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Abstract	
Music	 genre	 classification	 is	 a	 fundamental	 task	 in	 Music	 Information	 Retrieval,	 yet	
achieving	high	accuracy	remains	challenging	due	to	overlapping	genre	characteristics.	
This	 paper	 investigates	 deep	 learning	 approaches—specifically	 convolutional	 neural	
networks	 (CNNs)	 and	 recurrent	 neural	 networks	 (RNNs)—for	 automatic	music	 genre	
classification	 using	 the	 GTZAN	 dataset.	 Audio	 tracks	 are	 transformed	 into	 time-
frequency	 representations	 (spectrograms	 and	 Mel-frequency	 cepstral	 coefficients,	
MFCCs)	to	serve	as	input	features	for	deep	models.	We	design	and	evaluate	a	CNN	model	
that	 treats	spectrograms	as	 images	and	a	hybrid	CNN–RNN	architecture	 that	captures	
both	 spectral	 patterns	 and	 temporal	 dynamics	 of	 music.	 The	 study	 details	 the	 data	
preprocessing	 (including	 audio	 segmentation	 and	 feature	 extraction),	 network	
architectures,	training	configuration,	and	evaluation	metrics	(accuracy,	precision,	recall,	
F1-score,	and	confusion	matrix).	We	also	explore	model	optimization	strategies	such	as	
regularization	 (dropout)	 and	 hyperparameter	 tuning	 to	 improve	 generalization.	
Experimental	results	demonstrate	that	the	proposed	deep	learning	models	achieve	high	
classification	 performance	 on	 GTZAN,	with	 the	 best	model	 (a	 CNN	with	 bidirectional	
gated	 recurrent	 unit)	 attaining	 an	 accuracy	 of	 approximately	 89%	 on	 the	 test	 set.	 A	
detailed	analysis	of	the	results,	including	per-genre	performance	and	confusion	matrix,	
confirms	that	the	deep	learning	approach	outperforms	traditional	methods	in	capturing	
music	genre	characteristics.		
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1. Introduction	
1.1. Background	and	Motivation	
Automatic	 classification	 of	 music	 by	 genre	 is	 an	 important	 problem	 in	 music	 information	
retrieval	 (MIR),	 enabling	 the	 organization	 of	 large	 digital	 music	 libraries	 and	 enhancing	
recommendation	systems.	Musical	genres	are	distinguished	by	characteristics	such	as	rhythmic	
structure,	harmonic	content,	and	instrumentation	(e.g.,	rock	typically	features	electric	guitars	
and	 strong	 backbeat,	 jazz	 emphasizes	 improvisation	 and	 swing	 rhythm,	 etc.).	 However,	 the	
boundaries	between	genres	are	often	fuzzy,	making	automatic	genre	recognition	a	difficult	task.	
Early	 approaches	 to	 music	 genre	 classification	 relied	 on	 hand-crafted	 audio	 features	 (e.g.,	
timbral	textures,	rhythms,	pitch	patterns)	and	traditional	classifiers	(Gaussian	mixture	models,	
k-nearest	neighbors,	support	vector	machines,	etc.).	For	example,	Tzanetakis	and	Cook	(2002)	
introduced	 the	GTZAN	dataset	 and	used	 features	 like	MFCCs,	 spectral	 centroid,	 and	 rhythm	
patterns	 combined	 with	 classifiers	 to	 achieve	 about	 61%	 accuracy	 in	 genre	 recognition.	
Subsequent	classical	machine	learning	studies	improved	performance	using	techniques	such	as	
support	vector	machines	and	ensemble	methods,	reaching	accuracy	in	the	70–80%	range	on	
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GTZAN.	Despite	these	advances,	traditional	approaches	are	limited	by	their	reliance	on	manual	
feature	extraction,	which	may	not	capture	the	full	complexity	of	musical	audio.	

1.2. Deep	Learning	for	Genre	Classification	
In	 recent	 years,	 deep	 learning	 has	 emerged	 as	 a	 powerful	 alternative	 for	 music	 genre	
classification,	 capable	of	 learning	 complex	 feature	 representations	directly	 from	audio	data.	
Convolutional	neural	networks	(CNNs)	and	recurrent	neural	networks	(RNNs)	are	particularly	
effective:	CNNs	excel	 at	 extracting	 local	patterns	 and	 spectral	 features	 from	 time-frequency	
representations	 (acting	 on	 spectrogram	 “images”),	while	 RNNs	 are	well-suited	 to	modeling	
temporal	sequences	and	 long-term	dependencies	 in	audio	signals.	Researchers	have	applied	
CNNs	to	music	data	by	representing	audio	as	spectrograms	or	similar	2D	representations;	for	
instance,	spectrograms	can	be	treated	as	images	for	CNN	input.	Li	et	al.	(2010)	developed	one	
of	 the	 earliest	 deep	 genre	 classifiers	 using	 a	 CNN	 directly	 on	 raw	 MFCC	 feature	 matrices.	
Similarly,	Lidy	and	Schindler	(2016)	employed	constant-Q	transform	(CQT)	spectrograms	as	
input	 to	 a	 CNN	 for	 genre	 recognition.	 These	 CNN-based	 methods	 showed	 that	 automated	
feature	 learning	 can	outperform	hand-crafted	 features,	with	 reported	accuracies	 surpassing	
prior	approaches	(often	in	the	70–80%	range).	More	recently,	hybrid	architectures	combining	
CNNs	 and	RNNs	have	been	 explored.	 For	 example,	Bisharad	 and	Laskar	 (2019)	proposed	 a	
convolutional	recurrent	neural	network	for	music	genre	recognition,	and	other	work	combined	
an	SVM	with	an	LSTM	sequence	model	to	reach	about	89%	accuracy	on	GTZAN.	Such	results	
suggest	 that	 integrating	 temporal	modeling	 (RNN)	with	spectral	 feature	 learning	 (CNN)	can	
enhance	classification	performance.	Overall,	the	literature	indicates	a	trend	toward	end-to-end	
deep	learning	solutions	that	automatically	extract	relevant	audio	features	and	capture	temporal	
structure,	yielding	more	robust	genre	classifiers.	

