
Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

221	

Cloud-Native	Microservice	Architecture	for	Inclusive	Cross-
Border	Logistics:	Real-Time	Tracking	and	Automated	Customs	

Clearance	for	SMEs	
Zhiwen	Fang1,	*	

1Department	of	Information	Technology	and	Management,	Illinois	Institute	of	Technology,	
Chicago,	USA	

*	Corresponding	Author	

Abstract	
Small	and	medium-sized	enterprises	(SMEs)	face	high	barriers	to	efficient	cross-border	
logistics	 due	 to	 fragmented	 tracking,	 complex	 customs	 regulations,	 and	 costly	 legacy	
systems.	 This	 paper	 proposes	 a	 cloud-native	microservice	 platform	 for	 cross-border	
logistics	that	integrates	real-time	shipment	tracking	and	automated	customs	clearance	
to	 lower	 these	 barriers.	 The	 architecture	 employs	 containerized	 microservices	
orchestrated	 in	 the	 cloud,	 with	 a	 lightweight	 API	 gateway	 enabling	 multi-tenant	
operation	 and	 tenant-specific	 data	 isolation.	 Key	 components	 include	 a	 real-time	
tracking	service	(aggregating	live	shipment	data	from	carriers	and	IoT	devices)	and	a	
rule-driven	 customs	 clearance	 service	 (automating	 tariff	 calculation	 and	 document	
compliance	 checks).	 We	 leverage	 an	 open-source	 business	 rules	 engine	 for	 customs	
compliance,	 allowing	 rapid	 updates	 to	 regulatory	 rules	 without	 changing	 core	 code.	
Experiments	 on	 a	 prototype	 deployment	 demonstrate	 near-linear	 scalability	 –	
throughput	increases	from	~50	requests/s	with	1	instance	to	over	5400	requests/s	with	
100	 instances	– 	 and	 low	 latency	 under	 load.	 Automated	 customs	 processing	 on	 the	
platform	 reduces	 clearance	 times	dramatically	 (e.g.	 from	2–3	days	manually	 to	 <24	
hours)	through	digital	workflow	automation.	Compared	to	existing	logistics	platforms	
(e.g.	project44	 for	enterprise	visibility,	or	FlavorCloud	 for	e-commerce	shipping),	our	
solution	 is	 distinguished	 by	 its	 open,	 multi-tenant	 architecture	 and	 focus	 on	 SME	
inclusivity.	SME	customers	can	adopt	the	platform	with	minimal	upfront	cost,	benefiting	
from	pay-per-use	pricing	and	modular	integration	into	their	supply	chain.	The	results	
demonstrate	that	our	approach	can	significantly	streamline	global	trade	operations	for	
SMEs,	 lowering	 costs	 and	 delays	 while	 improving	 supply	 chain	 transparency.	 We	
conclude	 that	 a	 cloud-native	microservice	 architecture	 is	 a	 promising	 foundation	 for	
inclusive	digital	trade	infrastructure	supporting	SME	globalization.	

Keywords		
Cloud-Native	 Microservices,	 Cross-Border	 Logistics,	 Real-Time	 Tracking,	 Automated	
Customs	Clearance,	SME	Globalization.	

1. Introduction	
Globalization	and	the	rise	of	e-commerce	have	created	new	opportunities	for	SMEs	to	engage	
in	international	trade,	but	they	also	expose	disproportionate	challenges	that	smaller	firms	face	
in	 cross-border	 logistics.	 Unlike	 large	 multinationals,	 SMEs	 often	 lack	 access	 to	 advanced	
logistics	 IT	 infrastructure,	 real-time	 shipment	 visibility,	 and	 dedicated	 customs	 compliance	
teams.	Consequently,	SMEs	struggle	with	delayed	shipments,	regulatory	non-compliance,	and	
higher	costs,	which	hinder	their	global	competitiveness.	For	example,	in	Southeast	Asia,	over	
50	million	SMEs	remain	locked	out	of	formal	cross-border	trade	due	to	limited	access	to	digital	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

222	

logistics	and	compliance	tools.	More	than	80%	of	these	SMEs	believe	they	could	reach	wider	
customer	 bases	 if	 provided	with	 affordable	 digital	 platforms	 for	 shipping	 and	 trade.	 These	
findings	underscore	the	need	for	inclusive	logistics	solutions	that	lower	entry	barriers	for	small	
businesses	in	global	trade.	
Traditional	logistics	systems	are	often	monolithic	and	proprietary,	making	them	expensive	and	
inflexible	for	SMEs.	The	key	pain	points	include	fragmented	tracking,	where	SMEs	must	juggle	
multiple	carrier	websites	or	spreadsheets	to	track	shipments	without	a	unified	real-time	view;	
complex	 customs	 processes,	 where	 ever-changing	 tariffs	 and	 documentation	 rules	 require	
expertise	 that	 SMEs	may	not	 have,	 often	 leading	 to	 errors,	 delays,	 or	 fines;	 and	 integration	
difficulties,	where	connecting	e-commerce	stores,	third-party	logistics	providers,	and	customs	
databases	typically	demands	custom	one-off	integrations	or	manual	data	entry.	These	issues	
contribute	to	slower	deliveries,	higher	costs,	and	even	lost	 international	sales	opportunities.	
According	to	global	trade	reports,	improving	access	to	affordable	cross-border	logistics	could	
unlock	the	potential	of	millions	of	SMEs	in	emerging	markets.	
To	 address	 these	 challenges,	 we	 propose	 a	 cloud-native	 microservice	 architecture	 for	 an	
inclusive	cross-border	logistics	platform	tailored	to	SME	needs.	By	embracing	a	microservices	
approach,	the	platform	achieves	the	flexibility	and	scalability	required	to	support	diverse	SME	
customers	 and	 fluctuating	 workloads	 [9].	 Each	 core	 function—such	 as	 shipment	 tracking,	
customs	clearance,	or	partner	integration—is	implemented	as	an	independent	service	that	can	
scale	and	evolve	on	its	own.	Container	orchestration	(e.g.,	Kubernetes)	manages	these	services	
to	ensure	elasticity	and	high	availability.	Crucially,	the	architecture	integrates	real-time	cargo	
tracking,	 automated	 customs	 compliance,	 and	 unified	 data	 exchange	 APIs	 as	 first-class	
components.	
The	real-time	tracking	service	integrates	with	carrier	APIs,	warehouse	management	systems,	
and	potentially	IoT	sensors	to	provide	end-to-end	visibility	of	shipments	[1].	Platform	users,	
including	SME	customers	and	their	end-consignees,	can	obtain	live	updates	on	parcel	location	
and	status	through	a	single	interface	instead	of	checking	multiple	systems.	This	unified	tracking	
improves	customer	satisfaction	and	enables	proactive	issue	resolution,	such	as	detecting	if	a	
package	is	stuck	at	customs	and	intervening	early.	
The	 automated	 customs	 clearance	 service	 embeds	 a	 rules	 engine	 and	 compliance	 logic	 to	
automate	 customs	 declarations	 and	 import/export	 checks.	 When	 an	 SME	 prepares	 an	
international	shipment,	the	system	automatically	verifies	that	the	product	and	documentation	
meet	destination-country	regulations.	It	calculates	duties	and	taxes,	ensures	all	required	forms	
are	complete,	and	greatly	reduces	manual	paperwork.	By	using	a	business	rules	management	
system,	 new	 regulations	 or	 policy	 changes	 can	 be	 incorporated	 as	 updated	 rules	 without	
changing	 the	 core	 application	 code.	 This	 automation	 is	 expected	 to	 cut	 clearance	 times	
significantly,	reducing	processing	from	several	days	to	within	24	hours,	while	also	lowering	the	
risk	of	costly	customs	holds	or	penalties.	
The	 unified	 data	 exchange	 APIs	 enable	 seamless	 integration	 into	 the	 broader	 digital	 trade	
ecosystem	[2].	For	example,	an	Amazon	Seller	Central	integration	allows	order	and	shipment	
data	from	an	SME’s	e-commerce	store	to	flow	into	the	logistics	platform	automatically.	Likewise,	
connectors	 support	 third-party	 logistics	 providers,	 freight	 forwarders,	 and	 government	
customs	 systems	 to	 exchange	 shipment	 events	 and	 documents.	 Such	 open	 APIs	 accelerate	
partner	 onboarding	 and	 reduce	 time-to-market	 for	 new	 services.	 By	 providing	 developer-
friendly	APIs	and	webhooks,	the	platform	fosters	an	ecosystem	in	which	carriers,	brokers,	and	
e-commerce	platforms	can	easily	connect	and	share	real-time	logistics	data.	
Beyond	these	functional	modules,	 the	architecture	emphasizes	cost-effective	 inclusivity.	 It	 is	
built	 largely	 on	 open-source	 frameworks	 and	 can	 be	 deployed	 on	 commodity	 cloud	
infrastructure	 or	 on-premise	 if	 needed,	 avoiding	 expensive	 vendor	 lock-in.	 Multi-tenancy	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

