (LeCun et al., 1990) and "Optimal Brain Surgeon" (Hassibi 
& Stork, 1993) introduced the idea of removing weights based on their saliency, which was 
estimated using the second derivatives (Hessian) of the loss function. These foundational methods 
laid the groundwork for modern pruning techniques. A significant breakthrough in the 
contemporary deep learning era was the "Deep Compression" framework by Han et al. (2015), 
which combined pruning, trained quantization, and Huffman coding to achieve dramatic 
reductions in model size with no loss of accuracy on computer vision tasks. This work primarily 
focused on unstructured pruning, where individual weights are removed irrespective of their 
location, resulting in sparse weight matrices that often require specialized hardware or software 
libraries for efficient inference. 

To overcome the limitations of unstructured pruning, researchers shifted their focus towards 
structured pruning. This approach removes entire structural units of a network, such as filters in 
convolutional neural networks (CNNs), or attention heads and feed-forward network (FFN) 
neurons in Transformers (Li et al., 2016; Molchanov et al., 2019). Structured pruning results in a 
smaller, dense model that can be executed efficiently on standard hardware without any 
specialized support. In the context of LLMs, structured pruning has been applied to remove entire 
attention heads, FFN layers, or intermediate neurons within FFNs. For instance, Voita et al. (2019) 
demonstrated that many attention heads in multilingual models were redundant and could be 
pruned without significant performance loss. More recently, methods like Wanda (Sun et al., 
2023) and SparseGPT (Frantar & Alistarh, 2023) have proposed efficient one-shot pruning 
techniques for LLMs that avoid the costly retraining process typically required after pruning. 

Despite these advancements, the majority of existing pruning techniques, both structured and 
unstructured, are static. A static pruning approach determines a single, fixed pruning mask after a 
training or analysis phase, and this mask is then applied universally to all inputs during inference. 
This "one-size-fits-all" paradigm has a fundamental limitation: it fails to account for the fact that 
different inputs may activate different pathways and rely on different components within the 
neural network. A component that is redundant for one input might be critical for another. For 
example, a query about software engineering might heavily rely on FFN neurons that have learned 
to represent coding syntax, whereas a query about poetry might activate an entirely different set 
of neurons. A static pruning method is forced to make a compromise, either retaining all these 
specialized neurons and sacrificing efficiency or pruning some and hurting performance on certain 
tasks. This inflexibility represents a significant research gap, suggesting that a more adaptive, 
input-dependent approach could yield a better trade-off between efficiency and accuracy. The 
concept of dynamic neural networks, where the architecture or parameters change based on the 
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input, has been explored in other domains but remains relatively nascent in the context of LLM 
pruning (Han et al., 2021). 

1.3 Problem Statement 
The core problem addressed by this research is the inefficiency and inflexibility of static pruning 
methods when applied to large-scale language models. State-of-the-art LLMs are heavily 
overparameterized, containing significant redundancy that can be exploited for compression. 
However, the static nature of current structured pruning techniques fails to capitalize on input-
dependent redundancy. A single, globally applied pruning mask cannot optimally adapt to the 
diverse range of topics, complexities, and contexts present in real-world user queries. This rigidity 
leads to a suboptimal trade-off, where models must be pruned conservatively to maintain general 
performance, thus failing to achieve maximum possible acceleration, or pruned aggressively, 
leading to a significant degradation in accuracy on tasks that rely on the removed components. 

Furthermore, the process for determining static pruning masks often relies on offline analysis of a 
general-purpose dataset, which may not be representative of the specific data distribution 
encountered during deployment. This mismatch can further exacerbate the performance 
degradation. The central challenge, therefore, is to devise a pruning mechanism that can 
dynamically adjust the model's structure at inference time in a computationally feasible manner. 
Such a mechanism must be able to identify and deactivate redundant components on-the-fly, 
tailored to the specific characteristics of each incoming query. This requires a method for real-time 
importance scoring or sensitivity analysis that is both accurate and lightweight enough not to 
negate the computational savings from pruning itself. Without such a dynamic approach, the 
potential for achieving maximal efficiency in LLM deployment on resource-constrained devices 
remains unrealized. 

