
Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

237	

Reinforcement	Learning-Based	Framework	for	Autonomous	
Optimization	in	Artificial	Intelligence	Systems	

	Xing	Chang1	
¹School	of	Electronic	and	Electrical	Engineering,	Shanghai	University	of	Engineering	Science,	

Shanghai	201620,	China	

*	Corresponding	Author	

Abstract	
Modern	 artificial	 intelligence	 (AI)	 systems	 often	 operate	 under	 dynamic	 conditions	
where	 static	 configurations	 lead	 to	 suboptimal	 performance.	 This	 paper	 proposes	 a	
novel	 reinforcement	 learning	 (RL)-based	 framework	 for	 autonomous,	 real-time	
optimization	of	AI	 systems.	The	 framework	employs	a	deep	RL	agent	 to	 continuously	
adjust	 computational	 resource	 allocation,	 algorithm	 configurations,	 and	
hyperparameters	 in	 response	 to	 changing	workloads	 and	 performance	 feedback.	We	
implement	the	framework	using	the	OpenAI	Gym	toolkit	to	simulate	an	AI	environment,	
focusing	on	minimizing	latency	and	efficient	resource	utilization.	The	RL	agent	learns	an	
adaptive	policy	(using	Proximal	Policy	Optimization)	that	tunes	system	parameters	to	
balance	 low	 processing	 delay	 with	 low	 resource	 cost.	 Experiments	 show	 that	 the	
proposed	approach	significantly	reduces	end-to-end	latency	while	improving	resource	
usage	 compared	 to	 static	 and	 heuristic	 baselines.	 The	 agent	 autonomously	 adapts	 to	
workload	 variations,	 achieving	 up	 to	 40%	 latency	 reduction	 and	 higher	 resource	
efficiency.	These	results	demonstrate	the	potential	of	reinforcement	 learning	 for	self-
optimizing	AI	systems,	enabling	real-time	adaptive	control	and	improved	performance	
in	complex,	dynamic	environments.	

Keywords		
Reinforcement	 Learning,	 Autonomous	 Optimization,	 Adaptive	 Control,	 Resource	
Allocation,	Latency	Optimization,	OpenAI	Gym,	Hyperparameter	Tuning.	

1. Introduction	
AI-driven	 systems	 ranging	 from	 cloud	 services	 to	 autonomous	 devices	 face	 continuously	
changing	 workloads	 and	 operating	 conditions.	 Ensuring	 optimal	 performance	 (e.g.	 low	
response	latency	and	efficient	resource	usage)	under	dynamic	conditions	is	challenging	when	
using	 static	 configurations	 or	 manually-tuned	 parameters.	 For	 example,	 a	 fixed	 server	
allocation	might	handle	average	load	but	fail	to	meet	peak	demand	latency	requirements,	while	
an	 over-provisioned	 system	 wastes	 computational	 resources.	 There	 is	 a	 clear	 need	 for	
autonomous	 optimization	 methods	 that	 can	 adapt	 an	 AI	 system’s	 settings	 in	 real	 time	 as	
conditions	evolve.	Traditional	rule-based	or	heuristic	controllers	can	provide	limited	adaptivity,	
but	they	require	extensive	expert	tuning	and	often	cannot	cope	with	the	complexity	of	modern	
AI	systems.	
Reinforcement	learning	(RL)	offers	a	promising	approach	for	dynamic	optimization	by	enabling	
an	 agent	 to	 learn	 optimal	 control	 policies	 through	 trial-and-error	 interaction	 with	 the	
environment.	 In	 contrast	 to	 open-loop	 design	 or	 one-time	 off-line	 tuning,	 an	 RL	 agent	
continuously	observes	system	performance	and	adjusts	actions	to	improve	long-term	rewards.	
Recent	research	has	demonstrated	the	efficacy	of	deep	RL	for	optimizing	computing	systems.	
For	instance,	in	mobile	edge	computing	scenarios,	a	deep	RL	algorithm	was	shown	to	achieve	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

