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Abstract	
To	improve	the	foresight	of	urban	logistics	scheduling,	this	study	proposes	a	freight	flow	
prediction	model	that	combines	residual	graph	convolutional	networks	(ResGCN)	with	a	
multi-head	spatiotemporal	attention	mechanism.	The	model	constructs	a	traffic	graph	
using	the	structure	of	 the	road	network	and	 integrates	 factors	such	as	 freight	orders,	
road	conditions,	 and	holidays,	 aiming	 to	 capture	non-Euclidean	correlations	between	
nodes	and	multi-dimensional	temporal	variations.	Experimental	results	on	a	real-world	
freight	platform	dataset	show	that	the	proposed	model	achieves	improvements	of	14.5%	
and	11.8%	 in	MAE	and	RMSE,	 respectively,	 compared	with	 traditional	LSTM	and	TCN	
methods.	
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1. Introduction	
With	the	rapid	growth	of	e-commerce	and	instant	delivery	services,	the	demand	for	urban	road	
freight	has	continued	to	increase	[1].	Data	show	that	the	annual	growth	rate	of	urban	freight	
vehicles	 in	 China	 exceeds	 8.7%,	 and	 by	 2023,	 the	 national	 urban	 road	 freight	 volume	 had	
reached	over	5.6	trillion	ton-kilometers,	accounting	for	nearly	60%	of	total	social	logistics.	In	
first-tier	and	major	second-tier	cities,	 freight	traffic	accounts	for	more	than	25%	of	the	total	
urban	 road	 traffic,	 posing	 significant	 challenges	 to	 traffic	 operations	 and	 environmental	
management	 [2].	 Urban	management	 departments	 urgently	 require	 data-driven	 forecasting	
models	 to	 improve	 the	 scientific	 basis	 and	 foresight	 of	 logistics	 scheduling,	 relieve	 traffic	
pressure	 and	 reduce	 energy	 consumption	 [3].	 However,	 the	 spatiotemporal	 distribution	 of	
freight	 flow	 is	 affected	 by	 multiple	 interacting	 factors,	 including	 road	 structure,	 historical	
orders,	unexpected	events,	and	holiday	fluctuations.	These	factors	result	in	complex	nonlinear	
dynamics	 and	 spatial	 heterogeneity.	 Traditional	 statistical	 regression	 models	 and	 machine	
learning	 methods,	 such	 as	 ARIMA	 and	 SVR,	 are	 limited	 in	 handling	 high-dimensional	
heterogeneous	data	and	modeling	long-term	temporal	dependencies	[4].	In	recent	years,	deep	
learning	 techniques	 have	 made	 significant	 progress	 in	 traffic	 prediction.	 Recurrent	 neural	
networks	 (RNNs)	 and	 their	 variants,	 such	 as	 LSTM	 and	 GRU,	 have	 been	 widely	 used	 for	
temporal	modeling.	Models	like	TCN	have	gained	attention	for	their	ability	to	support	parallel	
training	 and	 stable	 gradient	 flow	 [5].	 However,	 these	methods	 generally	 assume	 Euclidean	
spatial	 correlations	 and	 cannot	 effectively	 capture	 the	 complex	 topological	 dependencies	
among	 nodes	 in	 urban	 road	 networks.	 Graph	 neural	 networks	 (GNNs)	 introduce	 graph	
structures	to	model	traffic	networks	and	have	shown	strong	performance	in	tasks	such	as	bike-
sharing	 demand	 prediction	 and	 electric	 vehicle	 charging	 load	 scheduling	 [6].	 In	 particular,	
graph	convolutional	networks	(GCNs)	can	propagate	features	while	preserving	spatial	topology,	
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making	them	more	suitable	for	non-Euclidean	data	[7].	However,	standard	GCNs	often	suffer	
from	 over-smoothing	 in	 deep	 layers,	 causing	 node	 representations	 to	 become	 similar	 and	
weakening	their	expressive	ability.	To	address	this,	residual	graph	convolution	(ResGCN)	has	
been	proposed	[8].	 It	preserves	 the	original	 input	 features	and	enhances	 the	representation	
ability	of	deep	networks.	
In	addition,	urban	freight	flow	shows	clear	periodic	and	sudden	changes	over	time.	According	
to	data	from	a	major	 logistics	platform	in	2022,	during	the	"Double	11"	sales	period,	 freight	
volume	in	cities	peaked	at	3.5	times	the	normal	level.	Heatmaps	of	freight	flow	before	and	after	
holidays	and	during	peak	hours	also	show	significant	heterogeneity	[9].	To	better	capture	these	
dynamic	 changes,	 attention	mechanisms—especially	multi-head	 spatiotemporal	 attention—
are	widely	used	 in	 traffic	 forecasting.	These	mechanisms	can	dynamically	assign	weights	 to	
different	 time	 intervals	 and	 spatial	 nodes,	 improving	 the	 model’s	 ability	 to	 detect	 key	
influencing	factors.	However,	most	current	studies	focus	on	public	transportation	or	taxi	flows.	
Research	 specifically	 targeting	 freight	 flow	 remains	 limited,	 and	 existing	 approaches	 rarely	
integrate	road	topology,	order	characteristics	and	external	spatiotemporal	events	in	a	unified	
framework	[10].	In	summary,	current	studies	on	urban	road	freight	flow	prediction	still	face	
several	 key	 challenges:	 (1)	 how	 to	 accurately	model	 the	 non-Euclidean	 spatial	 structure	 of	
complex	 road	 networks	 to	 capture	 heterogeneous	 relationships	 among	 nodes;	 (2)	 how	 to	
integrate	 heterogeneous	 data	 such	 as	 holidays	 and	 unexpected	 events	 to	 enhance	 model	
robustness;	(3)	how	to	design	deep	network	structures	that	balance	prediction	accuracy	and	
computational	 efficiency	 for	 practical	 deployment.	 To	 address	 these	 problems,	 this	 paper	
proposes	a	freight	flow	prediction	model	that	combines	residual	graph	convolutional	networks	
with	multi-head	spatiotemporal	attention	[11].	The	model	constructs	a	traffic	graph	based	on	
the	urban	road	map	and	incorporates	multi-dimensional	heterogeneous	information	to	capture	
complex	spatial	dependencies	and	temporal	evolution.	Experiments	on	a	three-month	freight	
order	dataset	 from	a	provincial	 capital	 city’s	 real	 logistics	platform	show	that	 the	proposed	
model	improves	MAE	and	RMSE	by	14.5%	and	11.8%,	respectively,	compared	to	the	LSTM	and	
TCN	baselines.	The	model	demonstrates	good	prediction	accuracy	and	generalization	ability.	
This	research	not	only	provides	methodological	support	for	smart	urban	logistics	systems	but	
also	lays	a	practical	foundation	for	extending	spatiotemporal	graph	neural	networks	to	other	
scenarios.	