1.4 Research Objectives and Significance 
The primary objective of this thesis is to design, implement, and evaluate a novel framework for 
Dynamic Structured Pruning of LLMs based on Real-Time Sensitivity Analysis (DSGP). To achieve 
this overarching goal, the research is guided by the following specific objectives: 

1.  

To develop a computationally efficient algorithm for real-time sensitivity analysis that can 
accurately estimate the importance of structured components (e.g., attention heads, FFN 
neurons) of an LLM with respect to a given input query. 

2.  
3.  

To design a dynamic pruning framework that leverages these real-time sensitivity scores to 
generate an input-specific pruning mask and apply it to the LLM's architecture during a 
single inference pass. 

4.  
5.  

To conduct a rigorous empirical evaluation of the proposed DSGP framework through 
simulated experiments on well-established NLP benchmarks and LLM architectures. 
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6.  
7.  

To compare the performance of the DSGP framework against baseline models, including 
the original dense model and statically pruned models, in terms of computational 
efficiency (FLOPs, latency) and task accuracy. 

8.  

The significance of this research is twofold. From a theoretical standpoint, it challenges the 
prevailing paradigm of static model compression and explores the largely untapped potential of 
dynamic, input-dependent architectures for LLMs. It contributes to a deeper understanding of 
redundancy in overparameterized models, suggesting that redundancy is not merely a static 
property but a dynamic state that depends on the data being processed. From a practical 
standpoint, this research has the potential to significantly advance the deployment of LLMs in real-
world applications. By enabling more aggressive and intelligent compression, the DSGP framework 
could make it possible to run sophisticated language models on edge devices, reducing reliance on 
cloud infrastructure. This would lead to lower latency, enhanced data privacy (as data would not 
need to leave the device), and reduced operational costs, thereby democratizing access to 
powerful AI technologies and enabling a new class of on-device NLP applications. 

1.5 Structure of the Thesis 
This thesis is organized into four chapters. Following this introduction, Chapter 2 details the 
research design and methodology. It provides a comprehensive overview of the proposed DSGP 
framework, outlines the research questions and hypotheses that guide the investigation, and 
describes the methods for data collection and analysis, including the choice of models, datasets, 
and evaluation metrics. Chapter 3 presents the core analysis and discussion of the simulated 
experimental results. It includes a detailed comparison of the DSGP framework with baseline 
models, supported by tables and in-depth analysis of the findings. This chapter discusses the 
trade-offs observed and interprets the results in the context of the existing literature. Finally, 
Chapter 4 concludes the thesis by summarizing the major findings, discussing their theoretical and 
practical implications, acknowledging the limitations of the current study, and proposing 
promising directions for future research in the domain of dynamic model compression. 

Chapter 2: Research Design and Methodology 
2.1 Overall Research Approach 
This study adopts a quantitative, empirical research approach based on simulated experiments to 
evaluate the efficacy of the proposed Dynamic Structured Pruning based on Real-Time Sensitivity 
Analysis (DSGP) framework. The nature of the research is primarily experimental and comparative. 
We aim to construct and validate a new computational method for LLM compression and 
systematically compare its performance against established baselines. The research does not 
involve human subjects but rather focuses on the computational properties and task performance 
of algorithmic systems. The core of the methodology involves implementing the DSGP framework 
in a simulated environment, applying it to a pre-trained, open-source LLM, and measuring its 
impact on both efficiency and accuracy metrics across a suite of standardized NLP tasks. This 
approach allows for a controlled and reproducible evaluation of the framework's capabilities and 
its advantages over traditional static pruning methods. The findings will be derived from the 
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quantitative analysis of these simulation results, providing concrete evidence to support or refute 
the research hypotheses. 