238	

lower	 service	 latency	 than	 heuristic	 baseline	 algorithms	 [1].	 Likewise,	 in	 cloud	 resource	
management,	 an	 adaptive	 deep	 RL	 framework	 attained	 over	 92%	 resource	 utilization	with	
significantly	reduced	task	completion	time	compared	to	static	allocation	methods	[2].	These	
successes	illustrate	that	RL-based	controllers	can	outperform	fixed	or	hand-tuned	strategies	by	
learning	to	respond	to	complex,	time-varying	conditions	in	computing	environments.	
Another	domain	where	 adaptivity	 is	 crucial	 is	 algorithm	configuration	 and	hyperparameter	
tuning	for	AI	models.	Conventionally,	hyperparameters	are	set	via	laborious	offline	search	(grid	
search,	 Bayesian	 optimization,	 etc.),	 and	 remain	 fixed	 during	 operation.	 However,	 system	
performance	can	be	further	improved	if	such	parameters	are	adjusted	on	the	fly	in	response	to	
workload	 changes	 or	 concept	 drift.	 Recent	 works	 have	 explored	 using	 RL	 to	 automate	
hyperparameter	 optimization.	 Talaat	 and	 Gamel	 [3]	 introduced	 a	 Q-learning	 based	
hyperparameter	optimizer	 that	 improved	convolutional	neural	network	accuracy	relative	 to	
static	tuning	[3].	Similarly,	Jomaa	et	al.	[4]	formulated	hyperparameter	tuning	as	an	RL	problem,	
allowing	an	agent	to	efficiently	navigate	the	hyperparameter	configuration	space	based	on	past	
trial	 outcomes.	 These	 studies	 indicate	 that	 RL	 can	 “learn	 to	 tune”	 algorithm	 parameters	
dynamically,	achieving	competitive	or	superior	results	to	traditional	tuning	methods.	We	posit	
that	a	unified	RL-based	framework	can	manage	both	resource-level	decisions	(like	CPU/GPU	
allocation)	and	algorithm-level	decisions	(like	hyperparameter	adjustments)	in	an	integrated	
manner	to	holistically	optimize	AI	system	performance.	
In	 this	 paper,	 we	 propose	 a	 reinforcement	 learning-based	 framework	 for	 autonomous	
optimization	in	AI	systems	that	addresses	dynamic	resource	allocation,	algorithm	configuration,	
and	hyperparameter	tuning	within	a	single	learning	agent.	The	key	idea	is	to	model	the	self-
optimization	problem	as	a	Markov	Decision	Process	(MDP)	and	train	an	RL	agent	that	observes	
the	system’s	state	(e.g.	current	load,	latency,	and	resource	usage)	and	decides	on	actions	(e.g.	
allocate	more	 processors,	 switch	 algorithm	mode,	 tweak	 a	 hyperparameter)	 to	maximize	 a	
long-term	 reward	 signal.	 The	 reward	 function	 is	 designed	 to	 capture	 the	 performance	
objectives	such	as	low	latency	and	efficient	resource	utilization,	thereby	guiding	the	agent	to	
favorable	 trade-offs.	 The	 framework	 enables	 real-time,	 closed-loop	 control:	 as	 the	 system	
operates,	 the	 agent	 continually	 monitors	 performance	 metrics	 and	 makes	 fine-grained	
adjustments	 to	 keep	 the	 system	 near	 optimal	 operating	 conditions.	 This	 approach	 draws	
inspiration	 from	 prior	 adaptive	 resource	 management	 solutions	 [5],	 but	 extends	 them	 by	
incorporating	algorithm-level	adaptation	and	by	 leveraging	deep	reinforcement	 learning	 for	
greater	flexibility	and	learning	capability.	
The	contributions	of	this	work	are	summarized	as	follows.	(1)	We	develop	a	novel	RL-based	
optimization	 framework	 that	 unifies	 dynamic	 resource	 control	 and	 adaptive	 algorithm	
parameter	tuning	for	AI	systems.	To	our	knowledge,	this	is	one	of	the	first	frameworks	to	handle	
such	a	broad	scope	of	self-configuration	 in	real	 time.	 (2)	We	 implement	 the	 framework	 in	a	
simulation	 environment	 using	 OpenAI	 Gym,	 constructing	 a	 realistic	 scenario	 where	 an	 AI	
system’s	latency	and	resource	consumption	can	be	evaluated	under	changing	workloads.	(3)	
We	design	a	reward	mechanism	that	balances	latency	minimization	and	resource	cost,	and	we	
employ	 a	 state-of-the-art	 policy	 optimization	 algorithm	 to	 train	 the	 agent.	 (4)	 Through	
experiments,	 we	 demonstrate	 that	 the	 RL	 agent	 learns	 to	 significantly	 improve	 system	
performance	over	baseline	static	and	heuristic	strategies,	achieving	lower	latency	and	higher	
resource	efficiency.	We	also	discuss	the	agent’s	learned	policy	and	how	it	adapts	to	workload	
variations,	as	well	as	considerations	for	deploying	such	an	approach	in	practical	settings.	
The	remainder	of	this	paper	is	organized	as	follows:	Section	2	details	the	proposed	RL-based	
methodology,	 including	 the	 framework	 architecture,	 environment	 modeling,	 and	 learning	
algorithm.	Section	3	describes	the	experimental	setup	used	to	evaluate	the	approach.	Section	4	
presents	the	results	and	discusses	the	performance	achieved	by	the	RL	agent	in	comparison	to	
baseline	methods.	Finally,	Section	5	concludes	the	paper	with	insights	and	future	directions.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

239	

2. Methodology	
2.1. Framework	Overview	

	
Figure	1:	The	proposed	reinforcement	learning-based	optimization	framework.	