2. Materials	and	Methods	
2.1. Materials	and	Experimental	Site	
This	study	selects	a	provincial	capital	city	as	the	study	area	and	constructs	a	traffic	network	
graph	based	on	its	road	traffic	structure.	The	data	are	derived	from	the	real	operational	records	
provided	by	a	mainstream	digital	freight	platform	in	2023,	covering	a	period	of	nearly	three	
months	(June	to	August	2023).	The	dataset	includes	freight	order	records,	road	condition	data,	
and	public	 holiday	 information.	 The	 freight	 order	 data	 contain	 shipment	 and	 receipt	 times,	
origin	 and	 destination	 coordinates,	 order	 volume,	 weight,	 and	 other	 fields,	 covering	
approximately	1,624	active	road	nodes	within	the	city	and	surrounding	areas.	Road	condition	
data	 are	 obtained	 through	 an	 open	 API	 provided	 by	 the	 city's	 traffic	 management	 bureau,	
including	 road	 level,	 travel	 speed,	 and	 construction	 closure	 information	 [12].	 Holiday	 and	
weather	data	 are	 collected	 from	national	meteorological	 and	public	 holiday	data	 platforms,	
including	 holiday	 types,	weather	 conditions,	 and	 temperature,	 and	 are	 used	 to	 support	 the	
modeling	of	influencing	factors.	
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2.2. Experimental	and	Control	Design	
To	verify	the	effectiveness	of	the	proposed	model,	this	study	sets	up	an	experimental	group	and	
five	 baseline	 models:	 the	 traditional	 Long	 Short-Term	 Memory	 network	 (LSTM),	 Gated	
Recurrent	Unit	(GRU),	Temporal	Convolutional	Network	(TCN),	Graph	Convolutional	Network	
(GCN)	 and	 Graph	 Attention	 Network	 (GAT)	which	 incorporates	 attention	mechanisms.	 The	
proposed	model	adopts	a	structure	combining	Residual	GCN	and	multi-head	spatiotemporal	
attention,	and	is	used	as	the	experimental	group	[13].	All	models	are	trained	and	tested	on	the	
same	 training	 and	 validation	 datasets,	 and	 performance	 is	 compared	 using	 consistent	
evaluation	metrics.	The	training	set	accounts	for	70%	of	the	total	data,	while	the	validation	set	
and	test	set	each	account	 for	15%.	All	experiments	are	conducted	on	Ubuntu	22.04	with	an	
NVIDIA	RTX	3090	GPU.	The	models	are	implemented	using	PyTorch	2.0	and	the	DGL	library.	
The	Adam	optimizer	is	used,	with	an	initial	learning	rate	of	0.001,	and	training	is	conducted	for	
100	epochs.	