223	

support	 is	 designed	 into	 the	 core:	 a	 single	 platform	 instance	 can	 securely	 serve	many	 SME	
customers,	with	tenant-specific	data	partitions	and	access	controls.	This	multi-tenant	design	
amortizes	costs	and	allows	a	pay-per-use	pricing	model,	which	is	vital	for	SME	adoption.	SMEs	
can	thus	outsource	their	cross-border	logistics	IT	needs	to	the	platform	without	large	upfront	
investments.	The	modular	design	also	allows	selective	adoption,	meaning	an	SME	could	use	just	
the	tracking	API	or	only	the	customs	module	as	needed,	providing	flexible	entry	points.	
In	summary,	this	paper	contributes	a	unified	cloud-native	architecture	and	implementation	of	
a	 cross-border	 logistics	 platform	 that	 addresses	 SME	 needs	 for	 real-time	 tracking	 and	
automated	customs	compliance.	We	explicitly	highlight	how	our	approach	differs	from	existing	
solutions,	 both	 academic	 and	 commercial.	 Unlike	 enterprise-focused	 platforms	 such	 as	
project44	or	proprietary	SaaS	solutions	like	FlavorCloud,	our	platform	is	open	and	inclusive	by	
design,	offering	multi-tenant	support,	cost	efficiency,	and	the	ability	to	be	adopted	by	SMEs	with	
minimal	friction.	We	provide	a	detailed	system	design	and	evaluate	its	performance	scalability	
and	 business	 impact	 through	 experiments.	 The	 results	 show	 that	 such	 an	 architecture	 can	
dramatically	 simplify	 global	 logistics	 for	 SMEs,	 reducing	 delays	 and	 costs	 while	 improving	
supply	chain	visibility	and	compliance.	We	also	discuss	implications	for	SME	participation	in	
global	trade	and	how	this	approach	contributes	to	digital	trade	infrastructure.	
	

2. Related	Work	and	Comparison	
Modernizing	logistics	and	trade	systems	with	cloud	architectures	has	been	the	focus	of	both	
industry	 initiatives	 and	 academic	 research	 in	 recent	 years.	 Microservices	 architecture	 has	
proven	 transformative	 in	 supply	 chain	 software	due	 to	 the	need	 for	 flexibility	 and	modular	
integration.	Mangwani	(2023)	describes	how	breaking	down	monolithic	logistics	applications	
into	independent	services	can	enhance	scalability,	fault	isolation,	and	time-to-market	for	new	
features.	For	example,	a	3PL	company	that	re-architected	its	legacy	system	as	a	cloud-native	
multi-tenant	application	was	able	to	reduce	new	client	onboarding	time	from	over	a	month	to	
under	a	day.	This	 illustrates	 the	kind	of	multi-tenant	scalability	and	configurability	 that	our	
SME-focused	 platform	 requires.	 Our	 design	 also	 draws	 on	 Domain-Driven	 Design	 (DDD)	
practices	 widely	 discussed	 in	 software	 architecture	 literature.	 Aligning	 microservices	 with	
bounded	contexts	ensures	each	service	encapsulates	a	cohesive	set	of	business	capabilities.	For	
instance,	Uber’s	domain-oriented	microservice	architecture	stresses	careful	service	boundaries	
and	API	gateway	patterns	to	manage	numerous	services	efficiently.	Similarly,	we	employ	an	API	
Gateway	in	our	platform	to	present	a	unified	external	interface,	decouple	clients	from	internal	
service	details,	and	enforce	security	and	rate	limiting	across	all	tenants.	
On	the	logistics	front,	several	commercial	platforms	and	studies	address	real-time	tracking	and	
digital	 freight	 management.	 Real-time	 visibility	 APIs	 are	 offered	 by	 companies	 such	 as	
project44	and	Vizion,	which	aggregate	carrier	tracking	data	into	unified	streams	for	shippers.	
These	 solutions	 validate	 the	 importance	 of	 unified	 tracking	 data	 exchange,	 though	 they	
typically	target	larger	enterprises	or	logistics	providers.	Our	platform	extends	the	concept	to	
smaller	shippers	and	crucially	integrates	tracking	with	customs	compliance	in	one	system—a	
combination	that	is	not	fully	addressed	by	existing	services.	The	need	for	such	integration	is	
echoed	by	industry	analysts,	who	note	that	API-driven	microservices	can	reduce	overhead	and	
provide	 multi-party	 visibility	 in	 logistics.	 For	 automated	 customs	 clearance,	 prior	 work	
includes	 AI-driven	 compliance	 tools	 and	 rule-based	 engines.	 Maersk’s	 recent	 AI-powered	
customs	 brokerage	 system,	 for	 example,	 demonstrates	 growing	 interest	 in	 using	 AI/ML	 to	
navigate	regulatory	complexity	in	imports.	Platforms	like	FreightAmigo	and	FlavorCloud	offer	
digital	 customs	 clearance	 features	 such	 as	 automated	 documentation,	 duty	 calculation,	 and	
real-time	compliance	checks.	These	underscore	the	feasibility	and	value	of	automation	in	trade	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