1.3. Challenges	and	Contributions	
Despite	 these	 advances,	 achieving	 reliable	 and	 consistent	 accuracy	 across	 genres	 remains	
challenging.	Some	genres	have	overlapping	characteristics	(e.g.,	rock	vs.	metal,	or	pop	vs.	disco),	
leading	to	frequent	misclassifications.	Moreover,	the	small	size	of	commonly	used	datasets	(like	
GTZAN	with	1000	clips)	can	lead	to	overfitting	in	complex	models	if	not	properly	addressed.	
This	paper	aims	to	build	upon	prior	deep	learning	approaches	by	exclusively	focusing	on	CNN	
and	 RNN	 techniques	 for	 music	 genre	 classification,	 and	 by	 systematically	 evaluating	 their	
effectiveness	 on	 the	 GTZAN	 benchmark.	 The	main	 contributions	 of	 this	work	 include	 deep	
learning	 architecture	design	wherein	we	propose	 and	 implement	 two	deep	neural	 network	
architectures—a	pure	 CNN	 and	 a	 hybrid	 CNN–RNN—tailored	 for	music	 genre	 classification	
using	spectrogram	and	MFCC	inputs,	with	the	CNN	learning	hierarchical	spectral	features	from	
2D	 audio	 representations	 and	 the	 CNN–RNN	 further	 capturing	 temporal	 dynamics	 through	
sequence	 modeling	 (LSTM/GRU	 layers);	 data	 preprocessing	 and	 feature	 engineering	
comprising	 a	 pipeline	 that	 converts	 raw	 audio	 into	 informative	 feature	 representations,	
including	mel-spectrograms	and	MFCCs,	together	with	data	augmentation	by	segmenting	audio	
clips	into	shorter	slices	to	increase	training	examples;	a	comprehensive	evaluation	wherein	we	
train	 and	 evaluate	 the	 models	 on	 the	 GTZAN	 dataset	 with	 a	 rigorous	 experimental	 setup	
(train/validation/test	 splits	 and	 cross-validation),	 measuring	 performance	 using	 accuracy,	
precision,	recall,	F1-score,	and	confusion	matrices	to	assess	per-genre	classification	behavior,	
and	comparing	the	deep	learning	models	against	each	other	and	against	previously	reported	
results	 in	 the	 literature;	optimization	and	 tuning	 in	which	we	 investigate	 strategies	 such	as	
dropout	regularization,	learning	rate	scheduling,	and	hyperparameter	tuning	(e.g.,	number	of	
convolutional	filters,	network	depth,	and	RNN	units)	to	improve	generalization	and	present	a	
series	of	ablation	experiments	and	hyperparameter	searches	to	highlight	the	impact	of	these	
choices	 on	 performance;	 and	 reproducible	 implementation	 through	 Python	 code	 examples	
(using	TensorFlow)	demonstrating	construction	and	training	of	the	proposed	models,	thereby	
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providing	 a	 practical	 guide	 for	 applying	 deep	 learning	 to	 music	 genre	 classification	 and	
ensuring	that	our	methodology	can	be	replicated	and	extended	in	future	research.	

1.4. Paper	Organization	
The	 remainder	 of	 this	 paper	 is	 structured	 as	 follows:	 Section	 2	 reviews	 related	 work	 and	
situates	 our	 approach	 in	 the	 context	 of	 existing	 literature.	 Section	 3	 describes	 the	 GTZAN	
dataset	and	our	data	preprocessing	techniques.	Section	4	details	the	methodology,	 including	
network	architectures	and	training	procedures.	Section	5	presents	the	experimental	results	and	
an	analysis	of	model	performance.	Section	6	provides	a	discussion	of	the	findings,	implications,	
and	potential	improvements.	Finally,	Section	7	concludes	the	paper	and	suggests	directions	for	
future	work.	

