
Frontiers in Artificial Intelligence Research Volume 2 Issue 2, 2025 

ISSN: 3079-6342  

 

 167 

Autonomous CPU Resource Allocation in Cloud Environments 
Using Reinforcement Learning 

Miguel Alvarez1 
1University of Chile, Chile 

Abstract 

Efficient CPU resource allocation is essential for optimizing performance and cost in 
cloud environments, where workloads are dynamic and multi-tenant applications 
demand real-time adaptability. Traditional allocation strategies rely on static heuristics 
or rule-based scheduling, which often fail to scale or generalize under rapidly changing 
conditions. This paper proposes an autonomous CPU resource allocation framework 
based on reinforcement learning (RL), which dynamically learns optimal allocation 
policies by interacting with the cloud environment. We present a model-free deep 
reinforcement learning (DRL) agent capable of adjusting CPU shares across virtual 
machines (VMs) and containers based on workload patterns, performance feedback, and 
system constraints. Experimental results on both simulated and real cloud workloads 
demonstrate that the proposed method significantly outperforms baseline strategies in 
terms of utilization efficiency, task latency, and SLA compliance. The framework 
introduces a scalable, adaptive, and fully automated solution for CPU resource 
management in cloud computing. 
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1. Introduction 

Cloud computing has revolutionized the delivery of computing resources by offering on-
demand, scalable, and cost-effective infrastructure[1]. As more businesses migrate critical 
workloads to cloud platforms, the need for intelligent, real-time resource management has 
become increasingly urgent[2]. Among all types of resources, the central processing unit (CPU) 
plays a crucial role in determining application performance and user experience[3]. Efficient 
CPU allocation ensures that applications meet latency and throughput requirements, while also 
reducing operational costs by avoiding overprovisioning[4]. 

Traditional CPU resource allocation strategies in cloud environments often rely on static 
thresholds or rule-based heuristics[5]. These approaches, while simple to implement, suffer 
from limited adaptability in the face of rapidly changing workloads and complex system 
dynamics[6]. Cloud environments are inherently volatile: users launch and terminate virtual 
machines or containers on demand, workloads vary unpredictably, and the underlying 
hardware may experience contention or degradation[7]. Fixed allocation schemes fail to 
respond swiftly to these changes, often leading to resource bottlenecks, degraded quality of 
service, or inefficient use of infrastructure. 

To overcome these limitations, there is a growing interest in applying machine learning 
techniques to automate and optimize resource management[8]. In particular, reinforcement 
learning (RL) has emerged as a promising paradigm due to its ability to learn optimal decision-
making policies through interaction with the environment[9]. Unlike supervised learning, 
which requires labeled training data, RL agents improve their behavior over time by receiving 
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rewards or penalties based on the outcomes of their actions[10]. This makes RL well-suited for 
dynamic environments like cloud platforms, where resource decisions must be made 
continuously and outcomes depend on both current conditions and future events[11]. 

In the context of CPU allocation, RL offers the potential to move beyond reactive scaling policies 
and toward proactive, fine-grained control[12]. A well-trained RL agent can monitor real-time 
system metrics such as CPU load, memory usage, and request latency, and use this information 
to make allocation decisions that maximize performance and efficiency[13]. With the 
integration of deep learning, deep reinforcement learning (DRL) further enhances this 
capability by enabling the agent to model high-dimensional state spaces and learn complex 
policies that generalize across a wide range of scenarios[14]. 

This paper presents a DRL-based framework for autonomous CPU resource allocation in cloud 
computing environments. By modeling the allocation problem as a Markov Decision Process 
(MDP), the proposed approach enables an agent to learn resource control policies that adapt to 
real-time system dynamics. A deep Q-network (DQN) is used to approximate the value of 
different allocation actions, allowing the agent to balance immediate performance gains with 
long-term efficiency goals. 

The proposed framework is evaluated through extensive simulations and real-world trace-
driven experiments, demonstrating its ability to outperform traditional allocation methods in 
terms of response time, CPU utilization, and task throughput. The results highlight the promise 
of DRL as a foundation for future intelligent cloud resource managers, capable of operating at 
scale and adapting to diverse workload patterns. 

In the following sections, this paper reviews related work in resource management and 
reinforcement learning, details the system architecture and methodology, presents 
experimental results, and discusses the implications and future directions of DRL-based CPU 
allocation. 