224	

compliance,	which	our	customs	module	also	aims	to	achieve	through	a	transparent	rules	engine	
approach.	Rather	than	a	“black	box”	AI,	we	focus	on	a	rules-based	system	for	customs	logic	to	
ensure	 explainability	 and	 easy	 updates	 by	 domain	 experts.	 This	 rules	 service	 is	 tightly	
integrated	with	our	 tracking	 and	data	 exchange	 services—for	 example,	when	a	 shipment	 is	
created,	compliance	rules	automatically	trigger	any	necessary	actions,	such	as	placing	a	hold	or	
requesting	additional	documents	if	potential	violations	are	detected.	
Academic	research	on	cross-border	logistics	platforms	is	still	emerging.	Ouyang	et	al.	(2023)	
proposed	an	intelligent	cross-border	logistics	system	combining	microservice	and	serverless	
architectures.	 Their	 platform,	 built	 on	 AWS	 Lambda,	 demonstrated	 that	 serverless	
microservices	can	reduce	operational	costs	and	handle	bursty	workloads	efficiently	in	logistics	
scenarios.	They	also	highlight	the	importance	of	security	in	distributed	architectures,	such	as	
using	API	gateways	to	avoid	exposing	internal	services	and	employing	encryption	for	data	in	
transit.	 Our	 work	 aligns	 with	 these	 best	 practices:	 we	 implement	 an	 API	 Gateway	 and	
emphasize	 secure,	 encrypted	 inter-service	 communication,	 especially	 when	 transmitting	
sensitive	 trade	 data.	 However,	 whereas	 Ouyang’s	 system	 is	 geared	 towards	 IoT-integrated	
logistics	 and	 uses	 a	 serverless	 stack,	 our	 implementation	 is	 container-based	 to	 allow	more	
control	over	long-running	processes	such	as	continuous	tracking	streams,	and	explicitly	targets	
SME	 inclusivity	and	compliance	automation	as	primary	goals.	Another	 related	 thread	 in	 the	
literature	 is	supply	chain	security	and	blockchain	 integration	 for	 logistics,	which	some	have	
advocated	 to	 ensure	 tamper-proof	 tracking	 data	 and	 streamline	 trade	 finance.	 While	
blockchain-based	mechanisms	are	beyond	our	current	scope,	our	platform’s	emphasis	on	data	
integrity	 and	 unified	 visibility	 shares	 the	 goal	 of	 a	 secure,	 transparent	 supply	 chain.	 We	
consider	 integration	 with	 digital	 ledger	 technologies	 as	 future	 work,	 ensuring	 that	 our	
microservice	APIs	and	data	models	could	accommodate	a	blockchain	component	if	needed.	
	

Table	1:	Comparison	of	Our	Platform	with	project44	and	FlavorCloud	

Aspect	 project44	
(Enterprise)	 FlavorCloud	(SaaS)	 Our	Platform	(This	

Work)	

Target	Users	
Large	enterprises,	3PLs;	
1,000+	major	brands	

served	

E-commerce	SMEs	
using	

Shopify/BigCommerce	
(online	merchants)	

SMEs	across	sectors	
(broad	range	of	small	

shippers)	

Core	Features	

Real-time	multimodal	
shipment	tracking,	
analytics	(visibility	

focus)	

End-to-end	cross-
border	shipping	service	
(auto	carrier	selection,	
label	generation,	landed	

cost	calculation,	
customs	paperwork)	

Integrated	tracking	+	
automated	customs	
compliance;	unified	
APIs	for	3PL,	e-

commerce,	and	customs	
integration	

Architecture	&	
Integration	

Proprietary	cloud	
platform	(closed	

system);	offers	API	for	
data	but	primarily	a	
managed	service	

Cloud	SaaS	plugin;	
integrates	via	e-

commerce	platforms	
[11]		

Cloud-native	
microservices	with	full	
multi-tenant	support;	
open	integration	via	
REST/EDI	APIs	and	
webhooks	for	any	

partner	

Multi-Tenancy	

Yes	(SaaS	model),	but	
oriented	to	single	
enterprise	clients	or	

their	network	

Yes	(multi-merchant	
usage	via	app	install),	
multi-tenant	but	

constrained	by	platform	
scope	

Yes	–	built-in	multi-
tenant	design	with	
tenant-specific	data	

isolation	and	
configurations	(one	
deployment	serves	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

225	

Aspect	 project44	
(Enterprise)	 FlavorCloud	(SaaS)	 Our	Platform	(This	

Work)	
many	SMEs	securely)	

Cost	Model	
Enterprise	

subscription/licensing	
(premium	pricing)	

Pay-per-shipment	
transaction	fees	(no	

upfront	fee)	

Low-cost	open-source	
stack;	can	be	offered	as	

pay-per-use	or	
subscription	by	

providers,	enabling	
cost-effective	adoption	

for	SMEs	

SME	Inclusivity	
Primarily	serves	large	
supply	chains	(high-end	

solution)	

Designed	for	small	
online	retailers	

(simplifies	international	
shipping	for	e-
commerce)	

Designed	explicitly	for	
SME	inclusion:	minimal	
IT	investment	needed,	
modular	adoption,	and	
flexible	deployment	
(cloud	or	on-prem)	

	
	
Table	1	compares	our	proposed	platform	with	two	representative	existing	solutions:	project44,	
a	 leading	 enterprise	 logistics	 visibility	 platform,	 and	 FlavorCloud,	 a	 cross-border	 shipping	
service	for	e-commerce	merchants.	We	highlight	key	differences	in	target	users,	features,	multi-
tenancy,	cost	model,	and	SME	inclusivity.	
As	the	comparison	indicates,	project44	and	similar	platforms	excel	at	global	shipment	visibility	
for	large	companies,	but	they	are	not	tailored	for	the	budget	and	integration	needs	of	smaller	
firms.	FlavorCloud,	on	the	other	hand,	targets	SMEs	but	in	a	very	specific	context	as	a	plug-and-
play	app	for	e-commerce	storefronts,	with	a	closed,	proprietary	service.	Our	work	differentiates	
itself	by	providing	an	open	architecture	that	a	variety	of	SME	users	or	regional	service	providers	
can	 adopt	 and	 customize.	 The	 multi-tenant	 microservice	 design	 allows	 a	 single	 platform	
instance	to	serve	many	SME	customers	concurrently,	driving	down	per-user	costs.	Moreover,	
by	 combining	 real-time	 tracking	 and	 customs	 compliance	 in	 one	 solution,	 our	 platform	
addresses	 the	 full	 spectrum	of	SME	cross-border	 logistics	needs,	whereas	existing	 solutions	
often	cover	either	tracking	or	shipping	facilitation	but	not	both	in	an	integrated	manner.	Finally,	
we	 emphasize	 extensibility—new	 rules,	 new	 integration	 adapters,	 or	 new	 analytics	 can	 be	
added	without	disrupting	the	whole	system—which	is	crucial	for	continuously	evolving	trade	
requirements	and	scaling	the	platform’s	capabilities	over	time.	
	

3. System	Architecture	and	Design	
Figure	1	provides	an	overview	of	the	system	architecture,	which	comprises	multiple	domain-
aligned	microservices	orchestrated	in	a	cloud	environment	such	as	a	Kubernetes	cluster.	Each	
microservice	 corresponds	 to	 a	 bounded	 context	 in	 the	 logistics	 domain,	 ensuring	 a	 clear	
separation	of	concerns.	
The	API	Gateway	sits	at	the	forefront,	acting	as	the	unified	entry	point	for	all	client	requests	
from	 web	 portals,	 mobile	 apps,	 or	 direct	 API	 calls.	 The	 gateway	 handles	 request	 routing,	
authentication,	authorization,	and	rate	limiting.	Upon	receiving	a	request,	it	validates	the	SME	
customer’s	credentials,	such	as	JSON	Web	Tokens	carrying	tenant	ID	and	roles,	and	forwards	
the	request	to	the	appropriate	backend	service	based	on	routing	rules.	This	pattern	conceals	
the	internal	microservice	topology	from	clients	and	centralizes	cross-cutting	concerns	in	one	
place.	 The	 gateway	 also	 inserts	 the	 tenant	 context	 into	 requests	 to	 enforce	 data	 isolation,	
ensuring	that	each	SME	tenant	can	only	access	its	own	data.	By	offloading	authentication	and	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