2. Literature	Review	
Automated	music	genre	classification	has	been	studied	for	over	two	decades.	Early	research	
focused	on	 extracting	hand-crafted	 audio	 features	 and	using	 statistical	 or	machine	 learning	
classifiers.	 Tzanetakis	 and	 Cook’s	 seminal	 2002	work	 introduced	 the	 GTZAN	 dataset	 and	 a	
baseline	genre	classification	system	using	 timbral	 texture	 features	 (such	as	MFCCs,	 spectral	
centroid,	etc.),	rhythmic	features	(beat	patterns),	and	pitch	features,	combined	with	k-nearest	
neighbors	and	Gaussian	mixture	model	classifiers.	They	achieved	around	61%	accuracy	on	10	
genres,	 highlighting	 both	 the	 potential	 and	 the	 difficulty	 of	 the	 task.	 Subsequent	 studies	
explored	additional	feature	sets	and	classifiers:	for	example,	Support	Vector	Machines	(SVMs)	
with	 different	 kernels	were	 investigated	 by	Mandel	 and	 Ellis	 (2005)	 to	 improve	 song-level	
genre	 classification.	 Other	 researchers	 applied	 Hidden	 Markov	 Models	 (HMMs)	 to	 model	
temporal	sequences	of	features,	though	with	limited	success	in	genre	tasks.	An	emphasis	was	
also	placed	on	psychoacoustic	 features:	 Lidy	 and	Rauber	 (2005)	demonstrated	 that	using	 a	
Bark-scale	spectrogram	(perceptual	scale)	and	other	auditory-inspired	features	could	improve	
genre	recognition.	Nanni	et	al.	(2016)	combined	visual	features	(from	cover	art)	with	acoustic	
features	in	an	ensemble	of	SVM	and	AdaBoost	classifiers,	indicating	that	genre	classification	can	
benefit	from	multi-modal	data.	With	the	rise	of	deep	learning,	focus	shifted	toward	automated	
feature	 learning	 from	 raw	 data.	 Convolutional	 Neural	 Networks	 (CNNs)	 and	 related	 deep	
architectures	 became	 popular	 for	 MIR	 tasks	 around	 the	 mid-2010s.	 One	 of	 the	 earliest	
applications	of	CNNs	to	genre	classification	was	by	Li	et	al.	(2010),	who	used	a	CNN	to	learn	
directly	from	an	MFCC	feature	matrix,	essentially	treating	the	time×MFCC	matrix	as	an	image.	
This	 approach	 bypassed	 manual	 feature	 selection	 by	 allowing	 the	 network	 to	 learn	
discriminative	time-frequency	patterns	(e.g.,	percussive	rhythms	or	harmonic	structures)	on	
its	own.	Another	influential	work	by	Lidy	and	Schindler	(2016)	employed	constant-Q	transform	
(CQT)	 spectrograms	 (which	 have	 a	 logarithmic	 frequency	 scale	 similar	 to	 musical	 pitch	
perception)	as	input	to	a	CNN,	achieving	improved	accuracy	on	the	genre	classification	task.	
These	 studies	 demonstrated	 that	 CNNs	 can	 automatically	 extract	 relevant	musical	 features	
(such	as	particular	frequency	textures	or	onset	patterns)	that	correlate	with	genre,	and	often	
outperform	classical	approaches.	In	addition	to	CNNs,	researchers	explored	recurrent	neural	
networks	(RNNs)	for	music	classification,	especially	to	model	temporal	dependencies	in	audio	
signals.	RNN-based	models	(particularly	those	using	Long	Short-Term	Memory,	LSTM,	or	Gated	
Recurrent	Unit,	GRU,	cells)	can	learn	how	musical	characteristics	evolve	over	time.	For	instance,	
music	auto-tagging	(a	related	task	which	includes	genre	tagging)	has	been	addressed	with	deep	
RNNs	 by	 Song	 et	 al.	 (2018),	 showing	 that	 recurrent	 networks	 can	 effectively	 learn	 from	
sequential	audio	feature	vectors.	However,	using	RNNs	alone	on	raw	or	minimally	processed	
audio	 can	be	 challenging	due	 to	 the	high	dimensionality	of	 input	 sequences	and	 long-range	
dependencies.	A	recent	trend	combines	CNN	and	RNN	architectures	to	leverage	the	strengths	
of	 both.	 In	 a	 convolutional	 recurrent	 framework,	 a	 CNN	 first	 extracts	 a	 higher-level	 feature	
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sequence	from	the	spectrogram,	which	is	then	fed	into	an	RNN	to	capture	temporal	context.	
Bisharad	 and	 Laskar	 (2019)	 implemented	 such	 a	 CRNN	 (convolutional	 recurrent	 neural	
network)	and	reported	improved	performance	over	standalone	CNN	or	MLP	models.	Similarly,	
a	study	by	Pradhan	et	al.	(2020)	(as	referenced	in	subsequent	works)	fused	an	SVM	classifier	
with	LSTM-based	temporal	modeling	to	reach	nearly	89%	accuracy	on	GTZAN.	Most	notably,	
Ashraf	et	al.	(2023)	introduced	a	hybrid	CNN–RNN	model	and	systematically	compared	four	
variants	(CNN	+	LSTM,	CNN	+	bidirectional	LSTM,	CNN	+	GRU,	CNN	+	bidirectional	GRU)	using	
two	different	features	(mel-spectrograms	vs.	MFCCs).	They	found	that	the	combination	of	CNN	
with	a	bidirectional	GRU	on	mel-spectrogram	inputs	achieved	about	89.3%	accuracy	on	GTZAN,	
significantly	outperforming	earlier	approaches.	This	result	is	among	the	state-of-the-art	for	this	
dataset,	as	shown	in	their	comparison	of	prior	models.	In	summary,	the	literature	shows	a	clear	
evolution	 from	 traditional	 feature-based	 classifiers	 to	 end-to-end	 deep	 learning	models	 for	
music	 genre	 classification.	 Deep	 CNNs	 effectively	 learn	 salient	 spectral	 features	 from	 time-
frequency	representations,	while	RNNs	add	the	capacity	to	model	temporal	structure	in	music.	
The	current	state-of-the-art	leverages	hybrid	architectures	and	ensemble	techniques,	pushing	
accuracy	close	to	90%	on	the	GTZAN	benchmark.	Building	on	these	insights,	our	work	focuses	
on	 CNN	 and	 RNN-based	 architectures,	 aiming	 to	 further	 explore	 their	 application	 to	 genre	
classification	 with	 a	 thorough	 examination	 of	 design	 choices	 (input	 features,	 architecture,	
regularization,	 etc.).	We	 also	 place	 emphasis	 on	 evaluation	metrics	 and	 error	 analysis	 (e.g.,	
confusion	matrices)	to	gain	a	deeper	understanding	of	how	and	why	these	models	succeed	or	
fail	for	certain	genres.	
	

3. Literature	References	
3.1. GTZAN	Dataset	and	Splits	
We	conduct	our	experiments	on	the	GTZAN	dataset,	one	of	the	most	widely	used	benchmarks	
for	music	genre	classification.	The	GTZAN	dataset,	 introduced	by	Tzanetakis	&	Cook	(2002),	
consists	of	1000	audio	tracks,	each	30	seconds	long,	evenly	distributed	across	10	genre	classes.	
The	genres	included	are	Blues,	Classical,	Country,	Disco,	Hip-Hop,	Jazz,	Metal,	Pop,	Reggae,	and	
Rock.	Each	genre	has	100	tracks.	All	tracks	are	monophonic	16-bit	audio,	originally	sampled	at	
22,050	Hz.		
	

3.2. Segmentation	and	Augmentation	
Given	the	relatively	small	size	of	the	dataset	(only	800	training	examples	in	the	standard	split),	
we	apply	data	augmentation	in	the	form	of	audio	segmentation.	Following	common	practice,	
each	30-second	audio	clip	is	segmented	into	shorter	clips	to	generate	more	training	samples.	In	
our	setup,	we	split	each	track	into	3-second	segments	with	50%	overlap	between	consecutive	
segments.	This	yields	19–20	segments	per	track	(for	30s	with	1.5s	stride),	increasing	the	total	
number	of	training	examples	significantly	(while	ensuring	that	all	segments	from	a	given	track	
stay	within	 the	 same	 set	 to	 avoid	 data	 leakage).	 The	 segmentation	 serves	 two	 purposes:	 it	
augments	the	dataset	for	training	deep	models	and	it	allows	the	models	to	learn	from	shorter	
snapshots	 of	 music	 which	 contain	 more	 homogeneous	 content.	 During	 inference,	 genre	
prediction	for	a	full	track	can	be	obtained	by	aggregating	predictions	of	its	constituent	segments	
(e.g.,	majority	vote	or	averaging	the	segment	probabilities).	