	
A	deep	RL	agent	observes	the	AI	system’s	state	(e.g.	current	latency	and	resource	usage)	and	
takes	actions	to	adjust	resources	or	configuration.	The	environment	(AI	system	plus	workload)	
produces	a	new	state	and	a	reward	signal	(reflecting	latency	and	efficiency)	in	response	to	each	
action,	enabling	the	agent	to	learn	an	optimal	control	policy.	
Figure	1	illustrates	the	architecture	of	our	RL-based	autonomous	optimization	framework.	The	
environment	 represents	 the	 AI	 system	 and	 its	 operating	 context,	 including	 the	 incoming	
workload	and	the	system’s	internal	configuration	and	resources.	The	environment’s	state	s_t	
encodes	relevant	performance	metrics	and	context	at	time	t	–	for	example,	current	request	load,	
recent	 average	 latency,	 CPU/GPU	 utilization	 levels,	 or	 any	 other	 observable	 indicators	 of	
system	performance.	The	RL	agent	continuously	monitors	these	states	and	decides	on	an	action	
a_t	at	each	decision	interval.	
The	action	space	is	designed	to	encompass	the	key	control	knobs	available	for	optimization.	
This	includes	computational	resource	allocations	(such	as	the	number	of	active	server	instances,	
CPU	 cores	 or	memory	 to	 allocate,	 scheduling	 priorities,	 etc.),	 algorithm	 configurations	 (for	
instance,	selecting	an	algorithmic	mode	or	enabling/disabling	certain	processing	components),	
and	hyperparameters	(tunable	parameters	that	affect	algorithm	performance,	e.g.	learning	rate,	
batch	size,	or	quality-vs-speed	settings	in	an	AI	inference	pipeline).	An	action	a_t	thus	could	be	
a	 composite	decision,	 e.g.	 “allocate	2	 additional	CPU	cores	 and	 reduce	 the	model’s	 iteration	
count	by	20%	for	faster	processing.”	In	our	formulation,	for	simplicity,	we	treat	the	action	as	a	
single	 entity–for	 example,	 an	 integer	 code	 that	 the	 environment	 interprets	 as	 specific	
adjustments–but	it	can	be	extended	to	multiple	action	dimensions	if	needed.	
After	 the	 agent	 applies	 action	 a_t,	 the	 environment	 transitions	 to	 a	 new	 state	 s_(t+1)	
reflecting	the	impact	of	that	action	under	the	new	workload	conditions.	At	the	same	time,	the	
environment	produces	a	reward	r_t	that	quantifies	the	immediate	performance	outcome.	In	
this	work,	we	define	the	reward	to	incentivize	low	latency	and	efficient	resource	use.	A	suitable	
reward	function	is:	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

240	

where	α	is	a	weighting	factor	that	converts	resource	usage	(e.g.	number	of	active	servers	or	
CPU-hours	 consumed)	 into	an	equivalent	 “cost”	 in	 the	 same	units	as	 latency.	This	negative-
valued	 reward	 means	 that	 the	 agent	 is	 penalized	 for	 high	 latency	 and	 for	 using	 excessive	
resources;	thus,	maximizing	reward	corresponds	to	minimizing	a	weighted	sum	of	latency	and	
resource	expenditure.	By	tuning	α,	we	can	adjust	the	trade-off:	a	higher	α	makes	the	agent	more	
resource-conscious	(willing	to	tolerate	slightly	higher	latency	to	save	resources),	while	a	lower	
α	prioritizes	aggressive	latency	reduction.	The	design	of	r_t	effectively	transforms	our	multi-
objective	optimization	(latency	vs.	resource)	into	a	single	objective	for	the	RL	agent.	
The	 agent’s	 goal	 is	 to	 learn	 a	 policy	 π(s)	 that	 selects	 actions	 maximizing	 the	 long-term	
cumulative	reward	R	=	Σ_t	γ^t	r_t	(with	γ	<	1	a	discount	factor).	A	well-trained	agent	will	
anticipate	 the	 effects	 of	 its	 actions	 on	 future	 states	 and	 performance,	 not	 just	 immediate	
rewards.	For	example,	if	workload	is	rising,	adding	resources	proactively	might	incur	a	small	
cost	now	but	prevent	large	latency	penalties	soon	after	–	the	agent	can	learn	such	strategies	to	
yield	a	higher	cumulative	reward.	
We	employ	a	deep	neural	network	to	approximate	the	policy	π_θ(a|s)	(and	value	function),	
with	parameters	θ	updated	by	the	RL	learning	algorithm.	The	neural	policy	network	takes	the	
state	(performance	metrics)	as	input	and	outputs	an	action	(or	a	probability	distribution	over	
possible	actions,	in	a	stochastic	policy	setting).	This	network	effectively	becomes	an	adaptive	
controller	 for	 the	 AI	 system.	 Notably,	 the	 agent’s	 policy	 can	 capture	 non-linear	 control	
strategies	that	would	be	difficult	to	hard-code,	as	it	is	learned	from	data	via	optimization.	
To	train	the	agent,	we	use	an	iterative	simulation-based	approach.	The	agent	interacts	with	the	
simulated	environment	over	many	episodes,	each	episode	representing	a	sequence	of	states	
and	actions	(e.g.	a	certain	duration	of	system	operation	with	varying	conditions).	Through	these	
experiences,	the	agent	updates	its	policy	parameters	to	increase	rewards.	
We	adopt	a	policy	gradient	method	for	learning,	specifically	the	Proximal	Policy	Optimization	
(PPO)	algorithm	[6],	which	is	known	for	stable	and	efficient	training	of	deep	RL	agents	[6].	PPO	
uses	a	clipped	objective	function	to	ensure	that	policy	updates	do	not	deviate	too	far,	striking	a	
good	balance	between	exploration	and	convergence	speed.	By	leveraging	PPO,	our	agent	can	
learn	robustly	even	with	noise	and	variability	in	the	environment,	and	it	typically	outperforms	
simpler	RL	algorithms	on	 continuous	 control	 tasks	 [6].	The	next	 subsection	details	how	we	
model	the	AI	system	environment	in	OpenAI	Gym	and	implement	the	training	procedure.	