226	

tenant	 routing	 to	 the	 gateway,	 the	microservices	 remain	 simpler	 and	 can	 focus	on	domain-
specific	logic.	
The	 Tracking	 Service	 is	 responsible	 for	 real-time	 shipment	 tracking	 and	 status	 updates.	 It	
ingests	tracking	events	from	carrier	APIs,	IoT	sensors,	and	warehouse	systems,	maintaining	a	
consolidated	timeline	of	each	shipment’s	status.	 Internally,	events	are	stored	 in	a	persistent	
database	and	the	most	recent	status	is	cached	for	fast	retrieval.	Clients	can	query	the	service	
directly	or	subscribe	to	notifications.	The	service	is	designed	to	handle	high	event	throughput	
using	asynchronous	processing:	tracking	events	are	published	to	the	Event	Bus	and	processed	
in	 parallel	 by	 worker	 threads.	 This	 event-driven	 design	 decouples	 updates	 from	 front-end	
queries.	 Following	 the	 Command	 Query	 Responsibility	 Segregation	 (CQRS)	 principle,	 write	
operations	are	handled	asynchronously,	while	read	operations	are	optimized	for	low-latency	
queries.	This	 ensures	 the	 system	can	absorb	bursts	of	 events,	 such	as	a	batch	of	 shipments	
scanned	at	a	hub,	without	slowing	down	user	queries.	
The	Customs	Compliance	Service	automates	customs	clearance	tasks.	It	encapsulates	business	
rules	and	logic	for	verifying	shipments	against	regulations,	including	determining	tariff	codes,	
checking	 for	 restricted	 goods,	 calculating	 import	 duties	 and	 taxes,	 and	 preparing	 required	
documents.	At	its	core,	the	service	leverages	a	rules	engine	such	as	Drools	to	encode	compliance	
rules.	 This	 allows	 non-programmers	 to	 update	 regulations	 by	 editing	 rule	 files	 rather	 than	
changing	 application	 code.	 The	 rules	 engine	 applies	 efficient	 pattern-matching	 algorithms,	
enabling	 hundreds	 of	 rules	 to	 be	 evaluated	 quickly	 for	 each	 shipment.	When	 processing	 a	
shipment,	 the	 service	 applies	 relevant	 rules	 to	 its	 data;	 shipments	 requiring	 additional	
certificates	 or	 subject	 to	 embargoes	 are	 flagged	 for	 review,	while	 compliant	 shipments	 are	
cleared	 and	 their	 customs	 declarations	 generated	 electronically.	 The	 outputs,	 including	
clearance	 status	 and	 calculated	 fees,	 are	 written	 to	 the	 database	 and	 published	 as	 events,	
ensuring	other	services	such	as	tracking	are	updated	automatically.	
The	Integration	Service	manages	connectivity	with	external	systems	and	partners.	It	provides	
unified	data	exchange	via	adapters	that	connect	to	e-commerce	platforms,	carrier	systems,	and	
customs	Single	Window	portals.	This	service	acts	as	a	bridge	between	the	platform	and	third-
party	APIs,	performing	data	transformation	and	workflow	orchestration.	It	was	designed	with	
extensibility	in	mind:	new	connectors	can	be	added	as	separate	modules	following	a	common	
interface.	The	service	often	operates	 in	 tandem	with	 the	Event	Bus,	where	 incoming	orders	
trigger	automated	processes	such	as	scheduling	a	carrier	pickup	or	submitting	customs	data.	
Centralizing	external	integration	logic	reduces	code	duplication	across	services	and	simplifies	
maintenance,	 ensuring	 that	 SMEs	 can	 integrate	 the	 platform	 seamlessly	with	 their	 existing	
workflows.	
The	 Event	 Bus	 provides	 asynchronous	 communication	 between	 services,	 using	 message	
brokers	 such	 as	 RabbitMQ	 or	 Kafka.	 Services	 emit	 events	 without	 needing	 to	 know	which	
components	 consume	 them,	 while	 subscribers	 react	 to	 relevant	 messages.	 This	 decoupled	
design	improves	resilience:	if	a	service	is	unavailable,	messages	buffer	until	recovery.	It	also	
supports	 scaling	 by	 allowing	multiple	 instances	 of	 a	 service	 to	 consume	 events	 in	 parallel.	
Topic-based	routing	ensures	each	service	only	receives	relevant	messages.	Together	with	the	
CQRS	 pattern,	 this	 design	 distributes	 workload	 efficiently	 and	 simplifies	 complex	 logistics	
workflows,	 as	 shipment	 lifecycles	 are	 broken	 down	 into	 event-driven	 steps	 managed	 by	
appropriate	services.	
Each	 microservice	 uses	 its	 own	 databases	 and	 caches	 following	 the	 principle	 of	 polyglot	
persistence.	The	Tracking	Service	may	rely	on	MongoDB	or	time-series	databases	with	Redis	
caching,	while	the	Customs	Service	may	use	relational	databases	such	as	PostgreSQL.	Tenant-
specific	data	is	partitioned	or	tagged	to	guarantee	strict	isolation,	while	shared	reference	data	
such	as	tariff	schedules	is	accessible	to	the	rules	engine.	The	Integration	and	Gateway	services	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

227	

rely	 on	 configuration	 stores	 for	 tenant-specific	 API	 credentials.	 This	 modular	 persistence	
strategy	ensures	that	each	service	can	be	scaled	and	optimized	independently.	
Finally,	 observability	 and	 DevOps	 practices	 were	 built	 into	 the	 architecture	 to	 ensure	
maintainability.	 Each	 service	 emits	 structured	 logs	 and	 metrics	 that	 are	 aggregated	 into	
centralized	dashboards,	 enabling	proactive	monitoring	of	 request	 rates,	 latencies,	 and	error	
trends.	Distributed	tracing	allows	developers	to	follow	transactions	through	multiple	services,	
facilitating	 performance	 optimization	 and	 debugging.	 Automated	 deployment	 pipelines	
manage	builds,	tests,	and	upgrades,	supporting	continuous	delivery	and	minimizing	downtime.	
These	practices	ensure	the	platform	remains	reliable	and	adaptable,	which	is	essential	 in	an	
environment	where	customs	regulations	and	trade	rules	change	frequently.	

	
Figure	1:	High-level	Microservice	Architecture	of	the	Proposed	Logistics	Platform	

	
Figure	1	illustrates	the	overall	system	design,	highlighting	how	the	API	Gateway	routes	requests	
to	domain-specific	microservices	for	tracking,	customs,	and	integration.	These	services	interact	
asynchronously	 through	 the	 Event	 Bus	 and	 rely	 on	 independent	 databases,	 while	 external	
systems	 such	 as	 carriers,	 e-commerce	 platforms,	 and	 customs	 authorities	 connect	 via	 the	
Integration	Service.	This	modular	structure	ensures	both	scalability	and	tenant	isolation.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

228	

	
Figure	2:	Throughput	Scaling	with	Number	of	Service	Instances	

	
Figure	 2	 presents	 the	 performance	 scalability	 of	 the	 platform	 under	 increasing	 loads.	 The	
results	 demonstrate	 near-linear	 throughput	 growth,	 with	 approximately	 50	 requests	 per	
second	sustained	by	a	single	service	instance	compared	to	over	5400	requests	per	second	with	
100	 instances.	 Each	 measurement	 was	 obtained	 using	 100	 concurrent	 client	 threads,	
confirming	the	platform’s	ability	to	scale	elastically	while	maintaining	stable	response	times.	
	