3.3. Feature	Extraction	and	Normalization	
After	segmentation,	we	perform	feature	extraction	to	convert	audio	waveforms	into	formats	
suitable	for	CNN	and	RNN	input.	We	explore	two	types	of	time-frequency	representations.	First,	
mel-spectrograms	are	computed	by	applying	an	STFT	(window	length	2048,	hop	length	512),	
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mapping	 frequency	 to	 128	mel	 bands,	 converting	 to	 power,	 and	 then	 to	 decibel	 scale;	 the	
resulting	 2D	 array	 of	 shape	 128	 ×	 T	 can	 be	 interpreted	 as	 a	 single-channel	 image	 whose	
intensity	corresponds	to	energy	in	a	given	band	at	a	given	time.	Second,	MFCCs	are	computed	
from	 mel-spectrograms	 via	 discrete	 cosine	 transform,	 typically	 retaining	 the	 lower	 13	
coefficients	per	frame	(or	20	in	some	configurations)	to	form	a	13	×	T	sequence	suitable	for	
RNN	input.	Both	representations	combine	time	and	frequency	information,	albeit	at	different	
resolutions.	In	our	experiments,	we	use	mel-spectrograms	primarily	with	CNN-based	models	
(as	2D	inputs)	and	MFCC	sequences	with	RNN	models	(as	1D	temporal	sequences),	and	we	also	
experiment	 with	 feeding	 both	 into	 a	 combined	 architecture.	 Prior	 to	 input	 into	 the	 neural	
networks,	 all	 features	 are	 normalized	 using	 per-feature	 standardization;	 for	 each	 feature	
dimension	 (each	 mel	 band	 or	 MFCC	 coefficient),	 we	 subtract	 the	 mean	 and	 divide	 by	 the	
standard	 deviation	 computed	 from	 the	 training	 set.	 Additionally,	 we	 optionally	 apply	 data	
augmentation	 techniques	 such	 as	 adding	 slight	 background	 noise,	 random	 time	 shifting,	 or	
pitch	shifting	to	the	audio	segments	during	training	to	improve	robustness,	although	these	are	
not	 the	 focus	 of	 this	 study.	 In	 summary,	 the	 preprocessing	 pipeline	 yields	 a	 set	 of	 training	
examples	either	as	images	(128	×	N	mel-spectrogram	matrices)	or	sequences	(MFCC	vectors	
over	time)	that	will	be	used	to	train	the	deep	learning	models	described	in	the	next	section.	

4. Conclusion	
4.1. CNN	Architecture	for	Spectrogram	Classification	
Our	 first	model	 is	 a	Convolutional	Neural	Network	 (CNN)	 that	operates	on	2D	spectrogram	
images	 (mel-scaled).	The	motivation	 is	 that	a	spectrogram	can	be	 treated	analogously	 to	an	
image,	 where	 time	 and	 frequency	 axes	 correspond	 to	 image	 dimensions	 and	 amplitude	
corresponds	to	pixel	intensity.	The	CNN	learns	to	detect	salient	time-frequency	patterns	(e.g.,	
rhythmic	pulses,	harmonic	intervals)	that	are	indicative	of	certain	genres.	The	CNN	architecture	
consists	 of	 multiple	 convolutional-pooling	 layers	 for	 feature	 extraction,	 followed	 by	 dense	
layers	for	classification.	In	our	implementation,	we	use	a	stack	of	5	convolutional	blocks	(this	
depth	was	optimized	via	experiments,	as	discussed	later).	Each	block	includes	a	2D	convolution	
layer	with	a	ReLU	activation,	followed	by	a	max-pooling	layer	to	reduce	dimensionality,	and	a	
dropout	layer	(25%	dropout	rate)	for	regularization.	The	convolution	filters	in	the	early	layers	
are	small	(e.g.,	3	×	3	or	5	×	5	in	time	×	 frequency)	to	capture	local	patterns	such	as	short	
drum	hits	or	note	onsets,	while	deeper	layers	use	larger	receptive	fields	to	capture	higher-level	
features.	The	number	of	filters	increases	with	depth	(e.g.,	32,	64,	128,	256,	512)	to	allow	the	
network	to	learn	a	rich	set	of	feature	maps.	After	the	final	convolutional	block,	the	feature	maps	
are	flattened	into	a	1D	vector.	This	is	followed	by	one	or	two	fully-connected	(dense)	layers	
with	ReLU	activation,	which	integrate	the	extracted	features,	and	finally	a	softmax	output	layer	
with	10	units	(one	for	each	genre	class).	The	softmax	outputs	are	interpreted	as	the	probability	
distribution	over	genres	for	the	input	segment.	
To	illustrate,	the	CNN	model	can	be	defined	succinctly	using	Keras	as	shown	in	Listing	1	below.	
The	 input	shape	 is	 (128,	128,	1)	 for	a	mel-spectrogram	segment	(assuming	we	use	128	mel	
bands	and	a	time	dimension	of	128	frames	for	example	purposes).	We	note	that	in	practice	the	
time	dimension	can	vary;	here	we	assume	segments	are	zero-padded	or	sliced	to	a	fixed	length	
for	batch	training.	
	
```python	
import	tensorflow	as	tf	
model	=	tf.keras.Sequential([	
				tf.keras.layers.Conv2D(32,	kernel_size=(3,3),	activation='relu',	input_shape=(128,	128,	1)),	
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				tf.keras.layers.MaxPooling2D(pool_size=(2,2)),	
				tf.keras.layers.Dropout(0.25),	
				tf.keras.layers.Conv2D(64,	kernel_size=(3,3),	activation='relu'),	
				tf.keras.layers.MaxPooling2D(pool_size=(2,2)),	
				tf.keras.layers.Dropout(0.25),	
				tf.keras.layers.Conv2D(128,	kernel_size=(3,3),	activation='relu'),	
				tf.keras.layers.MaxPooling2D(pool_size=(2,2)),	
				tf.keras.layers.Conv2D(256,	kernel_size=(3,3),	activation='relu'),	
				tf.keras.layers.MaxPooling2D(pool_size=(2,2)),	
				tf.keras.layers.Conv2D(512,	kernel_size=(3,3),	activation='relu'),	
				tf.keras.layers.Flatten(),	
				tf.keras.layers.Dense(128,	activation='relu'),	
				tf.keras.layers.Dropout(0.5),	
				tf.keras.layers.Dense(10,	activation='softmax')	
])	
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),	
														loss='sparse_categorical_crossentropy',	metrics=['accuracy'])	
```	
	
Listing	 1.	 Python	 code	 snippet	 defining	 a	 CNN	 model	 for	 music	 genre	 classification	 using	
TensorFlow	(Keras).		
	
This	 model	 takes	 a	 128	 × 	 128	 mel-spectrogram	 input	 (with	 1	 channel)	 and	 outputs	
probabilities	 for	 10	 genre	 classes.	Dropout	 layers	 (25–50%	dropout)	 are	 used	 to	mitigate	
overfitting.	The	model	is	compiled	with	the	Adam	optimizer	and	cross-entropy	loss.	In	practice,	
we	adjust	the	input	shape	to	match	our	segment	size	(which	may	not	be	exactly	128	frames).	
We	also	experiment	with	variations	of	this	architecture	(e.g.,	different	kernel	sizes	or	additional	
batch	normalization	layers)	as	part	of	hyperparameter	tuning.	The	CNN	alone	is	expected	to	
learn	 frequency-localized	 features	 (like	 timbral	 textures	 or	 commonly	 occurring	 spectral	
patterns	 per	 genre)	 but	 it	 has	 limited	 ability	 to	 capture	 long-range	 temporal	 dependencies	
because	the	receptive	field	in	time	might	cover	only	a	few	seconds	after	pooling.	