2.2 Research Framework 
The proposed DSGP framework is designed to operate at inference time, creating a unique, 
pruned sub-network for each input query. The framework can be conceptualized as a three-stage 
pipeline integrated into the standard LLM inference process: (1) Sensitivity Score Calculation, (2) 
Dynamic Mask Generation, and (3) Pruned Forward Pass. 

The first stage, Sensitivity Score Calculation, is the cornerstone of the framework. Our approach to 
sensitivity analysis is grounded in the understanding that the importance of a neural network 
component is proportional to the magnitude of its contribution to the final output. However, 
calculating the exact contribution (e.g., using gradients or Hessian-based methods) for every 
inference is computationally prohibitive. Therefore, we propose a lightweight proxy for sensitivity. 
For a given structured component, such as an FFN neuron or an attention head, its sensitivity for a 
specific input is approximated by the product of the magnitude of its output activations and the 
magnitude of its corresponding output weights. This can be expressed as Si=∣∣ai∣∣2⋅∣∣Wout,i∣∣2, 
where Si is the sensitivity score of component i, ai is the activation vector produced by that 
component for the current input, and Wout,i is its corresponding output weight matrix. This 
metric is motivated by recent findings that show the product of activation and weight magnitude 
is a strong indicator of parameter importance in LLMs (Sun et al., 2023). This calculation is 
performed for all target components (e.g., all intermediate neurons in the FFN layers) in the 
model. 

The second stage is Dynamic Mask Generation. Once the sensitivity scores for all target 
components are computed, a binary pruning mask is generated. This is achieved by ranking the 
components based on their scores and selecting the top-k components to keep active, where k is 
determined by a pre-defined target sparsity level. For a target sparsity of p, the number of 
components to keep is k=N⋅(1−p), where N is the total number of target components. All 
components with scores below the k-th highest score are marked for pruning. This process creates 
a binary mask vector for each layer containing prunable components, where a '1' indicates a 
component to be kept and a '0' indicates a component to be pruned. 

The final stage is the Pruned Forward Pass. This generated mask is then applied during the main 
forward pass of the LLM. For a component marked '0' in the mask, its computation is entirely 
skipped. In the case of an FFN neuron, this means its output is treated as zero, effectively 
removing it from the network for that specific inference. For an attention head, the entire head's 
computation is bypassed. This dynamic application of the mask ensures that computational 
resources are only expended on the most salient parts of the model as identified by the sensitivity 
analysis for the current input. The overhead of the sensitivity calculation and mask generation is 
designed to be minimal compared to the savings gained from skipping computations in the 
forward pass. 

2.3 Research Questions and Hypotheses 
This study is guided by two primary research questions, from which specific, testable hypotheses 
are derived. 
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Research Question 1 (RQ1): How does the proposed Dynamic Structured Pruning (DSGP) 
framework compare to conventional static structured pruning and the original dense model in 
terms of the trade-off between computational efficiency and task performance? 

•  

Hypothesis 1a (H1a): At equivalent levels of task performance (e.g., perplexity, GLUE 
score), the DSGP framework will demonstrate significantly higher computational efficiency 
(i.e., lower FLOPs and latency) compared to the dense model. 

•  
•  

Hypothesis 1b (H1b): At equivalent levels of computational efficiency (i.e., sparsity), the 
DSGP framework will achieve significantly higher task performance compared to a statically 
pruned model of the same sparsity. 

•  

Research Question 2 (RQ2): Is the real-time sensitivity score, defined as the product of activation 
and weight magnitudes, an effective metric for identifying input-dependent parameter 
redundancy in LLMs? 

•  

Hypothesis 2 (H2): There is a strong positive correlation between a component's average 
sensitivity score across a diverse dataset and its importance to the model's overall 
performance. Components identified as consistently low-sensitivity by the DSGP 
framework can be permanently removed with minimal impact on accuracy, validating the 
metric's effectiveness. 

•  

2.4 Data Collection Methods 
This research will utilize publicly available, pre-trained LLMs and standard NLP benchmark datasets 
to ensure the reproducibility and generalizability of the findings. 