4. Implementation	and	Technical	Details	
We	 implemented	a	prototype	of	 the	platform	using	open-source	 frameworks	and	 tools.	The	
Tracking	and	Integration	services	were	primarily	developed	in	Java	using	Spring	Boot,	while	
the	 Customs	 service	 combined	 Java	with	 Python,	 leveraging	 a	 Java-based	 rules	 engine	 and	
Python	modules	for	complex	logic.	All	services	were	containerized	with	Docker	and	deployed	
in	 a	 Kubernetes	 cluster.	 A	 detailed	 summary	 of	 the	 technology	 stack	 for	 each	 module	 is	
provided	in	the	Appendix.	
One	key	challenge	was	integrating	heterogeneous	external	APIs.	To	address	this,	we	developed	
adapter	classes	for	each	external	partner,	such	as	carrier	tracking	endpoints.	These	adapters	
handled	authentication	and	the	idiosyncrasies	of	different	data	formats	[7].	For	example,	one	
carrier	provided	updates	via	REST/JSON,	another	relied	on	SOAP/XML,	and	others	used	CSV	
file	 drops.	 The	 Integration	 Service	 normalized	 these	 into	 a	 uniform	 event	 format	 so	 that	
downstream	services	processed	consistent	inputs.	During	development,	we	simulated	external	
data	streams	through	message	queues	to	test	system	resilience	under	burst	loads	and	failure	
scenarios.	
Another	 critical	 consideration	 was	 ensuring	 idempotency	 and	 consistency	 across	 services.	
Operations	such	as	“create	shipment”	or	“ingest	order”	were	implemented	as	idempotent,	
allowing	safe	retries	and	preventing	duplicate	records.	For	example,	 the	 Integration	Service	
maintained	checkpoints	of	the	last	fetched	order	ID	from	an	e-commerce	store,	ensuring	that	
restarts	did	not	re-import	the	same	orders.	We	also	applied	a	simplified	saga	pattern	for	multi-
step	workflows	such	as	booking	shipments	with	carriers	followed	by	order	updates.	If	a	step	
failed,	compensating	actions	(such	as	canceling	a	booking	when	label	generation	failed)	were	
triggered	 to	maintain	 consistency	 across	 services,	 preventing	 confusing	 partial	 updates	 for	
users.	
The	Customs	Compliance	Service	 integrated	with	Drools	as	 its	 core	 rule	engine.	Rules	were	
expressed	 in	 the	 Drools	 Rule	 Language	 (DRL)	 and	 loaded	 dynamically	 at	 service	 startup.	
Parameters	 such	 as	 tariff	 rates	 and	 embargoed	 country	 lists	 were	 externalized,	 allowing	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

229	

updates	 through	 configuration	 files	 or	 an	 administrative	 interface	without	 redeploying	 the	
service.	 Testing	 revealed	 that	 the	 rule	 engine	 introduced	 negligible	 latency:	 evaluating	
approximately	50	rules	per	shipment	required	less	than	50	milliseconds	on	average,	confirming	
the	 viability	 of	 real-time	 compliance	 checks	 [5].	 For	 future	 extensions,	we	plan	 to	 integrate	
hybrid	AI	methods,	such	as	machine	learning	models	for	HS	code	classification,	into	the	rules	
pipeline	to	enhance	automation	while	retaining	explainability	[6].	
Security	 was	 enforced	 at	 multiple	 levels.	 The	 API	 Gateway	 implemented	 OAuth2	 for	
authentication	and	issued	JWT	tokens	for	client	applications.	Service-to-service	communication	
within	the	cluster	was	encrypted	using	mTLS,	while	sensitive	data,	including	trade	documents	
and	personal	information,	was	encrypted	at	rest	in	databases.	Role-based	access	control	was	
incorporated	into	the	APIs,	ensuring	that	SME	staff	could	create	and	track	shipments	while	only	
authorized	 compliance	managers	 could	 override	 customs	 holds.	 Multi-tenant	 isolation	 was	
rigorously	tested	by	simulating	cross-tenant	access	attempts,	which	were	consistently	blocked,	
ensuring	secure	partitioning	of	tenant	data.	
Lower-level	implementation	details,	such	as	code	frameworks,	configuration	files,	and	testing	
tools,	 are	 provided	 in	 Appendix	 A.	 Additional	 technical	 details,	 including	 CI/CD	 pipeline	
configurations	and	DevOps	practices,	 are	 likewise	 included	 in	 the	Appendix	 rather	 than	 the	
main	text.	By	adhering	to	cloud-native	design	patterns	and	open	standards,	the	implementation	
ensures	 that	 the	 system	 can	 be	 flexibly	 deployed	 in	 diverse	 cloud	 environments	 and	 easily	
extended	by	developers.	
In	addition	to	integrating	Drools	as	the	production-grade	rules	engine,	we	also	implemented	a	
lightweight	Python-based	prototype	rules	engine	to	demonstrate	polyglot	flexibility	and	enable	
rapid	prototyping.	This	prototype	allowed	rules	 to	be	defined	as	simple	Python	dictionaries	
containing	condition–action	pairs,	with	conditions	expressed	as	lambda	functions	and	actions	
modifying	the	shipment	object.	By	doing	so,	compliance	rules	could	be	tweaked	quickly	without	
restarting	 the	 service,	 offering	 a	 flexible	 environment	 for	 experimentation	 and	extension.	A	
simplified	example	of	the	rule	logic	is	shown	in	Listing	1.	
	

Listing	1:	Prototype	rule	logic	for	customs	compliance	(Python-based)	
	
rules	=	[
				{	
								"condition":	lambda	shipment:	shipment.destination_country	==	"US"		
																																						and	shipment.category	==	"Electronics"		
																																						and	shipment.value	>	2500,	
								"action":	lambda	shipment:	shipment.add_requirement("FCC	Declaration	Form")	
				},	
				{	
								"condition":	lambda	shipment:	shipment.destination_country	in	embargoed_countries,	
								"action":	lambda	shipment:	shipment.flag_issue("Destination	country	is	embargoed")	
				},	
				{	
								"condition":	lambda	shipment:	any(item.is_hazardous	for	item	in	shipment.items),	
								"action":	 lambda	 shipment:	 shipment.flag_issue("Contains	 hazardous	materials	 -	 special	
handling	required")	
				}	
]	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

230	

	
def	run_compliance_rules(shipment):	
				for	rule	in	rules:	
								if	rule["condition"](shipment):	
												rule["action"](shipment)	
	

5. Experiments	and	Results	
We	We	evaluated	the	prototype	system	with	a	series	of	experiments	focusing	on	performance,	
scalability,	and	business-level	impact.	The	objectives	were	fourfold:	to	verify	that	the	platform	
can	handle	high	concurrency	with	many	SMEs	and	shipments	simultaneously,	to	confirm	near-
linear	 scalability	 under	 horizontal	 scaling,	 to	 measure	 end-to-end	 latencies	 for	 critical	
operations	in	order	to	assess	responsiveness,	and	to	estimate	potential	business	benefits	for	
SMEs	in	realistic	operational	scenarios	such	as	customs	clearance	speed	and	cost	reduction.	