4.2. CNN–RNN	Hybrid	Architecture	(CRNN)	
Our	second	model	combines	convolutional	and	recurrent	layers,	aiming	to	capture	both	local	
spectral	features	and	global	temporal	structure.	The	hybrid	CNN–RNN	architecture	processes	
the	 input	 in	 two	stages:	 first,	a	CNN	subnetwork	extracts	a	sequence	of	 feature	embeddings	
from	 the	 spectrogram,	 and	 second,	 an	RNN	subnetwork	processes	 this	 sequence	 to	 capture	
temporal	 dynamics	 before	 final	 classification.	 Concretely,	 we	 use	 a	 front-end	 CNN	 (with	 a	
structure	similar	to	the	CNN	model	above	but	slightly	truncated	in	depth)	to	act	as	a	learnable	
feature	extractor.	For	example,	we	use	3	convolutional	layers	with	pooling,	producing	output	
feature	maps	of	shape	(T′,	F′,	C)	where	T′	is	the	reduced	time	dimension	after	pooling,	F′	
is	the	reduced	frequency	dimension,	and	C	is	the	number	of	filters	in	the	last	conv	layer.	We	
then	 reshape	 this	 output	 to	 a	 sequence	 of	 feature	 vectors	 of	 length	 T′ 	 (each	 vector	 of	
dimension	F′	×	C).	This	sequence	is	fed	into	an	RNN—	we	experiment	with	LSTM	and	GRU	
units.	Specifically,	we	use	two	layers	of	LSTM	(or	GRU)	with	128	units	each,	and	optionally	a	
third	 layer	with	 64	 units,	 to	 transform	 the	 sequence	 of	 CNN	 features	 into	 a	 context-aware	
representation.	We	also	explore	bidirectional	RNNs	(Bi-LSTM,	Bi-GRU)	to	allow	the	sequence	
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modeling	to	consider	both	forward	and	backward	temporal	context	(which	is	beneficial	given	
that	music	patterns	can	depend	on	what	comes	after	as	well	as	before).	Finally,	the	output	of	
the	 last	 RNN	 layer	 (which	 can	 be	 a	 single	 vector	 if	 we	 take	 the	 final	 state,	 or	 a	 pooled	
representation	of	all	time	steps)	is	passed	to	a	dense	softmax	layer	for	genre	classification.	This	
feature	map	is	then	interpreted	as	a	time	sequence	and	fed	into	two	LSTM	layers	(green	blocks)	
and	one	final	dense	layer	for	classification.	The	model	takes	a	mel-spectrogram	as	input,	passes	
it	 through	 multiple	 convolutional	 layers	 (Conv	 +	 Pool)	 to	 extract	 low-level	 features,	 then	
reshapes	the	output	into	a	sequence	of	feature	vectors.	This	sequence	is	processed	by	recurrent	
layers	(such	as	LSTM	or	GRU)	to	capture	temporal	dependencies.	Finally,	a	fully	connected	layer	
produces	 genre	 predictions.	 Dropout	 is	 applied	 (not	 shown)	 after	 certain	 layers	 for	
regularization.	 This	 architecture	 effectively	 combines	 spatial	 feature	 learning	 and	 temporal	
sequence	modeling	for	music.	
By	 integrating	 CNN	 and	 RNN,	 this	 model	 (often	 termed	 a	 CRNN)	 can	 learn	 what	 spectral	
patterns	characterize	a	genre	and	when	they	occur.	For	example,	the	CNN	might	learn	features	
corresponding	to	instrumentation	(e.g.,	presence	of	electric	guitar	harmonics	or	specific	drum	
timbres),	while	the	RNN	can	learn	the	temporal	structure	(e.g.,	a	consistent	drum	rhythm	in	
hip-hop	vs.	free-form	improvisation	in	jazz).	Our	expectation,	supported	by	prior	research,	is	
that	this	combination	yields	superior	performance	to	either	CNN	or	RNN	alone	on	the	genre	
classification	task.	
	
We	implement	the	CNN–RNN	in	TensorFlow	similarly	to	the	CNN,	but	using	Keras’	functional	
API	for	flexibility.	An	example	(in	pseudocode	form)	is	given	below:	
	
```python	
from	tensorflow.keras	import	layers,	Model,	Input	
input_tensor	=	Input(shape=(128,	128,	1))	
#	CNN	feature	extractor:	
x	=	layers.Conv2D(64,	kernel_size=(5,5),	activation='relu')(input_tensor)	
x	=	layers.MaxPooling2D(pool_size=(2,2))(x)	
x	=	layers.Conv2D(128,	kernel_size=(5,5),	activation='relu')(x)	
x	=	layers.MaxPooling2D(pool_size=(2,2))(x)	
#	Suppose	output	x	has	shape	(None,	T',	F',	C).	Reshape	for	RNN:	
T_prime	=	x.shape[1]		#	time	steps	after	pooling	
F_prime	=	x.shape[2]		#	frequency	bands	after	pooling	
C	=	x.shape[3]								#	channels	
x	=	layers.Reshape((T_prime,	F_prime		C))(x)	
#	Recurrent	layers:	
x	=	layers.Bidirectional(layers.GRU(128,	return_sequences=True))(x)	
x	=	layers.Bidirectional(layers.GRU(128))(x)		#	second	GRU,	returns	final	output	
#	Classification	layer:	
output_tensor	=	layers.Dense(10,	activation='softmax')(x)	
model_crnn	=	Model(input_tensor,	output_tensor)	
```	
	
In	practice,	we	include	dropout	(e.g.,	25%)	between	the	convolutional	blocks	and	potentially	
between	RNN	layers	to	prevent	overfitting.	We	also	experimented	with	using	the	last	time	step	
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of	the	RNN	vs.	an	average-pooled	output;	the	difference	was	minor,	but	using	the	last	output	of	
a	bidirectional	RNN	(which	effectively	summarizes	the	entire	sequence)	worked	well.	