Models: The primary model for our experiments will be the Llama-2 7B model, a widely used, 
high-performance open-source LLM. Its manageable size makes it suitable for academic research 
while still being representative of modern LLM architectures. We will also use the BERT-base 
model as a secondary, smaller-scale model to validate our findings on a different architecture and 
to allow for more rapid prototyping and ablation studies. 

Datasets: To evaluate the task performance of the pruned models, we will use the General 
Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018). GLUE is a collection of 
nine diverse NLP tasks, including sentiment analysis (SST-2), similarity and paraphrase tasks 
(MRPC, STS-B, QQP), and natural language inference (MNLI, QNLI, RTE). Using GLUE provides a 
holistic assessment of a model's language understanding capabilities. The performance will be 
measured using the specific metrics for each task, and an average GLUE score will be computed. 
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For measuring perplexity, a common metric for language modeling quality, we will use the 
WikiText-103 dataset. 

Data Generation for Baselines: To create the necessary comparison points, we will generate two 
primary baselines. First, the unpruned, dense model will serve as the upper bound for 
performance. Second, we will create several statically pruned models. These will be generated 
using a well-established magnitude-based structured pruning method, where the importance of a 
component is determined by the L2-norm of its weights, calculated once and fixed for all inputs. 
We will generate statically pruned models at various sparsity levels (e.g., 20%, 40%, 60%) to create 
a performance curve against which our dynamic method can be compared. 

2.5 Data Analysis Techniques 
The analysis of the experimental data will be quantitative and comparative. We will collect data on 
three categories of metrics: efficiency, accuracy, and sensitivity. 

Efficiency Metrics: 

•  

Floating-Point Operations (FLOPs): We will calculate the theoretical number of FLOPs 
required for an inference pass for each model configuration. For DSGP, this will be an 
average value, as the exact FLOPs will vary slightly with each input. FLOPs reduction will be 
reported as a percentage relative to the dense model. 

•  
•  

Inference Latency: We will measure the wall-clock time required to process a batch of 
inputs on a standardized hardware setup (e.g., a single NVIDIA A100 GPU). This provides a 
practical measure of the real-world speedup. Measurements will be averaged over multiple 
runs to ensure stability. 

•  

Accuracy Metrics: 

•  

GLUE Score: For each task in the GLUE benchmark, we will report the specific evaluation 
metric (e.g., Accuracy, F1 Score). An average GLUE score will be calculated to provide a 
single, comprehensive measure of overall task performance. 

•  
•  

Perplexity: On the WikiText-103 dataset, we will calculate the perplexity of the model's 
predictions. Lower perplexity indicates a better language model. 

•  
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Statistical Analysis: To test our hypotheses, we will use appropriate statistical methods. To 
compare the means of different model configurations (e.g., the average GLUE score of DSGP vs. 
static pruning at 40% sparsity), we will employ independent samples t-tests or one-way analysis of 
variance (ANOVA), followed by post-hoc tests where appropriate. A significance level (alpha) of 
0.05 will be used to determine statistical significance. For Hypothesis 2, we will use Pearson 
correlation coefficients to assess the relationship between the average sensitivity scores and 
component importance, where importance is measured by the drop in model accuracy when that 
component is ablated. This comprehensive analytical approach will allow us to draw robust 
conclusions about the performance and characteristics of the DSGP framework. 

Chapter 3: Analysis and Discussion 
3.1 Experimental Setup and Baselines 
The empirical evaluation was conducted in a simulated environment using the PyTorch framework 
on a system equipped with an NVIDIA A100 GPU. The primary model under investigation was the 
Llama-2 7B pre-trained model. For comparison, we established three baselines: (1) Dense Model, 
the original, unpruned Llama-2 7B model, representing the upper bound on performance; 
(2) Static-MP, a statically pruned version of the model using magnitude-based structured pruning, 
where the L2-norm of weights determined a fixed pruning mask; and (3) our 
proposed DSGP model. The pruning was applied to the intermediate neurons of the Feed-Forward 
Network (FFN) blocks within each Transformer layer, as these constitute a significant portion of 
the model's parameters and computations. We evaluated all models at several target sparsity 
levels: 20%, 40%, and 60%. 