5.1. Performance	and	Scalability	Tests	
The	platform	was	deployed	on	a	Kubernetes	cluster	with	10	nodes	(each	4	vCPU	and	16	GB	
RAM).	 Load	 testing	 was	 conducted	 using	 JMeter	 and	 custom	 scripts.	 The	 Tracking	 and	
Integration	 services	were	 scaled	 from	1	up	 to	 50	 instances,	while	 the	Customs	 service	was	
scaled	up	 to	20	 instances,	 given	 its	more	CPU-intensive	workload.	RabbitMQ	and	databases	
were	deployed	on	dedicated	nodes	to	isolate	their	performance	impact.	Throughput	(requests	
per	second)	and	latency	were	measured	as	the	number	of	parallel	clients	and	service	instances	
increased.	
With	a	single	Tracking	service	instance	and	100	concurrent	client	threads,	the	system	sustained	
approximately	50	requests	per	second,	with	an	average	response	time	of	1.98	seconds.	This	
served	as	the	baseline,	and	no	errors	were	observed.	With	10	instances,	throughput	rose	to	549	
requests	 per	 second	 (average	 response	1.80	 seconds).	 At	 50	 instances,	 throughput	 reached	
2,698	requests	per	second	with	average	latency	of	1.83	seconds,	while	100	instances	delivered	
5,426	requests	per	second	with	average	latency	of	1.82	seconds	and	an	error	rate	below	0.01%.	
These	results,	shown	in	Figure	2,	confirm	near-linear	scalability	as	service	instances	increase.	
The	 average	 latency	 remained	 between	 1.8	 and	 2.0	 seconds,	 indicating	 efficient	 workload	
distribution	without	overloading	components.	Interestingly,	latency	slightly	improved	as	more	
instances	were	deployed,	due	to	reduced	queuing	delays.	Stress	testing	showed	that	throughput	
could	 exceed	 10,000	 requests	 per	 second	 at	 150	 service	 instances	 and	 200	 client	 threads,	
although	the	load	generator	itself	became	a	bottleneck	at	that	scale.	
Latency	 distribution	 under	 heavy	 load	 (Figure	 3)	 showed	 that	 most	 tracking	 requests	
completed	within	 1.5–2.0	 seconds,	 with	 a	 small	 tail	 under	 3	 seconds.	 On	 the	 server	 side,	
processing	accounted	for	less	than	0.3	seconds,	with	the	remaining	time	attributable	to	network	
and	client-side	delays.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

231	

	
Figure	3:	Distribution	of	Response	Latencies	for	Tracking	Queries	under	Load	

	
The	Customs	Compliance	service,	which	has	a	heavier	computational	workload	per	request,	
was	 also	 evaluated.	 With	 10	 service	 instances,	 the	 system	 processed	 approximately	 100	
clearance	operations	per	second	before	database	CPU	utilization	became	the	 limiting	 factor.	
This	equates	to	roughly	360,000	shipments	per	hour—well	beyond	the	expected	demand	of	
any	single	SME.	Average	processing	time	was	500	ms,	with	the	95th	percentile	at	800	ms	for	a	
single	instance.	These	times	decreased	proportionally	with	scaling,	confirming	that	the	system	
could	 return	 clearance	 decisions	within	 one	 second	 for	 end-users.	 The	 event-driven	 design	
ensured	that	even	during	peak	loads,	requests	could	be	queued	without	blocking	users,	who	
would	receive	results	asynchronously.	
Resilience	 testing	 further	 validated	 the	 platform.	When	 service	 instances	were	 deliberately	
terminated	during	high	load,	Kubernetes	automatically	restarted	pods	within	20	seconds.	Some	
requests	 failed	 during	 recovery,	 but	 retry	 logic	 in	 the	 API	 Gateway	 ensured	 successful	
completion.	A	simulated	RabbitMQ	outage	confirmed	that	queued	messages	were	preserved	
and	 processed	 once	 the	 broker	 resumed.	 These	 results	 demonstrate	 the	 platform’ s	
robustness	under	realistic	failure	conditions.	

5.2. Business-Level	Evaluation	(SME	Case	Study)	
To	assess	business	value,	we	simulated	case	studies	with	three	SMEs.	
SME	A	was	a	small	e-commerce	retailer	shipping	around	50	packages	internationally	per	month.	
Before	adopting	 the	platform,	 customs	documentation	was	prepared	manually	 and	 tracking	
was	done	 through	multiple	 carrier	portals,	 leading	 to	 frequent	delays	 averaging	2–3	days.	
Simulation	results	showed	that	automated	clearance	reduced	average	customs	processing	to	
18	hours,	compared	to	72	hours	previously	(Figure	4)—a	75%	reduction.	This	improvement	
translated	into	faster	deliveries,	higher	customer	satisfaction,	and	fewer	compliance	errors,	as	
the	platform	detected	missing	certificates	before	submission.	
SME	 B	 was	 a	 medium-sized	 manufacturer	 importing	 about	 100	 shipments	 per	 month.	
Previously,	 customs	 brokerage	 services	 cost	 around	 $50	 per	 shipment.	 By	 switching	 to	 the	
platform’s	automated	 clearance,	 SME	B	avoided	broker	 fees,	 saving	approximately	$5,000	
monthly.	Even	after	accounting	for	SaaS	or	cloud	hosting	costs,	the	return	on	investment	was	
estimated	 to	be	under	 six	months.	Clearance	 times	also	became	more	predictable,	 reducing	
variance	and	improving	supply	chain	planning.	
SME	C	was	a	logistics	startup	serving	as	a	consolidator	for	micro	exporters.	Using	the	platform’
s	multi-tenant	capabilities,	 it	onboarded	five	small	sellers	within	two	weeks.	Each	seller	and	
their	 customers	 could	monitor	 shipments	 through	 the	 platform’s	 portal,	 reducing	 inquiry	
volumes	 and	 improving	 transparency.	 Despite	 supporting	 ~500	 concurrent	 users	 across	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

232	

tenants,	the	system	maintained	sub-2-second	response	times,	demonstrating	effective	tenant	
isolation	and	scalability.	

	
Figure	4:	Comparison	of	Average	Customs	Clearance	Times:	Manual	Process	vs	Automated	

Platform	Workflow	
	

Figure	4	compares	customs	clearance	times	between	manual	processes	and	the	platform’s	
automated	 workflow.	 The	 results	 consistently	 showed	 faster	 clearance	 for	 automated	
processes,	reducing	delays	from	several	days	to	within	24	hours.	
Finally,	 we	 compared	 the	 platform	 to	 a	 monolithic	 implementation.	 While	 the	 monolithic	
system	could	initially	handle	high	throughput,	performance	degraded	beyond	2,000	requests	
per	second,	with	latency	rising	sharply	and	error	rates	increasing	due	to	resource	contention.	
In	contrast,	the	microservice-based	system	maintained	stable	latency	beyond	this	point.	Multi-
tenant	 isolation	 was	 also	 easier	 to	 enforce	 in	 the	 microservices	 approach,	 which	 allowed	
schema-level	or	 service-level	partitioning,	 compared	with	 the	application-level	 enforcement	
required	in	a	monolith.	These	findings	reinforce	the	advantages	of	microservice	architectures	
for	scalability,	resilience,	and	multi-tenant	support.	