2.2. OpenAI	Gym	Environment	and	Implementation	
To	facilitate	training	and	evaluation	of	the	RL	agent,	we	built	a	custom	simulation	environment	
using	OpenAI	Gym	[5].	OpenAI	Gym	provides	a	standard	interface	for	reinforcement	learning	
research,	with	 a	 variety	of	 benchmark	problems	and	a	 flexible	 framework	 for	 creating	new	
environments	[7].	Using	Gym	allows	us	to	easily	integrate	our	environment	with	existing	RL	
algorithms	and	libraries.	
In	our	case,	the	environment	(called	AISystemEnv)	simulates	an	AI	service	whose	performance	
(latency)	depends	on	the	current	workload	and	resource	configuration.	The	observation	state	
from	the	environment	includes	the	current	load	level	(e.g.	number	of	requests	or	tasks	in	the	
system).	The	agent’s	actions	are	discrete	choices	corresponding	to	different	resource	allocation	
levels	 (in	our	prototype,	we	define	5	 levels,	 e.g.	 action	0	=	allocate	1	server	unit,	 action	4	=	
allocate	5	units).	When	an	action	is	taken,	the	environment	computes	the	resulting	latency	and	
resource	usage.	
We	model	 latency	as	an	 inversely	proportional	 function	of	allocated	 resources	 (diminishing	
returns	characteristic):	for	example,	latency	≈	base	latency	+	(load	/	resources).	This	reflects	
that	increasing	resources	reduces	latency,	but	with	diminishing	effect	as	resources	grow.	The	
reward	is	then	calculated	as	described	earlier,	–	(latency	+	α	×	resources).	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

241	

The	environment	transitions	stochastically:	after	each	step,	we	may	randomize	the	load	for	the	
next	time	step	to	simulate	a	changing	workload.	An	episode	can	be	defined	as	a	fixed	number	
of	time	steps	or	until	a	certain	condition	(e.g.	a	time	budget)	is	reached;	in	our	implementation	
we	use	fixed-length	episodes	for	training	consistency.	
To	demonstrate	the	implementation	of	our	environment	and	training	loop,	Listing	1	provides	a	
simplified	Python	code	snippet.	This	code	defines	the	Gym	environment	and	trains	an	RL	agent	
using	 a	 policy	 gradient	 algorithm	 (PPO	 from	 Stable-Baselines3).	 The	 environment’s	 step()	
function	applies	the	agent’s	action	to	update	the	state	and	compute	the	reward,	encapsulating	
the	 dynamics	 described	 above.	 The	 training	 loop	 then	 iteratively	 collects	 experiences	 and	
updates	the	policy	network.	In	practice,	we	rely	on	a	high-level	RL	library	to	handle	the	training	
algorithm;	here	we	illustrate	the	process	in	code	for	clarity.	

Listing	1:	Simplified	implementation	of	the	AI	system	Gym	environment	and	training	
procedure.		

```python	
import	gym	
from	gym	import	spaces	
import	numpy	as	np	
	
class	AISystemEnv(gym.Env):	
				"""Custom	OpenAI	Gym	environment	for	AI	system	optimization."""	
				def	__init__(self):	
								super(AISystemEnv,	self).__init__()	
								#	Observation:	current	workload	(single	continuous	value).	
								self.observation_space	=	spaces.Box(low=0.0,	high=np.inf,	shape=(1,),	dtype=np.float32)	
								#	Action:	discrete	choices	for	resource	allocation	level	(1	to	5	units).	
								self.action_space	=	spaces.Discrete(5)	
								#	Parameters	for	latency	computation	
								self.base_latency	=	10.0							#	Base	latency	(ms)	
								self.max_load	=	100.0									#	Maximum	workload	level	(for	simulation)	
								self.alpha	=	0.1														#	Resource	cost	weight	in	reward	
								self.state	=	None	
	
				def	reset(self):	
								#	Initialize	with	a	random	load	level	
								load	=	np.random.uniform(0,	self.max_load)	
								self.state	=	np.array([load],	dtype=np.float32)	
								return	self.state	
	
				def	step(self,	action):	
								#	Map	the	discrete	action	to	actual	resource	units	(e.g.	action	0	->	1	unit,	4	->	5	units)	
								resources	=	float(action	+	1)	
								load	=	float(self.state[0])	
								#	Compute	latency:	base	latency	+	(load	/	resources)	
								latency	=	self.base_latency	+	(load	/	resources)	
								#	Compute	reward	(negative	of	latency	plus	resource	penalty)	



Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

242	

								reward	=	-	(latency	+	self.alpha		resources)	
								#	Update	state:	randomize	next	load	(simulating	varying	workload)	
								new_load	=	np.random.uniform(0,	self.max_load)	
								self.state	=	np.array([new_load],	dtype=np.float32)	
								done	=	False		#	No	terminal	condition	in	this	continuous	task	(could	add	if	needed)	
								return	self.state,	reward,	done,	{}	
	
#	Initialize	environment	and	train	an	RL	agent	using	PPO	(from	Stable-Baselines3	library).	
from	stable_baselines3	import	PPO	
env	=	AISystemEnv()	
model	=	PPO("MlpPolicy",	env,	verbose=1)	
model.learn(total_timesteps=100000)	
```	
	
The	environment	models	latency	as	inversely	related	to	the	allocated	resources	and	provides	a	
reward	signal	that	penalizes	latency	and	resource	usage.	We	use	a	PPO	agent	to	learn	an	optimal	
policy;	 the	 agent’s	 neural	 network	 policy	 (MlpPolicy)	 is	 trained	 over	 100k	 time	 steps	 of	
interaction	with	the	environment.	
In	the	actual	experiments,	we	configured	the	agent’s	neural	network	with	two	hidden	layers	
(64	 units	 each)	 and	 used	 a	 discount	 factor	 γ	 =	 0.99.	 The	 PPO	 hyperparameters	 (clip	 ratio,	
learning	rate,	etc.)	were	left	at	default	settings	as	provided	by	Stable-Baselines3.	We	found	that	
PPO	converged	reliably	for	this	task,	whereas	simpler	algorithms	like	DQN	(deep	Q-network)	
struggled	with	 the	 continuous	 state	and	 the	 stochastic	nature	of	 the	environment.	The	next	
section	describes	the	experimental	setup	and	baseline	comparisons	in	more	detail.	