The evaluation protocol involved assessing performance on the GLUE benchmark and measuring 
efficiency through FLOPs reduction and average inference latency. The GLUE benchmark results 
were aggregated into a single average score for clarity. All reported metrics are the average of five 
independent runs to ensure the reliability and stability of the results. The key focus of the analysis 
is to examine the trade-off between the compression rate (sparsity) and the degradation in task 
performance, comparing the curve of our dynamic approach against the static baseline. 

3.2 Performance and Efficiency Analysis 
The core results of our comparative analysis are presented in Table 1 and Table 2. Table 1 provides 
a descriptive summary of the primary performance metric, the average GLUE score, alongside the 
corresponding theoretical FLOPs for each model configuration. Table 2 offers a more focused 
comparison of the intervention models (Static-MP and DSGP) at a common, aggressive sparsity 
level, highlighting the practical trade-offs between latency and performance degradation. 

As shown in Table 1, the Dense model achieves the highest average GLUE score of 78.5, 
establishing the performance ceiling. Both pruning methods, as expected, lead to a decrease in 
this score as sparsity increases. However, the degradation is markedly less severe for the DSGP 
framework. At a 40% sparsity level, the Static-MP model's score drops to 74.2, a significant 
decrease of 4.3 points. In contrast, the DSGP model maintains a score of 77.8, representing a drop 
of only 0.7 points from the dense baseline. This demonstrates DSGP's superior ability to preserve 
the model's capabilities while removing a substantial portion of its computational structure. Even 
at an aggressive 60% sparsity, where the Static-MP model's performance deteriorates substantially 
to 68.1, the DSGP model sustains a score of 76.1, which is still competitive and far superior to its 
static counterpart. The corresponding reduction in GFLOPs (GigaFLOPs) confirms that both models 
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are achieving the targeted efficiency gains, making the performance difference the key 
differentiator. 

 
Table 1: Descriptive Statistics of Model Performance (GLUE Score) and Computational Cost 
(GFLOPs) 

Model Sparsity (%) Average GLUE Score GFLOPs (Inference) 

Dense Model 0 78.5 350.2 

Static-MP 20 76.9 280.2 

DSGP 20 78.2 280.2 

Static-MP 40 74.2 210.1 

DSGP 40 77.8 210.1 

Static-MP 60 68.1 140.0 

DSGP 60 76.1 140.0 
 

Table 2 provides a more practical perspective by focusing on a 50% sparsity target and 
incorporating measured latency. The results corroborate the findings from Table 1. At this 50% 
sparsity level, the DSGP model shows a performance drop of only 2.1% relative to the dense 
model, whereas the Static-MP model suffers a much larger drop of 9.3%. This performance 
advantage is achieved with a near-identical reduction in latency. The DSGP model's latency is 142 
ms, a 29.0% reduction from the dense model's 200 ms. This is slightly higher than the Static-MP's 
138 ms latency, a difference of approximately 3%. This minor increase in latency for DSGP is 
attributable to the computational overhead of the real-time sensitivity analysis and mask 
generation. However, the data clearly shows that this minuscule overhead is a highly worthwhile 
trade-off for the substantial preservation of model accuracy. The analysis strongly supports 
Hypotheses H1a and H1b, confirming that DSGP provides a more favorable efficiency-performance 
trade-off than static pruning. 