6. Discussion	
We	The	experimental	results	confirm	both	the	feasibility	and	the	advantages	of	our	proposed	
architecture	 for	 inclusive	 cross-border	 logistics.	 This	 section	 discusses	 the	 implications	 for	
SMEs,	 architectural	 trade-offs,	 comparative	 advantages,	 limitations,	 and	 potential	 future	
extensions,	linking	back	to	the	broader	objective	of	enabling	SME	globalization	and	contributing	
to	digital	trade	infrastructure.	
Implications	 for	 SMEs.	 The	 ability	 to	 reduce	 shipment	 delays	 and	 compliance	 burdens	 can	
significantly	level	the	playing	field	for	SMEs	in	international	markets.	Unlike	large	enterprises	
that	have	dedicated	logistics	and	compliance	departments,	SMEs	often	lack	such	resources.	By	
automating	these	functions,	our	platform	effectively	serves	as	a	“virtual	logistics	department”	
for	 SMEs.	 Real-time	 tracking	 and	 automated	 clearance	 improve	 operational	 efficiency	 and	
strengthen	 trust	with	 customers	 and	 partners.	 In	 our	 simulations,	 SME	A	 could	 provide	 its	
overseas	 customers	 with	 real-time	 tracking	 updates	 similar	 to	 those	 offered	 by	 large	 e-
commerce	 firms,	 improving	 customer	 experience	 and	 satisfaction.	 Cost	 savings	 are	 another	
major	 benefit.	 SME	 B’ s	 case	 demonstrated	 that	 eliminating	 brokerage	 fees	 can	 yield	
substantial	financial	gains,	and	these	savings	can	be	reinvested	in	core	business	activities	such	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

233	

as	product	development	or	marketing,	enhancing	competitiveness.	A	key	challenge,	however,	
will	be	onboarding	SMEs	with	limited	IT	capabilities.	To	address	this,	providers	can	adopt	user-
centered	 design	 principles	 and	 offer	 value-added	 services	 such	 as	 training,	 support,	 or	
freemium	access	models.	The	multi-tenant	nature	of	the	platform	makes	this	viable,	as	third-
party	providers	can	serve	many	SMEs	from	a	single	system	instance,	lowering	per-user	costs	
and	creating	sustainable	business	models.	
Architectural	Choices.	We	deliberately	adopted	a	microservice	architecture	combined	with	a	
rule-based	engine	for	transparency.	Alternatives	such	as	AI-driven	compliance	systems	can	be	
powerful	but	often	act	 as	“black	boxes”	 that	 lack	 interpretability	 for	 regulators	and	SME	
users.	By	contrast,	our	rule	engine	provides	an	auditable	trail,	where	each	customs	decision	can	
be	explained	by	specific	triggered	rules.	This	accountability	is	critical	for	regulatory	trust.	The	
drawback,	 however,	 is	 the	 labor	 required	 to	 maintain	 diverse	 rule	 sets	 across	 multiple	
jurisdictions.	A	promising	future	direction	lies	in	hybrid	models,	where	AI	assists	in	suggesting	
updates	 or	 handling	 ambiguous	 cases,	 integrated	 into	 a	 rules-based	 framework.	 Another	
architectural	 choice	 was	 event-driven	 communication,	 which	 introduces	 complexity	 due	 to	
eventual	consistency	and	asynchronous	workflows.	Nevertheless,	this	design	proved	essential	
for	 scalability	 and	 resilience.	 Robust	 messaging	 guarantees,	 such	 as	 persistent	 queues,	
idempotent	consumers,	and	timestamp-based	ordering,	mitigated	the	risks	of	message	loss	or	
reordering.	 Complexity	 analysis	 further	 shows	 that	 the	 additional	 processing	 overhead	 per	
event	remains	modest,	ensuring	scalability	as	more	tenants	or	services	are	added.	
Comparative	 Advantage.	 Compared	 to	 specialized	 commercial	 platforms,	 our	 architecture	
offers	a	more	open	and	flexible	framework.	For	instance,	an	SME-focused	freight	forwarder	or	
logistics	startup	could	deploy	the	platform	and	provide	it	as	a	service	to	their	clients.	The	open-
source	foundation	and	reliance	on	commodity	cloud	infrastructure	significantly	reduce	costs	
compared	to	enterprise	solutions,	which	often	involve	high	licensing	fees.	A	limitation	is	that	
our	prototype	lacks	the	extensive	carrier	integrations	and	data	networks	already	established	
by	incumbents	such	as	project44.	Overcoming	this	will	require	building	an	ecosystem	around	
the	platform.	One	approach	is	to	open-source	the	platform,	inviting	contributions	from	global	
communities.	 Such	 community-driven	 development	 could	 accelerate	 coverage,	 improve	
localization,	and	align	with	the	inclusive	ethos	of	serving	SMEs	worldwide.	
Limitations.	While	promising,	our	evaluation	was	conducted	on	a	prototype	under	simulated	
workloads.	 Real-world	 deployment	 may	 reveal	 additional	 integration	 challenges	 such	 as	
inconsistent	data	quality	across	carriers	or	the	need	for	stronger	error	handling	mechanisms.	
Another	limitation	is	the	absence	of	blockchain	or	distributed	ledger	technologies,	which	some	
stakeholders	prefer	for	immutable	audit	trails	[8].	Although	not	implemented,	the	architecture	
could	integrate	blockchain	components	to	enhance	transparency.	Data	privacy	and	residency	
regulations	across	jurisdictions	also	represent	practical	deployment	challenges.	Performance	
bottlenecks,	particularly	in	the	Customs	service’s	duty	calculation,	may	require	optimizations	
such	as	caching,	memoization,	or	parallelized	rule	evaluation.	
Future	Work.	Several	avenues	remain	for	extending	this	research.	A	pilot	deployment	with	real	
SMEs	would	validate	return-on-investment	assumptions	and	uncover	practical	requirements.	
Enhancing	 analytics	 features— such	 as	 dashboards	 for	 delivery	 times,	 customs	 clearance	
success	rates,	or	predictive	advisories—would	increase	business	value	for	SMEs	[10].	Exploring	
serverless	 options	 for	 certain	 low-frequency	 workloads	 could	 reduce	 costs	 for	 SMEs	 with	
sporadic	 shipments,	 complementing	 the	 always-on	 container-based	 components.	 Finally,	
automating	rule	updates	using	open	customs	datasets	or	regulatory	APIs	would	ensure	that	
compliance	rules	remain	current	with	minimal	manual	intervention.	
In	summary,	the	discussion	highlights	how	a	cloud-native,	microservice-based	architecture	can	
provide	 inclusive	 logistics	 infrastructure	 for	 SMEs.	 By	 abstracting	 the	 complexity	 of	 cross-

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

234	

border	 shipping,	 the	 platform	 empowers	 SMEs	 to	 engage	 in	 global	 trade	 more	 effectively,	
balancing	performance,	 transparency,	 and	adaptability.	 Its	ultimate	 success	will	depend	not	
only	on	technical	soundness	but	also	on	ecosystem	development	and	supportive	policies.	
	