2.3. Data	Collection	and	Analysis	Methods	
Data	preprocessing	includes	four	steps:	outlier	removal,	coordinate	mapping,	normalization,	
and	graph	construction.	First,	the	interquartile	range	(IQR)	method	is	used	to	remove	abnormal	
order	 records	 to	 ensure	 the	 validity	 of	 timestamps	 and	 spatial	 locations.	 Second,	 GPS	
coordinates	are	mapped	to	corresponding	nodes	in	the	road	topology,	forming	a	directed	graph	
where	edge	weights	are	determined	by	travel	speed	and	distance.	Third,	features	such	as	order	
volume,	weight,	 and	 timeliness	 are	normalized	using	 the	Z-score	method	 to	 enhance	model	
convergence.	 For	 performance	 evaluation,	 regression	 error	 metrics	 are	 adopted,	 including	
Mean	Absolute	Error	(MAE),	Root	Mean	Square	Error	(RMSE),	and	Mean	Absolute	Percentage	
Error	 (MAPE).	 Additionally,	 the	 Spearman	 correlation	 coefficient	 is	 used	 to	 assess	 the	
relationship	between	external	factors	such	as	holidays	and	weather	and	freight	flow,	in	order	
to	determine	whether	these	variables	should	be	included	in	the	model.	

2.4. Model	Construction	or	Numerical	Simulation	Procedures	
The	overall	structure	of	the	proposed	model	consists	of	three	main	modules:	a	graph	structure	
encoding	 module,	 a	 residual	 graph	 convolution	 module,	 and	 a	 multi-head	 spatiotemporal	
attention	module.	First,	the	graph	structure	encoding	module	constructs	the	adjacency	matrix	
based	 on	 the	 urban	 road	 network.	 Node	 vectors	 are	 initialized	 using	 the	 random	 walk	
embedding	method	to	preserve	local	topological	information.	Second,	residual	connections	are	
introduced	into	the	graph	convolution	layers.	A	stack	of	three	ResGCN	layers	is	used	to	avoid	
excessive	smoothing	of	features	while	retaining	both	the	original	node	inputs	and	the	features	
obtained	after	graph	convolution.	Third,	the	model	incorporates	a	multi-head	spatiotemporal	
attention	mechanism.	The	time	series	is	decomposed	into	three	temporal	components:	intra-
day	cycles,	intra-week	patterns,	and	unexpected	events.	This	mechanism	guides	the	model	to	
dynamically	 focus	on	key	time	 intervals	and	spatial	regions,	 thereby	enhancing	 its	ability	 to	
capture	short-term	peaks	and	trend	shifts.	The	model	uses	a	weighted	Huber	loss	function	to	
balance	 robustness	 and	 error	 penalization.	 An	 early	 stopping	 strategy	 is	 adopted	 during	
training	to	prevent	overfitting.	

2.5. Quality	Control	and	Data	Reliability	Assessment	
To	ensure	the	accuracy	and	reproducibility	of	the	experimental	data,	this	study	applies	a	multi-
level	 quality	 control	 process.	 During	 data	 cleaning,	 multi-source	 comparison	 and	 manual	
inspection	are	performed.	The	node-matching	accuracy	is	verified	to	exceed	96%.	During	model	
training,	the	stability	of	the	model	is	evaluated	by	conducting	five	repeated	experiments	with	
different	random	seeds.	The	standard	deviation	of	the	results	is	kept	within	3%.	To	assess	the	
spatiotemporal	representativeness	of	the	data,	kernel	density	estimation	is	used	to	evaluate	the	
uniformity	of	 freight	order	distribution	over	time	and	space.	The	results	are	compared	with	
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data	 from	 the	 entire	 year	 to	 confirm	 the	 typicality	 of	 the	 sample.	 Sensitivity	 analysis	 is	
conducted	 across	 different	 time	 windows	 and	 spatial	 sub-regions	 to	 evaluate	 the	 model’s	
adaptability	and	generalization	under	various	task	settings.	These	steps	ensure	the	reliability	
and	wide	applicability	of	the	conclusions.	