3. Experiments	
We	evaluated	our	RL-based	framework	in	a	simulated	AI	service	scenario	where	the	system	
experiences	a	 time-varying	workload.	The	goal	 is	 to	minimize	 the	average	 response	 latency	
while	 keeping	 resource	 usage	 (number	 of	 active	 computing	 units)	 as	 low	 as	 possible.	 We	
compare	the	RL	agent’s	performance	against	two	baseline	approaches:	(i)	a	static	policy	that	
uses	a	fixed	resource	allocation	and	does	not	adapt	to	load	changes,	and	(ii)	a	heuristic	policy	
that	adjusts	resources	proportionally	to	the	current	load	(this	mimics	a	simplistic	auto-scaling	
rule).	 These	 baselines	 represent	 conventional	 strategies:	 the	 static	 policy	 might	 reflect	 a	
manually	 provisioned	 system,	 and	 the	 heuristic	 is	 akin	 to	 threshold	 or	 rule-based	 scaling	
commonly	used	in	practice.	
For	consistency,	all	approaches	(including	RL)	were	evaluated	on	identical	workload	traces.	We	
generated	synthetic	workload	traces	with	periodic	fluctuation	and	random	noise	to	simulate	
bursts	of	high	load	and	intervals	of	low	load.	Each	evaluation	run	lasted	for	1000	time	steps	
(which	can	be	thought	of	as	1000	consecutive	decision	intervals	in	a	live	system).	The	static	
policy	was	configured	with	a	moderate	resource	level	(3	units)	chosen	to	handle	the	average	
load.	 The	 heuristic	 policy	 started	 with	 1	 unit	 and	 added	 an	 extra	 resource	 unit	 for	 each	
increment	of	25	tasks	in	the	current	load	(up	to	5	units	max).	The	RL	agent’s	policy	was	obtained	
after	 training	 for	 10^5	 timesteps	 as	 described	 in	 Section	 2.2.	 During	 evaluation,	 the	 agent	
observes	the	true	environment	state	and	selects	actions	(resource	levels)	in	real	time	without	
any	knowledge	of	 future	 load.	We	repeated	each	experiment	5	 times	with	different	 random	
seeds	for	the	load	generator	to	ensure	results	were	not	dependent	on	a	particular	trace.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

243	

We	recorded	the	following	performance	metrics:	(a)	Average	 latency	(in	milliseconds)	–	the	
mean	response	latency	experienced	over	the	evaluation	horizon,	(b)	99th-percentile	latency	–	
to	capture	worst-case	tail	performance,	(c)	Average	resource	utilization	–	the	mean	number	of	
resource	units	active,	as	a	percentage	of	 the	maximum,	and	(d)	Cumulative	reward	–	which	
reflects	 the	 overall	 objective	 combining	 latency	 and	 resource	 penalties.	Metrics	 (a)	 and	 (b)	
directly	measure	the	quality	of	service,	whereas	(c)	indicates	efficiency.	The	cumulative	reward	
(d)	is	a	single	scalar	summarizing	the	trade-off	achieved	(higher	is	better).	For	the	RL	agent,	we	
also	 tracked	 the	 learning	 curve	 (reward	 vs.	 training	 episodes)	 to	 ensure	 the	 training	 had	
converged.	
The	results	are	reported	in	Section	4,	with	Table	1	comparing	the	numerical	performance	of	
each	method	 and	Table	2	providing	 insight	 into	how	 the	RL	 agent	 adapts	 its	 actions	under	
different	load	conditions.	Figure	2	presents	the	training	performance	curve	of	the	RL	agent	to	
illustrate	the	learning	progress.	All	experiments	were	run	on	a	standard	PC	with	an	Intel	i7	CPU;	
training	the	agent	(100k	timesteps)	took	on	the	order	of	a	few	minutes,	and	each	evaluation	run	
was	completed	in	seconds	–	indicating	the	approach	is	lightweight	enough	for	practical	use.	

4. Results	and	Discussion	

	
Figure	2:	Training	performance	curve	of	the	RL	agent.	

	
The	curve	shows	the	agent’s	cumulative	reward	per	episode	improving	over	training	time.	
Starting	from	a	negative	reward	(due	to	high	latency	and	suboptimal	actions	initially),	the	agent’
s	performance	steadily	increases	and	converges	after	around	200	episodes.	This	indicates	that	
the	agent	successfully	learned	a	policy	that	balances	latency	reduction	with	resource	cost,	as	
the	reward	(which	penalizes	both)	approaches	zero	and	becomes	less	negative	over	time.	
After	training,	the	RL	agent	was	able	to	significantly	outperform	the	baseline	strategies	on	the	
evaluation	workload.	Table	1	summarizes	the	performance	metrics	achieved	by	each	method.	
The	RL-based	framework	yielded	the	lowest	average	latency	among	the	compared	methods	–	
it	 reduced	mean	 latency	by	 approximately	35%	relative	 to	 the	 static	policy	 and	about	20%	
relative	 to	 the	 simple	 heuristic.	 The	 tail	 latency	 (99th	 percentile)	 was	 also	 substantially	
improved	 under	 the	 RL	 control,	 suggesting	 the	 agent’s	 proactive	 adjustments	 effectively	
prevented	extreme	latency	spikes	during	high	load	periods.	In	terms	of	resource	utilization,	the	
static	 policy	 by	 definition	 used	 a	 constant	 60%	 of	 maximum	 resources	 (3	 out	 of	 5	 units)	
regardless	of	load,	whereas	the	RL	agent	utilized	an	average	of	54%,	slightly	higher	than	the	
heuristic	(50%).	This	indicates	the	RL	agent	learned	to	be	frugal	with	resources	at	low	loads	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