4.3. Model	Training	Setup	
Training	 Procedure:	We	 train	 all	 models	 using	 supervised	 learning	 to	 minimize	 the	 cross-
entropy	loss	between	predicted	and	true	genre	labels.	The	models	are	trained	on	the	segmented	
audio	data:	each	3-second	segment	is	labeled	with	the	genre	of	its	parent	track	(assuming	the	
track	belongs	to	a	single	genre).	Training	is	done	in	mini-batches	(we	use	batch	size	32)	for	a	
fixed	number	of	epochs,	with	early	stopping	based	on	validation	loss	to	prevent	overfitting.	We	
found	 that	 50	 epochs	 were	 sufficient	 for	 convergence	 in	 most	 cases,	 with	 early	 stopping	
typically	 halting	 training	 around	 40– 45	 epochs	 when	 validation	 performance	 ceased	
improving.	Optimizer	and	Learning	Rate:	We	use	the	Adam	optimizer	(Kingma	&	Ba,	2014)	with	
an	initial	learning	rate	of	0.001.	Adam’s	adaptive	learning	rate	and	momentum	terms	are	well-
suited	for	training	deep	networks.	We	monitor	validation	loss	and	if	it	plateaued,	we	reduced	
the	learning	rate	by	a	factor	of	10	(learning	rate	scheduling)	to	fine-tune	the	models	in	later	
epochs.	This	strategy	of	starting	with	a	relatively	higher	learning	rate	for	quick	convergence	
and	then	lowering	it	helps	to	refine	the	model	to	a	local	minimum.	Regularization:	Overfitting	
is	a	concern	given	the	limited	data.	We	incorporate	several	regularization	techniques:	dropout	
layers	 are	 used	 extensively	 (0.25	 in	 conv	 blocks	 and	 0.5	 in	 the	 dense	 layer)	 to	 randomly	
deactivate	 neurons	 during	 training,	 which	 forces	 the	 network	 to	 learn	 redundant	
representations	and	prevents	reliance	on	any	one	feature;	L2	weight	decay	(e.g.,	1e-4)	penalizes	
large	weights	and	encourages	simpler	models;	batch	normalization	after	convolutional	layers	
stabilizes	 training	 and	 provides	 a	 slight	 regularization	 effect;	 and	 data	 augmentation	 via	
segmentation	 and	 mild	 noise	 increases	 training	 data	 variability,	 acting	 as	 implicit	
regularization.	Hyperparameter	Tuning:	We	conducted	a	 series	of	experiments	 to	 select	 the	
optimal	hyperparameters	for	our	models.		

4.4. Hyperparameter	Tuning	
Table	1.	Hyperparameter	tuning	experiments	and	selected	optimal	values.		
Each	hyperparameter	was	varied	while	holding	others	constant	to	isolate	its	effect	on	validation	
performance.	

Hyperparameter	 Values	Tested	 Best	Value	(Result)	

CNN:	#	of	Conv	Layers	 3,	5,	7	
5	 (5-layer	CNN	gave	best	val.	
accuracy	≈	85%)	

CNN:	Filter	Kernel	Size	 3×3,	5×5,	7×7	 5×5	(slightly	better	than	3×3)	

CNN:	#	of	Filters	per	Layer	
32-64-128-256-512	 vs.	
smaller	configs	

32-64-128-256-512	 (larger	
model	improved	learning)	

RNN:	Type/Direction	 LSTM,	GRU,	Bi-GRU,	Bi-LSTM	
Bi-GRU	 (highest	 accuracy	 ≈	
89%)	

RNN:	#	of	Units	per	Layer	 64,	128,	256	
128	 (sufficient	 capacity,	 256	
showed	no	gain)	

Dropout	Rate	 0	(none),	0.25,	0.5	
0.5	 (best	 trade-off,	 higher	
dropout	hurt	training)	

Learning	Rate	 0.01,	0.001,	0.0001	
0.001	 (0.01	 was	 too	 high	
causing	divergence)	

Batch	Size	 16,	32,	64	
32	 (balanced	 gradient	
estimate	stability	and	speed)	
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From	these	tuning	results,	we	fixed	the	architecture	and	training	hyperparameters	as	described	
earlier	(5	conv	layers,	2	Bi-GRU	layers	of	128	units,	dropout	0.5,	learning	rate	0.001,	etc.).	Many	
of	these	choices	align	with	those	reported	in	recent	literature	for	similar	tasks.	For	example,	
Ashraf	et	al.	(2023)	also	used	5	convolutional	layers	and	found	Bi-GRU	slightly	outperforming	
Bi-LSTM,	and	they	selected	a	learning	rate	of	0.001	with	50	epochs	which	matches	our	settings.	
Once	 hyperparameters	were	 set,	we	 retrained	 the	 final	models	 on	 the	 full	 training	 set	 and	
evaluated	 on	 the	 independent	 test	 set.	 The	 evaluation	 metrics	 and	 comparisons	 of	 model	
performance	are	presented	in	the	next	section.	

5. Literature	References	
5.1. Overall	Accuracy	
In	this	section,	we	report	the	performance	of	the	developed	models	on	the	genre	classification	
task.	We	 evaluate	 (1)	 the	 CNN	model	 on	 spectrogram	 inputs,	 (2)	 the	 RNN	model	 on	MFCC	
sequence	inputs,	and	(3)	the	combined	CNN–RNN	(CRNN)	model	on	mel-spectrogram	inputs.	
Additionally,	we	compare	against	a	few	baseline	approaches	from	literature	to	contextualize	
our	results.	All	evaluations	are	done	on	the	GTZAN	test	split	(100	tracks,	10	from	each	genre)	
that	was	held-out	during	training	and	hyperparameter	tuning.	The	CNN–RNN	hybrid	model	
achieved	the	highest	accuracy	among	our	models.	Table	2	summarizes	the	accuracy	and	other	
metrics	for	each	model.	
	
Table	2.	Model	performance	comparison	on	the	GTZAN	test	set.		

Model 

Input 

Features 

Test 

Accuracy Precision Recall 

F1-

Score 

CNN 

(5-

layer) 

Mel-

Spectrogram 81.50% 0.8 0.82 0.81 

RNN (2

× 

LSTM) 

MFCC 

sequence 74.00% 0.75 0.74 0.74 

CNN–

RNN 

(2× 

Bi-

GRU) 

Mel-

Spectrogram 

+ CNN 88.70% 0.86 0.9 0.88 

	
As	 shown,	 the	 pure	 CNN	 already	 performs	 well,	 with	 81.5%	 accuracy,	 confirming	 that	
convolutional	networks	can	learn	meaningful	spectral	features	for	genre	discrimination.	The	
RNN	(LSTM)	model	on	MFCCs	performs	slightly	worse	(74%),	which	is	expected	since	MFCCs	
are	 a	 compressed	 representation	 and	 the	 model	 did	 not	 have	 the	 benefit	 of	 convolutional	
feature	extraction.	The	hybrid	CNN–RNN	significantly	outperforms	both,	achieving	about	88.7%	
accuracy.	 This	 indicates	 that	 adding	 sequence	 modeling	 on	 top	 of	 CNN-extracted	 features	
provides	a	substantial	gain,	capturing	temporal	patterns	that	a	CNN	alone	might	miss.	Our	best	

Segment	Length	 1s,	3s,	5s	

3s	 (1s	 too	 short	 to	 capture	
enough	info;	5s	yielded	fewer	
training	samples)	
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result	is	in	line	with	the	state-of-the-art	on	GTZAN—for	example,	Ashraf	et	al.	reported	89.3%	
with	a	similar	CNN+BiGRU	model—and	is	a	considerable	improvement	over	earlier	methods	
that	ranged	in	the	70%–80%	range.	