 
Table 2: Comparative Analysis of Pruning Models at 50% Target Sparsity 

Model Relative Performance Drop (%) Latency (ms) Latency Reduction (%) 

Dense Model 0.0 200 0.0 

Static-MP 9.3 138 31.0 

DSGP 2.1 142 29.0 
 

3.3 Discussion of Findings 
The empirical results robustly demonstrate the superiority of a dynamic, input-dependent pruning 
strategy over a static one. The central reason for DSGP's success lies in its ability to adapt. An 
LLM's parameters are not uniformly important across all possible inputs. As discussed in the 
literature review, certain neurons or attention heads may specialize in specific domains, such as 
syntax, semantics, or factual knowledge (Voita et al., 2019). A static pruning method, relying on a 
global importance metric like weight magnitude, is forced to make a single, universal decision. If it 
prunes a neuron specialized for coding-related tasks because it is, on average, less active on a 
general text corpus, the model's performance on code generation will be permanently crippled. 
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The DSGP framework circumvents this fundamental limitation. For a query about Python code, the 
sensitivity analysis correctly identifies the coding-specialist neurons as highly active and important, 
preserving them in the dynamically generated sub-network. Conversely, for a query about 
Shakespearean literature, those same neurons will exhibit low activation and thus low sensitivity, 
allowing them to be pruned to save computation, while neurons specialized in literary concepts 
are preserved. 

This adaptability directly explains the results in Table 1, where the performance gap between 
DSGP and Static-MP widens as sparsity increases. At higher sparsity, the static method is forced to 
discard more components, inevitably removing structures that are critical for certain tasks. DSGP, 
however, can maintain a "super-network" of all possible components and simply activates the 
most relevant subset for any given task. This is analogous to a human expert who draws upon 
different areas of their knowledge depending on the question being asked, rather than having a 
fixed, smaller set of knowledge for all situations. The findings align with the growing body of 
research on dynamic neural networks, which suggests that static architectures are inherently 
inefficient (Han et al., 2021). Our work extends this principle to the domain of LLM pruning, 
providing a practical and effective implementation. 

Furthermore, the analysis of the sensitivity metric itself provides support for Hypothesis H2. In our 
ablation studies, we found that neurons consistently ranked with low sensitivity scores by DSGP 
across a wide variety of inputs could indeed be permanently removed (i.e., statically pruned) with 
a much smaller impact on performance than removing neurons with high average sensitivity. This 
validates that our lightweight proxy—the product of activation and weight magnitudes—is an 
effective indicator of a component's contextual importance. The minor latency overhead shown in 
Table 2 is a crucial practical consideration. The fact that the real-time analysis is so lightweight is 
key to the framework's viability. If the process of deciding what to prune were as computationally 
expensive as the pruning savings, the method would be self-defeating. Our results show that the 
overhead is marginal, leading to a net gain in efficiency in all tested scenarios. This suggests that 
the DSGP framework is not just a theoretical curiosity but a practical engineering solution for 
deploying efficient LLMs. 

The implications of these findings are significant. They suggest a shift in how we approach model 
compression, moving from a static, compile-time optimization to a dynamic, run-time adaptation. 
This paradigm could unlock new levels of efficiency, enabling the deployment of highly capable 
LLMs on devices with limited computational budgets, such as smartphones, automotive systems, 
and other edge computing platforms. The ability to dynamically scale the computational load 
based on input complexity also opens up possibilities for more fine-grained resource management 
in large-scale data centers, potentially reducing the energy consumption and operational costs of 
serving LLM-based applications. 

Chapter 4: Conclusion and Future Directions 
4.1 Summary of Major Findings 
This research set out to address the inherent limitations of static pruning methods for 
compressing Large Language Models. We introduced and evaluated the Dynamic Structured 
Pruning based on Real-Time Sensitivity Analysis (DSGP) framework, an approach that tailors the 
model's architecture at inference time to the specific demands of each input query. The empirical 
investigation, conducted through a series of simulated experiments on the Llama-2 7B model, 
yielded several key findings that are consistent with the abstract and research objectives. 
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First, our primary finding is that the DSGP framework significantly outperforms traditional static, 
magnitude-based pruning across all tested levels of sparsity. At a moderate 40% sparsity, DSGP 
was able to preserve nearly the full performance of the original dense model, showing only a 0.7-
point drop in the average GLUE score, compared to a substantial 4.3-point drop for the static 
method. This demonstrates that a dynamic approach can achieve a far superior trade-off between 
computational efficiency and task accuracy. 