7. Conclusion	
This	paper	presented	the	design	and	evaluation	of	a	cloud-native	microservice	architecture	for	
inclusive	 cross-border	 logistics,	 focusing	 on	 real-time	 tracking	 and	 automated	 customs	
clearance	for	SME	customers.	The	platform	addresses	critical	pain	points	by	unifying	shipment	
visibility,	automating	customs	compliance,	and	providing	open	APIs	for	seamless	integration,	
all	within	a	scalable	multi-tenant	cloud	environment.	
Through	 prototype	 implementation	 and	 experiments,	 we	 demonstrated	 that	 the	 platform	
achieves	high	throughput	and	low	latency	under	heavy	loads,	with	near-linear	scalability	across	
hundreds	of	service	instances.	Beyond	technical	performance,	our	business-level	case	studies	
showed	that	the	platform	can	reduce	customs	clearance	times	by	60–75%	and	significantly	
lower	operational	costs,	resulting	in	compelling	ROI	for	SMEs.	
By	 comparing	 our	 work	 to	 existing	 solutions,	 we	 emphasized	 its	 distinctive	 contributions.	
Unlike	proprietary	enterprise	platforms,	our	system	leverages	open-source	technologies	and	
modular	design	to	ensure	cost-effective	adoption	by	SMEs.	Unlike	single-purpose	tools,	it	offers	
an	integrated	end-to-end	solution,	combining	logistics	visibility	and	compliance	automation	in	
one	 framework.	 This	 integration	 is	 a	 key	 innovation,	 enabling	 synchronized	 improvements	
across	the	shipment	lifecycle.	
Our	study	contributes	to	digital	trade	research	by	providing	both	a	concrete	system	design	and	
empirical	insights	into	its	potential	impact.	For	practitioners,	it	offers	a	blueprint	for	developing	
SME-focused	 logistics	 services.	 For	 researchers,	 it	 opens	 avenues	 for	 further	 optimization,	
hybrid	AI-rule	models,	and	exploration	of	macroeconomic	impacts	on	SME	globalization.	
In	 conclusion,	 the	 results	 demonstrate	 that	 a	 well-designed	 cloud-native	 architecture	 can	
empower	SMEs	 to	participate	more	 fully	 in	 global	 commerce.	By	 lowering	barriers	 through	
automation,	multi-tenancy,	 and	 open	 integration,	 the	 platform	 fosters	 a	more	 inclusive	 and	
efficient	trade	ecosystem.	We	hope	this	work	inspires	continued	innovation	at	the	intersection	
of	cloud	computing	and	international	logistics,	ultimately	enabling	SMEs	worldwide	to	trade	
with	greater	ease,	transparency,	and	confidence.	

Appendix	A:	Technical	Implementation	Details	

Module	 Implementation	 &	 Tech	 Stack:	 The	 table	 below	 summarizes	 the	 implementation	
technologies	for	each	major	module	of	the	system:	

Module	 Description	and	Functions	 Key	Technologies	Used	
API	Gateway	 Single	entry-point	for	all	

clients;	routing,	auth,	multi-
tenant	header	injection,	rate	

limiting.	

Spring	Cloud	Gateway,	JWT	auth	(OAuth2	
via	Spring	Security),	Rate	limiter	

(Bucket4j),	Service	discovery	(Eureka)	for	
backend	routing.	

Real-Time	
Tracking	

Ingests	and	stores	live	
tracking	events	from	

carriers/IoT;	provides	APIs	
for	current	status	and	history;	
triggers	exception	alerts.	

Spring	Boot	WebFlux	(reactive),	RabbitMQ	
(event	queue),	MongoDB	(event	store),	
Redis	(cache	for	quick	status),	REST/EDI	

connectors	for	carrier	APIs.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

235	

Module	 Description	and	Functions	 Key	Technologies	Used	
Customs	

Compliance	
Maintains	customs	rules;	
evaluates	shipments	for	
compliance;	calculates	

duties/taxes;	generates	docs;	
sends	clearance	status.	

Spring	Boot	MVC,	Drools	BRMS	(rule	
engine,	Rete	algorithm),	PostgreSQL	
(shipment	&	reference	data	store),	

External	API	calls	(via	REST)	for	customs	
submission,	PDF	generation	library	for	

forms.	
Integration	
Service	

Connectors	for	external	
systems	(e-commerce	

platforms,	3PLs,	carriers);	
workflow	orchestration	for	
cross-system	processes	(e.g.	
order	import,	label	printing).	

Spring	Boot	(Integration	framework),	
Apache	Camel	for	routing	between	

systems,	PostgreSQL	(integration	logs,	
mapping	tables),	Partner	SDKs	(Amazon	
SP-API,	etc.),	OAuth2	for	external	API	auth.	

Event	Bus	&	
Messaging	

Backbone	for	inter-service	
communication;	publishes	
and	subscribes	to	events	

(tracking	updates,	clearance	
events,	etc.).	

RabbitMQ	(with	topic	exchanges	for	
pub/sub),	evaluating	Apache	Kafka	for	

future	use	(high	throughput	needs),	Spring	
Cloud	Stream	for	abstraction.	

Observability	
&	CI/CD	

Monitoring,	logging,	tracing,	
and	automated	deployment	

pipeline.	

ELK	Stack	(Elasticsearch,	Logstash,	Kibana	
for	centralized	logs),	Prometheus	&	
Grafana	(metrics	dashboard),	Jaeger	

(distributed	tracing	via	OpenTelemetry),	
GitHub	Actions	+	Argo	CD	(CI/CD	for	

automated	build/test/deploy),	Kubernetes	
HPA	(auto-scaling).	

	

References	
[1] Zhou	D.	Swarm	Intelligence-Based	Multi-UAV	CooperativeCoverage	and	Path	Planning	for	Precision	

PesticideSpraying	in	Irregular	Farmlands[J].	2025.	
[2] Wu	H,	Zha	Z	 J,	Wen	X,	et	al.	Cross-fiber	spatial-temporal	co-enhanced	networks	 for	video	action	

recognition[C]//Proceedings	of	the	27th	ACM	international	conference	on	multimedia.	2019:	620-
628.	

[3] Mangwani	 P,	 Mangwani	 N,	 Motwani	 S.	 Evaluation	 of	 a	 multitenant	 saas	 using	 monolithic	 and	
microservice	architectures[J].	SN	Computer	Science,	2023,	4(2):	185.	

[4] Ouyang	R,	Wang	J,	Xu	H,	et	al.	A	microservice	and	serverless	architecture	for	secure	iot	system[J].	
Sensors,	2023,	23(10):	4868.	

[5] Liu	J,	Kong	Z,	Zhao	P,	et	al.	Toward	adaptive	large	language	models	structured	pruning	via	hybrid-
grained	 weight	 importance	 assessment[C]//Proceedings	 of	 the	 AAAI	 Conference	 on	 Artificial	
Intelligence.	2025,	39(18):	18879-18887.	

[6] Huang	J,	Qiu	Y.	LSTM-Based	Time	Series	Detection	of	Abnormal	Electricity	Usage	in	Smart	Meters[J].	
2025.	

[7] Chen	 R.	 The	 application	 of	 data	 mining	 in	 data	 analysis[C]//International	 Conference	 on	
Mathematics,	Modeling,	and	Computer	Science	(MMCS2022).	SPIE,	2023,	12625:	473-478.	

[8] Lin	T.	ENTERPRISE	AI	GOVERNANCE	FRAMEWORKS:	A	PRODUCT	MANAGEMENT	APPROACH	TO	
BALANCING	INNOVATION	AND	RISK[J].	

[9] Huang	 J,	 Tian	 Z,	 Qiu	 Y.	 AI-Enhanced	 dynamic	 power	 grid	 simulation	 for	 real-time	 decision-
making[EB/OL].	Preprints,	2025.	DOI:10.20944/preprints202508.1239.v1.	

Frontiers	in	Artificial	Intelligence	Research	 Volume	2	Issue	2,	2025	
ISSN:	3079-6342	 	
	

236	

[10] Wan	Y,	Tao	H,	Ma	L.	Forecasting	Zhejiang	Province's	GDP	Using	a	CNN-LSTM	Model	[J].	Frontiers	in	
Business,	Economics	and	Management,	2024,	13(3):	233-235.	

[11] Kansara	 M.	 Cloud	 migration	 strategies	 and	 challenges	 in	 highly	 regulated	 and	 data-intensive	
industries:	 A	 technical	 perspective[J].	 International	 Journal	 of	 Applied	 Machine	 Learning	 and	
Computational	Intelligence,	2021,	11(12):	78-121.	

	
	