2. Literature Review 

The growing demand for cloud-based services has brought increasing attention to the challenge 
of efficient CPU resource allocation in dynamic environments[15]. Traditional approaches to 
resource management in cloud platforms are typically rule-based or threshold-driven, relying 
on predefined policies that dictate how and when to scale resources in response to changes in 
workload intensity. While these methods are straightforward to implement and 
computationally lightweight, they often lack the flexibility to adapt to real-time fluctuations and 
heterogeneous application requirements[16]. 

In an attempt to overcome these limitations, researchers have explored control-theoretic and 
optimization-based models[17]. Control-theoretic techniques aim to model the system 
dynamics mathematically and apply feedback mechanisms to stabilize performance metrics, 
such as response time or utilization. However, these methods often require accurate modeling 
of the environment, which is difficult in large-scale, multi-tenant cloud infrastructures[18]. 
Similarly, optimization techniques, such as linear programming and heuristic search, provide 
mechanisms to solve allocation problems globally but tend to struggle with scalability and real-
time responsiveness, particularly when faced with high-dimensional or rapidly evolving 
workloads[19]. 

Machine learning (ML) has emerged as a promising solution to enhance the adaptability and 
intelligence of resource management systems[20]. Supervised learning models have been 
applied to predict future workload patterns, enabling more informed allocation decisions[21]. 
However, these models require labeled data and do not inherently account for sequential 
decision-making or delayed consequences of actions. Unsupervised learning methods have also 
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been explored, primarily for workload clustering and anomaly detection, but they too fall short 
when applied to real-time control tasks[22]. 

RL, by contrast, is inherently suited for sequential decision-making and environments with 
stochastic dynamics[23]. It has been widely adopted in recent years for various resource 
management tasks in computing systems, including VM scheduling, load balancing, and 
network routing. RL agents learn optimal policies through interaction with the environment, 
observing the effects of their actions and adjusting their strategies accordingly[24]. This 
feedback-driven learning process enables the system to continuously improve performance 
without the need for explicit supervision. 

Among the variants of RL, DRL has shown remarkable success in complex domains by 
combining the learning power of deep neural networks with the adaptability of RL[25]. 
Techniques such as DQN, Proximal Policy Optimization (PPO), and Actor-Critic methods have 
been used to manage resources under uncertainty and partial observability. In cloud computing 
contexts, DRL has been employed to tackle container orchestration, service placement, and 
workload scheduling, with demonstrated improvements over traditional strategies[26]. 

In the specific context of CPU resource allocation, several studies have applied RL to 
dynamically assign processing power based on application-level metrics like response time and 
CPU saturation[27]. These efforts have shown that RL agents can learn to balance competing 
objectives, such as minimizing energy consumption while maintaining service level objectives 
(SLOs). Nonetheless, challenges remain in terms of reward shaping, convergence speed, and 
generalization to unseen workloads. Moreover, ensuring safety and interpretability in RL-
based systems continues to be an open research question, particularly for production-grade 
cloud platforms. 

In summary, while traditional and ML-based methods have laid the foundation for resource 
management in cloud environments, reinforcement learning offers a fundamentally more 
adaptive and autonomous approach[28]. The literature reveals a growing consensus around 
the potential of DRL to revolutionize CPU allocation, though it also highlights the need for 
robust methodologies that can translate theoretical performance gains into practical, real-
world benefits. 

3. Methodology 

This study presents a RL-based framework for autonomous CPU resource allocation in cloud 
computing environments. The objective is to dynamically allocate CPU resources in a way that 
optimizes system performance, minimizes latency, and improves overall utilization without 
manual intervention. The methodology consists of three major components: simulation 
environment design, reinforcement learning agent architecture, and evaluation strategy. 

3.1. Simulation Environment Setup 

We simulate a cloud environment using a discrete-event simulator tailored to represent a 
virtualized server cluster managing multiple applications with fluctuating workloads. The 
simulator models key system parameters such as CPU utilization, request latency, and task 
priority. Incoming tasks are randomly generated based on a Poisson process, with varying CPU 
demands. The simulation environment provides state inputs to the RL agent and receives its 
allocation actions in return. 

To establish a baseline, we first evaluate CPU utilization under traditional rule-based allocation 
schemes. These results serve as the benchmark for comparison against our proposed RL-based 
strategy. 
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Figure 1 shows the comparison of CPU utilization between rule-based and RL-based systems. 

 

3.2. Reinforcement Learning Agent Design 

We use a PPO algorithm for the RL agent, which operates in a continuous action space. The 
agent receives a multi-dimensional observation vector representing current CPU loads, job 
queue lengths, and task deadlines. It outputs allocation decisions for CPU resources across 
virtual machines. 

The reward function is crafted to encourage efficient usage of CPU resources while penalizing 
task delays and system overload. Specifically, it includes terms for throughput maximization, 
average latency minimization, and service level agreement (SLA) compliance. 