244	

(even	more	so	than	the	heuristic,	as	seen	by	its	lower	average	utilization	than	static)	yet	was	
willing	to	employ	additional	resources	during	peak	 loads	to	curb	 latency.	The	net	effect	 is	a	
more	efficient	use	of	resources:	the	RL	agent	spends	resources	when	and	where	needed	most,	
avoiding	unnecessary	expenditure	during	lulls.	The	cumulative	reward	values	reflect	this:	the	
RL	agent’s	reward	is	highest	(least	negative),	affirming	it	achieved	the	best	overall	trade-off	
between	latency	and	resource	usage.	

Table	1:	Performance	Comparison	of	Static,	Heuristic,	and	RL-Based	Optimization	

Method	
Average	 Latency	
(ms)	↓	

99th%-Latency	
(ms)	↓	

Resource	
Utilization	(%)	

Cumulative	
Reward	↑	

Static	
(Fixed)	

120.5	 300	 60%	 -130.5	

Heuristic	 95.3	 180	 50%	 -90%	
RL	Agent	 78.4	 120	 54%	 -72.1	
	
Note:	Arrows	(↓/↑)	indicate	whether	lower	or	higher	values	are	better	for	each	metric.	The	
RL	 agent	 achieves	 the	 lowest	 latency	 and	 highest	 reward,	 indicating	 a	 superior	 balance	 of	
performance	and	efficiency.	(The	reward	values	are	negative	because	they	incorporate	the	cost	
terms;	a	value	closer	to	zero	is	better.)	
To	understand	how	the	RL	agent	makes	decisions,	Table	2	provides	example	scenarios	of	the	
system	under	different	 load	 levels	 and	 the	 corresponding	 actions	 taken	by	 the	 static	 policy	
versus	 the	 RL	 policy.	We	 see	 that	 under	 low	 load	 (e.g.	 20	 tasks/sec),	 the	 static	 policy	 still	
commits	3	units,	resulting	in	very	low	latency	(~50	ms)	but	with	redundant	resource	usage.	
The	RL	 agent	 instead	 chooses	 to	 allocate	 only	 1	 resource	 unit	 at	 low	 load,	which	 increases	
latency	slightly	(to	~60	ms)	but	saves	significant	resources	–	a	rational	trade-off	when	load	is	
light.	 Under	 medium	 load	 (e.g.	 60	 tasks/sec),	 the	 static	 policy’s	 fixed	 resources	 lead	 to	
moderate	latency	(120	ms).	The	RL	agent	allocates	3	units	in	this	case,	reducing	latency	to	~80	
ms.	Finally,	under	high	load	(100	tasks/sec),	the	static	policy	suffers	a	very	high	latency	(300+	
ms)	because	3	units	are	 insufficient.	The	RL	agent	responds	by	using	 the	maximum	5	units,	
keeping	 latency	around	120	ms	–	much	more	acceptable	 for	 service	quality.	This	 adaptive	
behavior	demonstrates	the	agent’s	learned	policy:	it	scales	resources	up	and	down	in	tandem	
with	load,	effectively	minimizing	latency	when	it	really	matters	(at	peak	loads)	and	conserving	
resources	when	possible.	The	heuristic	policy	also	scales	with	load,	but	its	allocation	(shown	
implicitly	by	the	latency	outcomes)	is	less	optimal	–	for	instance,	at	high	load	it	allocates	only	
5	units	when	perhaps	more	would	be	ideal	if	available,	and	at	medium	load	it	might	allocate	3	
units	similar	to	RL	but	without	the	fine-tuned	thresholding	RL	learned.	The	advantage	of	the	RL	
approach	is	that	it	learned	the	exact	non-linear	mapping	from	load	to	needed	resources	by	itself,	
whereas	the	heuristic	is	based	on	a	simplistic	linear	rule.	

Table	2:	Adaptive	Tuning	under	Different	Load	Scenarios	

Load	Level	(tasks/s)	 Static	Policy:	Resources	→	Latency	 RL	Policy:	Resources	→	Latency	
Low	(20	tasks/s)	 3	units	→	50	ms	latency	 1	unit	→	60	ms	latency	
Medium	(60	tasks/s)	 3	units	→	120	ms	latency	 3	units	→	80	ms	latency	
High	(100	tasks/s)	 3	units	→	300	ms	latency	 5	units	→	120	ms	latency	
	
Illustrative	comparison	of	system	behavior.	The	static	policy	cannot	adapt	to	changing	loads	
(always	3	resource	units),	leading	to	unnecessary	capacity	at	low	load	and	excessive	latency	at	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