3. Results	and	Discussion	
3.1. Spatial	Error	Characteristics	and	Overall	Model	Comparison	
The	proposed	model	shows	good	spatial	adaptability	in	urban	freight	flow	prediction.	From	the	
node-level	error	heatmap,	it	can	be	observed	that	errors	are	slightly	higher	at	trunk	road	nodes	
and	intersections,	which	are	areas	with	high	traffic	density.	This	reflects	the	significant	impact	
of	 road	structure	complexity	on	prediction	results.	 Such	differences	 indicate	 that	 the	model	
needs	 the	 ability	 to	 identify	 local	 structural	 disturbances	 in	 order	 to	 effectively	 handle	
prediction	 deviations	 in	 dynamic	 urban	 environments	 [14].	 In	 the	 overall	 performance	
evaluation,	the	proposed	model	performs	better	than	LSTM,	TCN,	GCN,	and	GAT	in	both	MAE	
and	RMSE.	It	demonstrates	clear	advantages	in	terms	of	error	range	and	stability,	especially	in	
capturing	 complex	 non-Euclidean	 relationships	 between	 nodes.	 Previous	 studies	 have	
confirmed	 that	 introducing	 graph	 structures	 can	 effectively	 improve	 spatial	 modeling	
capabilities	in	traffic	prediction	tasks	[15].	In	addition,	the	use	of	residual	design	helps	avoid	
over-smoothing	during	deep	feature	extraction,	further	enhancing	the	discriminative	ability	of	
the	network	(see	Fig.	1a	and	Fig.	1b).	
	

	
	

Fig.	1a.	Node-wise	MAE	Distribution	over	30	Days	
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Fig.	1b.	Model	Error	Comparison	

3.2. Fitting	Accuracy	and	Error	Distribution	Analysis	
According	to	the	fitting	results	between	actual	and	predicted	values,	the	overall	point	cloud	is	
closely	aligned	along	the	diagonal	line,	indicating	that	the	model	has	strong	fitting	capability	
across	most	 sample	 ranges.	 In	 the	medium	 freight	 volume	 interval,	 the	model	 response	 is	
especially	stable.	In	intervals	with	extremely	high	or	low	freight	volumes,	errors	show	slight	
fluctuations,	mainly	due	to	uneven	distribution	of	training	samples	or	insufficient	information	
at	 certain	 nodes	 [16-18].	 The	 error	 boxplot	 further	 illustrates	 the	 differences	 in	 error	
distribution	across	models.	Compared	with	 traditional	models,	 the	method	proposed	 in	 this	
study	 shows	 more	 concentrated	 error	 values	 and	 fewer	 extreme	 outliers,	 reflecting	 good	
robustness	and	resistance	to	interference	[19].	Existing	studies	have	pointed	out	that,	under	
the	guidance	of	spatial	structure,	graph	neural	networks	exhibit	significantly	enhanced	ability	
to	represent	temporal	data	[20].	This	effect	is	more	evident	when	node	behavior	varies	sharply.	
In	such	cases,	residual	connections	are	important	for	maintaining	the	diversity	of	information	
(see	Fig.	2a,	Fig.	2b).	
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Fig.	2a.	True	vs	Predicted	Freight	Volume	

	