The agent is trained over 10,000 episodes, each representing a dynamic task scheduling 
interval. During training, the agent improves its policy using gradient ascent, reinforced by 
feedback from the environment. 

 

 
Figure 2 illustrates the agent’s learning progress, measured in terms of cumulative reward 

over training epochs. 
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3.3. Performance Evaluation 

To evaluate the effectiveness of the RL-based resource allocator, we compare its performance 
with the baseline under identical workload conditions. Metrics include CPU utilization, task 
completion time, and SLA violation rates. 

 

 
Figure 3 depicts the system performance before and after introducing the RL agent. The RL-
enhanced system achieves a higher resource utilization rate and a lower task latency profile, 

demonstrating the agent’s ability to adaptively optimize resource allocation in real time. 

 

4. Results and Discussion 

4.1. Improvements in CPU Utilization and Task Throughput 

The RL-based framework demonstrated clear advantages in optimizing CPU resource 
distribution across cloud workloads. Compared to rule-based allocation strategies, the RL agent 
increased average CPU utilization from 67.4% to 91.2%, which signifies a substantial 
improvement in resource efficiency. This uplift stems from the agent’s ability to identify 
underused processing slots and dynamically reassign them to more demanding tasks based on 
real-time system observations. Alongside better CPU utilization, overall task throughput 
increased by approximately 24%, highlighting the agent’s contribution to enhanced system 
performance. The PPO algorithm, with its capacity to balance exploration and exploitation, 
enabled stable learning and convergence even under high variability in workload patterns. 

4.2. Reduction in Latency and SLA Violations 

One of the most critical performance indicators in a cloud environment is service latency. Under 
the RL-based model, average task completion latency was reduced from 182 ms to 129 ms. This 
decline is particularly significant for time-sensitive applications such as real-time data analytics 
and interactive web services. The agent’s capacity to anticipate traffic bursts and pre-emptively 
allocate resources allowed for smoother response handling during peak periods. Furthermore, 
the rate of SLA violations—defined by tasks exceeding predefined latency thresholds—
dropped from 11.6% to just 3.9%. These results indicate that the agent not only maintains 
service quality but also offers robustness against workload volatility. 
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4.3. Generalization and Scalability Across Diverse Workloads 

To assess the scalability and adaptability of the trained RL agent, we deployed it on simulated 
environments with distinct workload profiles, including CPU-bound tasks, I/O-intensive 
operations, and mixed task types. Despite these variations, the RL framework continued to 
exhibit superior performance. The agent's policy generalized well beyond the training 
distribution, with only marginal degradation in reward or performance metrics. This suggests 
that the agent learned underlying patterns in system behavior rather than memorizing task 
sequences, enabling flexible application across heterogeneous cloud environments. 
Additionally, computational overhead introduced by the agent during inference was negligible 
(<5 ms), ensuring real-time decision-making capability without becoming a bottleneck. 

5. Conclusion 

This study presents a reinforcement learning-based framework for autonomous CPU resource 
allocation in cloud environments, aiming to address the inefficiencies of traditional rule-based 
or heuristic-driven scheduling systems. By modeling the allocation problem as a sequential 
decision-making task and employing the PPO algorithm, the framework successfully learns to 
optimize CPU utilization while minimizing latency and reducing SLA violations. 

The experimental results clearly demonstrate the advantages of the proposed approach. The 
RL agent achieved higher average CPU usage, improved task throughput, and significantly 
lower latency when compared to baseline allocation strategies. Moreover, the system exhibited 
strong generalization capabilities across diverse workload profiles, maintaining robust 
performance even in previously unseen deployment scenarios. This highlights the agent’s 
adaptability and practical viability in dynamic cloud infrastructures. 

In addition to performance gains, the solution introduces a level of autonomy and scalability 
necessary for managing large-scale, complex cloud operations without extensive manual 
tuning. The agent’s ability to learn from the environment and evolve its policy over time ensures 
that resource allocation strategies remain optimal as workload characteristics change. 
Furthermore, the lightweight inference phase makes the model suitable for real-time 
applications, avoiding additional system overhead. 

Looking ahead, future work will focus on incorporating multi-objective optimization to 
consider factors such as energy efficiency, cost-awareness, and co-location interference. 
Another promising direction is the integration of hybrid learning paradigms, combining offline 
training with online adaptation to further enhance system responsiveness. Ultimately, 
reinforcement learning holds substantial promise for transforming cloud resource 
management into a self-optimizing, intelligent process aligned with the evolving demands of 
modern computing. 
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