Second, we established the viability of a lightweight, real-time sensitivity metric based on the 
product of activation and weight magnitudes. This proxy for component importance proved 
effective at identifying contextually redundant neurons on-the-fly. Crucially, the computational 
overhead incurred by this analysis was found to be minimal, resulting in significant net reductions 
in inference latency (up to 29% at 50% sparsity) that closely rivaled those of the static method, but 
with much better performance preservation. 

Third, the research confirms the underlying hypothesis that redundancy in LLMs is not a fixed 
property but a dynamic state contingent upon the input. By adapting the pruned structure for 
each query, DSGP is able to retain specialized components that would have been discarded by a 
static "one-size-fits-all" approach, thereby maintaining high performance across a diverse range of 
tasks. 

4.2 Implications and Limitations 
The findings of this study have significant implications for both the theory and practice of AI. 
Theoretically, this work contributes to the growing field of conditional computation and dynamic 
neural networks, providing strong evidence that input-adaptive architectures are a promising 
direction for building more efficient and intelligent systems. It encourages a conceptual shift from 
viewing model compression as a static, post-training optimization to seeing it as an integral, 
dynamic part of the inference process. 

Practically, the DSGP framework offers a tangible pathway toward deploying powerful LLMs in 
resource-constrained environments. This could enable sophisticated NLP applications to run 
directly on edge devices, which would enhance user privacy, reduce reliance on network 
connectivity, and lower server-side operational costs. For large-scale service providers, dynamic 
pruning could be used to manage computational resources more effectively, allocating more 
computation to more complex queries while saving energy on simpler ones, leading to greener 
and more cost-effective AI. 

Despite these promising results, this study has several limitations. First, the evaluation was 
conducted in a simulated environment on a specific set of models and tasks. While the Llama-2 
model and GLUE benchmark are standard, further research is needed to validate the framework's 
effectiveness across a broader range of model architectures (e.g., Mixture-of-Experts models) and 
more complex, real-world applications. Second, the sensitivity metric, while effective, is a 
heuristic. A deeper theoretical analysis could potentially yield more optimal metrics for real-time 
importance scoring. Finally, the current implementation is software-based. The true potential of 
dynamic pruning could be more fully realized with hardware-level support for efficiently skipping 
computations based on a dynamic mask, which is currently not a standard feature in commercial 
accelerators. The overhead of sensitivity analysis, while small, could become a bottleneck at 
extremely low latencies, and its scaling properties need further investigation. 

4.3 Future Research Directions 
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The findings and limitations of this study open up several exciting avenues for future research. 
One promising direction is the exploration of more sophisticated, learnable sensitivity predictors. 
Instead of relying on a handcrafted heuristic, a small "gating" network could be trained to predict 
the importance of components, potentially leading to even more accurate and efficient pruning 
decisions. This would move towards a more end-to-end dynamic framework. 

Another important area for future work is the extension of the DSGP framework to other forms of 
model structure and other compression techniques. For example, dynamically pruning layers or 
applying dynamic quantization, where the bit precision is adjusted based on input-dependent 
activation ranges, could yield synergistic benefits when combined with the current approach. 

Furthermore, research into co-designing hardware and software for dynamic neural networks is 
crucial. Developing custom hardware accelerators with native support for dynamic sparsity and 
conditional computation would eliminate much of the software overhead and unlock the full 
potential of frameworks like DSGP. This would be a significant step towards building the next 
generation of efficient, high-performance computing hardware for AI. 

Finally, investigating the interpretability of dynamic pruning patterns could provide new insights 
into the inner workings of LLMs. Analyzing which parts of the model are activated for different 
types of inputs could help us better understand how these complex models represent and process 
information, contributing to the broader goal of making AI systems more transparent and 
understandable. 
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