	
Fig.	2b.	Error	Distribution	across	Models	

3.3. Spatiotemporal	Characteristics	of	Freight	Flow	and	Response	to	External	
Disturbances	

Freight	flow	shows	fluctuation	patterns	across	time	and	space	with	overlapping	characteristics	
at	multiple	 scales.	The	 three-dimensional	 surface	of	node,	 time	and	 flow	 reveals	 intensified	
fluctuations	 at	 several	 road	 nodes	 during	 peak	 periods,	 reflecting	 an	 alternating	 process	 of	
"concentration–dispersion"	 in	 spatial	 logistics	 movement.	 This	 pattern	 suggests	 that	 both	
synchrony	 and	 asynchrony	 among	 nodes	 must	 be	 considered	 to	 accurately	 capture	
spatiotemporal	 variations	 in	 complex	 urban	 settings	 [21].	 External	 events	 have	 a	 notable	
influence	on	prediction	accuracy.	During	special	periods	such	as	public	holidays,	freight	volume	
increases	 significantly	 and	 exhibits	 greater	 fluctuation	 ranges.	 The	model	 maintains	 stable	
prediction	performance	under	 high-volume	 conditions	 on	holidays,	 owing	 to	 the	 integrated	
modeling	 of	 holiday	 labels	 and	weather	 factors	 (see	 Fig.	 3a,	 Fig.	 3b).	 Previous	 studies	 have	
indicated	 that	 incorporating	 temporal	 context	 and	macro-level	 disturbances	 is	 essential	 for	
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improving	the	generalization	ability	of	models,	particularly	 in	urban	traffic	data	with	strong	
variability	[22].	

	
Fig.	3a.	Spatiotemporal	Analysis	of	Freight	Volume	

	

 
Fig.	3b.	Holiday	vs	Normal	Day	Traffic	Volume	

	

3.4. Overall	Comparison	and	Practical	Application	Value	
Considering	 all	 experimental	 results,	 the	model	 proposed	 in	 this	 study	 demonstrates	 clear	
advantages	in	prediction	accuracy,	adaptability	to	fluctuations	and	spatial	structure	modeling	
[23].	It	can	accurately	capture	the	nonlinear	relationships	of	freight	flow	across	different	road	
nodes	and	time	periods,	addressing	the	shortcomings	of	traditional	methods	in	handling	node	
structures	 and	 modeling	 long-term	 dependencies	 [24].	 Compared	 with	 models	 that	 only	
consider	 time	 series,	 this	 method	 enhances	 spatial	 topology	 awareness	 through	 graph	
convolution.	 ompared	 with	 general	 graph	 neural	 networks,	 the	 introduction	 of	 residual	
connections	 improves	 the	 ability	 to	 retain	 deep	 features.	 The	 multi-head	 spatiotemporal	
attention	mechanism	further	enhances	the	model’s	responsiveness	to	dynamic	changes	and	key	
events.	 From	 a	 practical	 perspective,	 the	 model	 shows	 strong	 generalization	 ability	 and	
practical	value.	It	is	applicable	to	multiple	scenarios	such	as	urban	smart	logistics	scheduling,	
capacity	optimization,	and	anomaly	warning.	It	performs	more	reliably	in	complex	urban	areas	
with	high	node	density	and	large	flow	fluctuations.	In	future	work,	the	model	can	be	extended	
by	integrating	more	types	of	data,	such	as	vehicle-mounted	sensors,	urban	surveillance	cameras,	
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and	GIS	layers,	to	improve	panoramic	perception	and	real-time	forecasting	capabilities.	This	
will	 promote	 the	 development	 of	 urban	 logistics	 management	 toward	 data-driven	 and	
intelligent	coordination.	

4. Conclusion	
This	paper	proposes	an	urban	road	freight	flow	prediction	model	that	combines	residual	graph	
convolution	and	multi-head	spatiotemporal	attention	mechanisms.	The	model	can	effectively	
capture	 complex	 spatial	 topological	 relationships	 and	 multi-scale	 temporal	 dependencies.	
Experimental	 results	 on	 real	 freight	 datasets	 show	 that	 the	 proposed	 model	 achieves	
improvements	of	14.5%	and	11.8%	in	MAE	and	RMSE,	respectively,	compared	with	LSTM	and	
TCN.	It	demonstrates	significant	advantages	in	both	prediction	accuracy	and	robustness.	The	
method	provides	a	practical	solution	for	urban	logistics	forecasting	and	lays	a	foundation	for	
the	application	of	graph	neural	networks	in	the	transportation	domain.	The	main	contributions	
of	 this	study	 include	 the	deep	 integration	of	graph	structure	and	 temporal	mechanisms,	 the	
introduction	 of	 residual	 connections	 and	 the	modeling	 of	 external	 factors	 such	 as	 holidays.	
These	 improvements	 enhance	 the	model’s	 adaptability	 in	 dynamic	 environments	 and	 show	
strong	potential	for	real-world	applications.	Some	limitations	remain	in	this	study.	The	dynamic	
evolution	of	road	structures	is	not	considered,	and	the	handling	of	abnormal	events	still	relies	
on	external	annotations.	Future	research	may	explore	dynamic	graph	updates,	the	integration	
of	multi-modal	data,	and	improvements	in	cross-region	transferability.	
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