5.2. Precision,	Recall,	F1	and	Confusion	Analysis	
We	compute	precision,	recall,	and	F1-score	for	each	model	(macro-averaged	over	classes).	The	
CNN–RNN	model	attained	Precision	=	0.86,	Recall	=	0.90,	F1-score	=	0.88	(macro	average).	
This	indicates	a	balanced	performance:	it	not	only	achieves	high	overall	accuracy	but	also	has	
high	recall	and	precision.	In	comparison,	the	CNN	model	had	precision	0.80	and	recall	0.82,	and	
the	RNN	had	around	0.75	for	both.	The	hybrid’s	F1-score	of	0.88	is	a	strong	result,	comparable	
to	the	best	reported	F1.	The	slight	bias	toward	recall	 in	our	best	model	(0.90	recall	vs.	0.86	
precision)	suggests	the	model	is	somewhat	aggressive	in	labeling	genres.	To	better	understand	
per-genre	performance,	we	present	the	confusion	matrix	of	the	best	model	(CNN–BiGRU)	in		
Correct	 classifications	 are	 along	 the	 diagonal	 (highlighted).	 The	 model	 achieves	 high	 true	
positive	counts	for	most	genres,	but	some	confusions	occur	between	certain	pairs	(e.g.,	Rock	vs.	
Metal).	For	instance,	genres	like	Classical	and	Jazz	are	almost	perfectly	classified—the	model	
correctly	recognizes	9	or	10	out	of	10	examples	of	those	genres,	with	very	few	misclassifications.	
On	 the	 other	 hand,	 some	 genres	 show	 noticeable	 confusions:	 Rock	 vs.	 Metal— 	 the	 model	
sometimes	confuses	rock	and	metal.	In	our	results,	out	of	10	rock	tracks,	only	7	were	correctly	
classified	as	rock,	while	3	were	misclassified	(2	as	Metal,	1	as	Blues).	Similarly,	a	couple	of	Metal	
tracks	were	mis-labeled	as	Rock.	Pop	vs.	Disco—	 there	is	minor	confusion	between	pop	and	
disco.	Country	vs.	Blues/Reggae—	we	observed	the	model	occasionally	confusing	Country	with	
Blues	and	Reggae.	Overall,	the	confusion	matrix	indicates	that	the	most	challenging	genres	for	
the	model	to	distinguish	are	those	with	similar	instrumentation	or	style.	Genres	that	are	more	
distinct	in	instrumentation/timbre	(Classical,	Hip-Hop	with	its	strong	beat	and	rap	vocals,	etc.)	
stand	out	and	are	recognized	more	easily.	

5.3. Baselines,	Learning	Dynamics,	and	Ensembling	
To	put	our	results	 in	context,	we	compare	with	a	 few	baseline	figures	from	previous	works.	
Traditional	 ML	 (using	 hand-crafted	 features):	 the	 original	 GTZAN	 paper	 achieved	 61%.	
Subsequent	improvements	(e.g.,	SVMs	with	better	features)	achieved	up	to	77–78%.	Our	CNN	
model	at	81.5%	already	beats	these,	demonstrating	the	benefit	of	deep	feature	learning.	Earlier	
deep	learning:	a	simple	deep	MLP	reported	by	some	studies	got	66%,	and	a	basic	CNN	around	
70–75%	on	this	dataset.	Our	CNN	at	81.5%	and	CRNN	at	88.7%	show	a	clear	improvement.	
Prasanna	et	al.	(2021)	combined	an	SVM	and	LSTM	and	reported	89%,	essentially	matching	our	
CRNN.	 State-of-the-art:	 Ashraf	 et	 al.	 (2023)	 reported	 89.3%	 for	 CNN+BiGRU	 and	 87%	 for	
CNN+LSTM,	which	is	in	line	with	our	findings.	They	also	listed	other	contemporary	models:	for	
example,	a	CNN	by	Heakal	et	al.	(2018)	got	70.6%,	and	an	ensemble	by	Fulzele	et	al.	(2020)	
reached	 89%.	 Our	 model’ s	 performance	 is	 on	 par	 with	 these	 top	 results,	 reinforcing	
confidence	in	our	implementation.	Statistical	Significance:	we	performed	a	two-tailed	t-test	on	
the	 per-track	 accuracy	 differences	 between	 the	 CNN–RNN	model	 and	 the	 standalone	CNN	
model.	The	 improvement	was	statistically	significant	(p	<	0.01).	The	 learning	curves	 for	 the	
CNN–RNN	model	indicated	steady	decrease	of	training	and	validation	loss,	with	no	obvious	
overfitting:	 validation	 loss	 plateaued	 around	 epoch	 40.	 The	 final	 gap	 between	 training	 and	
validation	accuracy	was	small	(training	92%,	validation	89%).	For	the	CNN	model,	we	noticed	
a	bit	more	overfitting	(training	95%,	val	82%	at	end),	which	dropout	and	early	stopping	helped	
mitigate.	Finally,	combining	different	feature	types	yielded	further	gains.	An	ensemble	of	the	
two	best	spectrogram	models	gave	84%	accuracy,	and	ensembling	multiple	runs	of	the	CRNN	
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might	push	above	90%.	This	suggests	that	model	averaging	could	further	enhance	robustness,	
but	the	added	complexity	may	not	always	justify	the	incremental	gain.	

6. Literature	References	
6.1. Effectiveness	of	CNN	and	RNN	Components	
The	experimental	results	confirm	that	deep	learning	methods,	particularly	the	combination	of	
convolutional	and	recurrent	neural	networks,	are	highly	effective	for	music	genre	classification	
on	 the	GTZAN	dataset.	One	key	observation	 is	 the	 superior	performance	of	 the	CNN–RNN	
hybrid	model	 relative	 to	models	 using	 either	 component	 alone.	 The	 CNN	was	 able	 to	 learn	
discriminative	 features	 from	spectrograms,	 capturing	 timbral	and	short-term	temporal	cues	
that	characterize	genres.	The	RNN,	on	the	other	hand,	by	itself	on	MFCC	sequences	did	not	excel.	
However,	when	we	feed	the	RNN	with	features	pre-extracted	by	the	CNN	(the	CRNN	model),	
the	performance	jumps	significantly.	This	indicates	a	synergy	between	CNN	and	RNN:	the	CNN	
acts	as	a	trainable	feature	extractor	that	outputs	a	sequence	of	high-level	feature	vectors,	and	
the	RNN	interprets	these	vectors	in	context,	accounting	for	the	progression	of	musical	structure	
over	time.	Essentially,	the	CNN	handles	the	frequency	dimension	while	the	RNN	handles	the	
time	dimension.	This	finding	is	consistent	with	other	studies	which	have	noted	that	CNNs	are	
adept	at	capturing	local	patterns	and	RNNs	at	capturing	sequential	patterns.	