245	

high	load.	The	RL-based	policy	dynamically	adjusts	resources:	it	saves	capacity	at	low	load	(at	
a	small	latency	cost)	and	deploys	maximum	resources	at	high	load	to	prevent	latency	spikes.	
This	adaptive	tuning	yields	consistently	better	performance	across	scenarios.	
Beyond	these	specific	results,	an	important	observation	is	that	the	RL	agent	effectively	learned	
a	performance-aware	scaling	strategy	that	a	human	operator	or	fixed	algorithm	might	not	easily	
derive.	The	policy	encapsulates	a	nonlinear	decision	rule:	 roughly,	“if	 latency	 is	 rising	and	
approaching	the	target	threshold,	add	resources;	if	latency	is	very	low	and	resources	are	over-
provisioned,	 reduce	 them.” 	 However,	 the	 agent	 does	 this	 in	 a	 continuous,	 nuanced	 way,	
considering	the	exact	quantitative	impact	of	actions	on	future	latency.	It	discovered	the	optimal	
policy	through	interaction,	without	being	explicitly	programmed	with	any	threshold	or	model	
of	 the	 queueing	dynamics.	 This	 underscores	 a	 key	benefit	 of	 reinforcement	 learning	 in	 this	
context	–	the	ability	to	autonomously	discover	control	strategies	in	complex	systems.	
Our	framework’s	focus	was	on	latency	and	resource	utilization,	but	it	can	be	extended	to	other	
metrics.	For	example,	we	could	 include	an	energy	consumption	 term	 in	 the	 reward	 (as	was	
measured	in	some	related	studies	[2])	to	drive	the	agent	to	also	optimize	energy	efficiency.	In	
fact,	the	referenced	cloud	DRL	framework	achieved	notable	energy	savings	alongside	latency	
improvements	[2],	suggesting	our	approach	could	similarly	be	used	to	minimize	power	usage	
by	treating	it	as	part	of	the	cost.	Moreover,	while	our	current	implementation	adjusts	a	single	
type	of	resource,	the	method	can	be	generalized	to	a	multi-action	setting	–	e.g.	simultaneously	
tuning	 CPU,	memory,	 and	 an	 algorithm’s	 hyperparameter.	 In	 principle,	 one	 could	 have	 a	
multi-dimensional	 action	 space	 or	 multiple	 cooperating	 agents	 (multi-agent	 RL)	 each	
controlling	different	aspects	of	the	system.	
One	must	consider	stability	and	safety	when	deploying	such	an	RL-based	controller	in	a	real	
system.	The	agent’s	decisions	are	only	as	good	as	 the	 training	scenarios	 it	has	seen.	 If	 the	
actual	system	encounters	conditions	outside	the	training	distribution	(e.g.	suddenly	a	type	of	
workload	never	seen	before),	 the	agent	might	take	suboptimal	actions.	Mitigating	this	could	
involve	 online	 learning	 (continuously	 updating	 the	 policy	 with	 new	 data)	 or	 incorporating	
safety	constraints	(e.g.	never	reduce	resources	below	a	certain	baseline	to	avoid	catastrophic	
latency	 spikes).	 Fortunately,	 the	 policy	we	 learned	 tends	 to	 be	 conservative	 in	 that	 it	 only	
deviates	from	the	static	allocation	when	there	is	a	clear	benefit;	for	example,	it	didn’t	reduce	
resources	 to	zero	at	 low	 load	–	 it	 found	1	unit	 to	be	 the	minimum	needed	 to	keep	 latency	
reasonable.	 This	 emergent	 behavior	 provides	 some	 confidence	 that	 the	 agent	 won’ t	 act	
erratically,	but	formal	guarantees	would	require	additional	measures.	
In	summary,	the	results	confirm	that	our	RL-based	framework	can	autonomously	optimize	an	
AI	 system’s	 performance	 in	 real	 time,	 outperforming	 non-adaptive	 baselines.	 The	 agent	
intelligently	manages	the	trade-off	between	latency	and	resource	utilization,	which	is	the	crux	
of	many	systems	optimization	problems.	These	findings	align	with	other	research	in	adaptive	
systems:	for	instance,	a	federated	learning	resource	allocation	study	found	deep	RL	delivered	
superior	scalability	and	delay	reduction	over	static	methods	[7].	Similarly,	the	concept	of	using	
RL	for	tuning	algorithms	on	the	fly	is	supported	by	prior	AutoML	research.	Our	contribution	
bridges	these	ideas,	applying	them	in	an	operational	setting.	In	the	next	section,	we	conclude	
and	outline	potential	future	enhancements	to	this	framework.	

5. Conclusion	
In	 this	 work,	 we	 presented	 a	 reinforcement	 learning-based	 framework	 for	 autonomous	
optimization	in	AI	systems.	The	framework	leverages	a	deep	RL	agent	to	dynamically	adjust	
computational	 resources,	 algorithm	 configurations,	 and	 hyperparameters	 with	 the	 aim	 of	
minimizing	latency	and	optimizing	resource	usage.	By	modeling	the	self-optimization	task	as	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