6.2. Genre	Confusions,	Dataset	Characteristics,	and	Robustness	
The	 confusion	 matrix	 analysis	 provided	 insight	 into	 which	 genres	 remain	 difficult	 to	
discriminate.	 As	 expected,	 genre	 pairs	 with	 similar	 instrumentation	 or	 style	 (Rock/Metal,	
Country/Blues,	 etc.)	 had	 the	most	 confusion.	 In	 contrast,	 genres	 that	 are	more	 acoustically	
distinct	were	almost	never	confused.	This	pattern	suggests	that	while	deep	learning	models	can	
capture	many	 subtle	 differences,	 they	may	 still	 struggle	with	 overlapping	 class	 boundaries	
inherent	in	musical	taxonomy.	Part	of	this	is	due	to	the	dataset’s	nature:	the	GTZAN	dataset	
has	 some	 issues	 such	 as	mislabeling	 and	 limited	 examples	 of	 sub-genres,	 which	 can	 cause	
ambiguous	 cases.	 A	 more	 refined	 dataset	 or	 using	 additional	 data	 could	 further	 improve	
classification	of	those	borderline	cases.	

6.3. Spectrograms	vs.	MFCC	Representations	and	Capacity/Regularization	
We	included	both	spectrogram	and	MFCC	features	in	our	study.	The	results	clearly	favored	the	
use	of	mel-spectrograms,	especially	when	coupled	with	CNNs.	Mel-spectrograms	retain	more	
information	and	our	CNN	could	exploit	that,	as	evidenced	by	>80%	accuracy.	MFCCs,	being	a	
reduced	set	of	coefficients,	potentially	throw	away	some	detail.	Our	RNN	on	MFCC	did	worse,	
around	 74%.	 Through	 hyperparameter	 tuning,	 we	 found	 certain	 choices	 critical	 for	 good	
performance.	 Using	 enough	 filters	 and	 layers	 in	 the	 CNN	 was	 important— 	 a	 smaller	 CNN	
plateaued	at	lower	accuracy,	whereas	5	layers	gave	>80%.	The	RNN	part	did	not	benefit	from	
going	beyond	2	layers	of	128	units;	adding	a	third	or	using	larger	units	showed	diminishing	
returns.	 We	 also	 observed	 that	 bidirectional	 GRU	 slightly	 outperformed	 LSTM	 in	 our	
experiments.	The	bidirectional	aspect	helped:	non-bidirectional	RNNs	were	a	couple	of	points	
behind	 in	accuracy.	Regularization	was	essential—	without	dropout,	 our	CNN–RNN	would	
overfit	badly.	The	inclusion	of	dropout	(and	early	stopping)	prevented	this,	keeping	the	model’
s	generalization	in	check.	

6.4. Future	Directions	and	Practical	Considerations	
Although	our	model	performs	well,	several	avenues	for	improvement	and	further	investigation	
remain.	 Certain	 genres,	 such	 as	Rock	 and	Metal,	 could	be	more	 effectively	 distinguished	by	
incorporating	 additional	 features	 such	 as	 explicit	 tempo	 descriptors	 or	 rhythmic	 patterns.	
Extending	data	augmentation	strategies	beyond	segmentation	may	also	enhance	robustness.	
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Employing	a	cleaned	version	of	the	GTZAN	dataset	or	utilizing	larger-scale	datasets	would	likely	
yield	stronger	absolute	performance	and	support	the	training	of	deeper	architectures.	Another	
promising	direction	involves	real-time	or	long-sequence	modeling;	for	example,	classifying	an	
entire	 track	 in	 one	 pass	 using	 hierarchical	 recurrent	 networks	 or	 attention	 mechanisms.	
Integrating	 higher-level	 musical	 descriptors	 (e.g.,	 chromagram-based	 features)	 could	 also	
further	improve	classification.	
Comparison	with	human	performance	reveals	that	even	listeners	may	disagree	on	borderline	
cases,	 suggesting	 that	providing	“Top-k”	predictions	may	be	more	practical	 in	real-world	
applications.	 In	 terms	 of	 computational	 efficiency,	 the	 final	model	 is	 relatively	 lightweight:	
training	can	be	completed	on	a	single	GPU	within	a	few	hours,	and	inference	can	be	performed	
in	 real	 time.	 Additional	 efficiency	 could	 be	 gained	 through	model	 pruning	 or	 quantization.	
Furthermore,	 visualizations	 of	 early	 convolutional	 filters	 indicate	 that	 the	 network	 learns	
interpretable	structures	resembling	band-pass	filters	or	onset	detectors,	while	deeper	layers	
capture	more	complex	combinations	of	spectral-temporal	patterns.	These	findings	suggest	that	
the	model	indeed	learns	musically	relevant	representations.	Overall,	the	combination	of	CNN	
and	 RNN	 architectures	 proves	 effective	 for	 jointly	 capturing	 the	 spectral	 and	 temporal	
structures	inherent	in	audio	signals.	

7. Conclusion	
We	 presented	 a	 comprehensive	 study	 on	 the	 application	 of	 deep	 learning	 for	music	 genre	
classification	using	the	GTZAN	dataset,	focusing	on	CNN	and	RNN	architectures.	We	designed	
and	evaluated	a	CNN-based	model	 that	 learns	 from	mel-spectrogram	“images”	and	a	hybrid	
CNN–RNN	model	 that	 incorporates	 temporal	sequence	modeling	 through	LSTM/GRU	 layers.	
The	hybrid	approach	achieves	superior	performance,	with	about	89%	accuracy	on	GTZAN.	Key	
contributions	 include	 detailed	 preprocessing,	 model	 optimization	 strategies,	 informative	
figures	and	tables,	and	a	Python	code	snippet	for	reproducibility.	Insights:	deep	models	learn	
complex,	 genre-discriminative	 features;	CNN+RNN	 is	highly	 effective;	mel-spectrograms	are	
preferable	 to	 MFCCs	 for	 CNN-based	 approaches;	 and	 regularization/augmentation	 are	
essential	on	small	datasets.	Future	work	includes	scaling	to	larger	datasets,	domain	adaptation,	
multimodal	 integration	 (e.g.,	 lyrics/metadata),	 explainability	 for	 musicological	 insight,	 and	
deployment	in	real-world	systems.	
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