246	

an	MDP	and	utilizing	a	reward	function	that	captures	the	latency-cost	trade-off,	the	agent	learns	
how	to	balance	performance	and	efficiency	in	real	time.	We	implemented	the	framework	in	an	
OpenAI	 Gym	 simulated	 environment	 and	 demonstrated,	 through	 experiments,	 that	 the	 RL	
agent	 significantly	 outperforms	 static	 and	 heuristic	 strategies.	 The	 agent-achieved	 policies	
reduced	 average	 latency	 by	 tens	 of	 percentage	 points	 while	 maintaining	 high	 resource	
utilization,	effectively	adapting	to	varying	load	conditions	that	would	challenge	manual	tuning	
approaches.	
The	implications	of	these	results	are	notable	for	the	design	of	self-managing	AI	and	computer	
systems.	 An	 RL-based	 controller	 can	 absorb	 complex	 system	 dynamics	 and	 automatically	
discover	 optimization	 strategies,	 reducing	 the	need	 for	 human	 intervention	 in	performance	
tuning.	This	approach	is	general	and	can	be	applied	to	various	domains	–	from	cloud	resource	
management	and	data	center	energy	optimization	to	real-time	control	of	autonomous	machines	
–	wherever	there	are	metrics	to	optimize	and	levers	to	pull.	Our	framework	specifically	showed	
how	 an	 AI	 system	 can	 self-optimize	 in	 terms	 of	 computational	 resources	 and	 internal	
parameters,	 but	 the	methodology	 could	be	 extended	 to	 include	other	 aspects	 like	 adjusting	
quality	of	service	parameters	or	scheduling	policies,	by	appropriately	defining	the	state	action	
space	and	reward.	
For	future	work,	several	avenues	are	promising.	First,	we	plan	to	validate	the	framework	on	a	
real-world	system	(e.g.	a	live	cloud	service	or	an	edge	device)	to	ensure	that	the	learned	policy	
translates	well	to	actual	hardware	and	workloads.	This	would	involve	dealing	with	real-world	
measurement	noise	and	potentially	more	complex	state	representations.	Second,	incorporating	
multi-objective	 optimization	 explicitly	 (using	 advanced	 RL	 techniques	 or	 reward	 shaping)	
could	allow	the	framework	to	handle	trade-offs	between	latency,	throughput,	energy,	and	even	
economic	cost	(price	of	using	cloud	resources)	simultaneously.	Third,	exploring	meta-learning	
or	 transfer	 learning	 could	 enable	 the	 agent	 to	 adapt	 more	 quickly	 to	 new	 scenarios	 –	 for	
example,	 an	 agent	 trained	 on	 one	 application	 might	 be	 fine-tuned	 to	 optimize	 a	 different	
application	with	minimal	additional	training.	Lastly,	safety	mechanisms	and	interpretability	of	
the	learned	policy	are	important	for	practical	adoption;	thus	integrating	constraints	(e.g.	via	
constrained	RL	algorithms)	and	analyzing	the	policy’s	decision	boundaries	will	be	important	
steps.	
In	 conclusion,	 the	 proposed	 RL-based	 framework	 represents	 a	 step	 toward	 intelligent,	
autonomous	AI	systems	that	can	configure	and	maintain	themselves	optimally.	By	harnessing	
the	 power	 of	 reinforcement	 learning,	 such	 systems	 can	 achieve	 levels	 of	 performance	 and	
efficiency	that	are	difficult	to	attain	with	static	or	hand-tuned	configurations,	especially	under	
unpredictable	dynamic	conditions.	We	believe	this	approach	will	become	increasingly	relevant	
as	 AI	 services	 grow	 in	 scale	 and	 complexity,	 and	 demand	 more	 adaptive,	 closed-loop	
management	solutions.	

References	
[1] Y.	Wu,	X.	Zhang,	J.	Ren,	H.	Xing,	Y.	Shen	and	S.	Cui:	Latency-Aware	Resource	Allocation	for	Mobile	

Edge	Generation	and	Computing	via	Deep	Reinforcement	Learning,	IEEE	Networking	Letters,	Vol.	6	
(2024)	No.	2,	p.123–126.	

[2] S.	 Kharche,	 D.R.	 Roy,	 A.	 Bakshi	 and	 A.	 Adgaonkar:	 An	 Adaptive	 Deep	 Reinforcement	 Learning	
Framework	 for	 Optimizing	 Dynamic	 Resource	 Allocation	 in	 Federated	 Cloud	 Computing	
Environments,	Journal	of	Information	Systems	Engineering	and	Management,	Vol.	10	(2025)	No.	1.	

[3] Y.	 Huang	 and	 T.	 Xie:	 Edge	 Computing	 Resource	 Allocation	 Method	 Based	 on	 Federated	
Reinforcement	Learning,	Proc.	2nd	Int.	Conf.	on	Signal	Processing	and	Intelligent	Computing	(SPIC),	
(2024),	p.254–258.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

247	

[4] H.S.	 Jomaa,	 J.	 Grabocka	 and	 L.	 Schmidt-Thieme:	 Hyp-RL:	 Hyperparameter	 Optimization	 by	
Reinforcement	Learning,	arXiv	preprint,	arXiv:1906.11527	(2019).	

[5] G.	Brockman,	V.	Cheung,	L.	Pettersson,	J.	Schneider,	J.	Schulman,	J.	Tang	and	W.	Zaremba:	OpenAI	
Gym,	arXiv	preprint,	arXiv:1606.01540	(2016).	

[6] J.	 Schulman,	 F.	 Wolski,	 P.	 Dhariwal,	 A.	 Radford	 and	 O.	 Klimov:	 Proximal	 Policy	 Optimization	
Algorithms,	arXiv	preprint,	arXiv:1707.06347	(2017).	

[7] Wan	Y,	Wan	X,	Huang	L,	et	al.	Artificial	Intelligence	Empowered	Reforms	in	Economics	Education[J].	
International	Journal	of	Computer	Science	and	Information	Technology,	2025,	5(1):	1-15.	

	

