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Abstract 

As microservice architectures scale in complexity, identifying the root causes of failures 
in distributed service ecosystems becomes increasingly challenging. Traditional fault 
localization approaches often fall short in capturing the intricate dependency 
relationships and dynamic behaviors of services. This paper presents a graph-based 
deep learning framework designed to perform fault localization in service dependency 
networks with high precision and explainability. By modeling service-to-service 
interactions as directed graphs and employing Graph Neural Networks (GNNs) to 
capture structural and temporal patterns, the proposed method outperforms 
conventional statistical and rule-based techniques. Experimental evaluation on real-
world microservice datasets shows that our model can detect and localize faults with 
significant improvements in accuracy, latency, and robustness. This work lays the 
foundation for autonomous monitoring and recovery in cloud-native environments. 
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1. Introduction 

The transition to microservice-based architectures has revolutionized the design of large-scale 
software systems, enabling modularity, flexibility, and independent scalability of services[1]. 
However, this architectural shift also introduces new layers of complexity, particularly in 
system observability and fault management[2]. Each service operates independently but 
communicates constantly with others through APIs, message queues, and other interfaces, 
forming a highly dynamic and interdependent service mesh[3]. As a result, the failure of a single 
component can ripple through the entire system, making fault localization an increasingly 
challenging problem[4]. 

In a traditional monolithic system, root cause analysis could often rely on centralized logs and 
tightly coupled failure indicators[5]. In contrast, modern distributed systems produce vast and 
heterogeneous telemetry data—logs, metrics, traces—that must be parsed and interpreted 
across many interacting services[6]. Additionally, faults may manifest subtly, where a 
downstream service exhibits symptoms while the actual cause resides elsewhere in the 
dependency graph[7]. These issues are compounded by the temporal variability of workloads, 
the non-deterministic nature of failures, and the limited observability of internal service 
logic[8]. 

Existing approaches to fault localization generally fall into two categories: rule-based systems 
that rely on pre-defined thresholds, and statistical or correlation-based methods that attempt 
to infer root causes from observed anomalies [9]. Both methods suffer from significant 
drawbacks. Rule-based systems often produce brittle results, failing to adapt to evolving 
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architectures or new failure modes. Correlation-based techniques may misattribute causality 
due to noise, temporal lag, or indirect dependencies[10]. These approaches also tend to lack 
scalability, explainability, and adaptability, particularly in complex service graphs where 
interactions are nonlinear and context-dependent[11]. 

This growing complexity motivates the adoption of more sophisticated, data-driven methods 
that can learn directly from service interactions and telemetry[12]. Graph-based deep learning, 
and in particular Graph Neural Networks (GNNs), offers a promising foundation for this 
task[13]. By modeling microservice environments as graphs—where nodes represent services 
and edges denote dependencies or communications—it becomes possible to capture both local 
and global structural features that influence system behavior[14]. GNNs excel in such settings 
because they iteratively aggregate information from neighboring nodes, allowing for the 
emergence of rich, context-sensitive representations that reflect service states and 
interdependencies. 

In this research, we propose a graph-based deep learning framework for fault localization in 
service dependency networks. Our approach constructs time-aware service graphs enriched 
with real-time telemetry data such as latency, throughput, and error rates. A GNN architecture 
is trained to detect anomalies and infer the root causes of failures based on both topological 
structure and performance metrics. This method requires no handcrafted rules or expert-
configured features; instead, it learns patterns of failure directly from data, enabling robust 
generalization to unseen fault scenarios and architectural configurations. 

Through extensive evaluation on real-world and synthetic datasets, our framework 
demonstrates superior accuracy, interpretability, and response time compared to conventional 
fault localization methods. Furthermore, it enables a more transparent and automated root 
cause analysis pipeline that can be integrated into modern observability stacks, facilitating 
faster incident response and reduced system downtime. 

2. Literature Review 

Fault localization has long been a central challenge in distributed systems, particularly as 
modern architectures adopt microservices and cloud-native patterns[15]. Early efforts in fault 
detection typically relied on rule-based monitoring and static thresholding techniques, such as 
setting upper bounds on CPU utilization, memory usage, or latency[16]. These systems, while 
straightforward to implement, suffer from high false positive rates and lack adaptability. In 
environments with variable workloads and complex dependencies, static thresholds often fail 
to capture context-aware anomalies or root causes, leading to misdiagnosis or excessive alert 
fatigue[17]. 

To address these limitations, researchers explored statistical and probabilistic approaches[18]. 
Time-series models such as ARIMA and Holt-Winters have been used to forecast normal 
behavior and detect anomalies by evaluating deviations[19]. Some frameworks have 
incorporated Principal Component Analysis (PCA), clustering, and correlation analysis to 
uncover latent patterns or relationships among service metrics[20]. However, these methods 
generally treat metrics in isolation and do not incorporate topological context, limiting their 
ability to distinguish between symptom propagation and root cause manifestation in service 
networks. 

More recent studies have turned to machine learning for improved accuracy and 
adaptability[21]. Supervised models such as decision trees, support vector machines (SVMs), 
and random forests have been trained on labeled telemetry datasets to predict fault origins[22]. 
While offering improved detection capabilities, these methods require extensive labeled data 
and often perform poorly in dynamic environments where system states evolve continuously. 
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Furthermore, most traditional ML models lack explainability and struggle to scale with the size 
and complexity of service topologies[23]. 

With the rise of observability tools that capture distributed traces, logs, and metrics, there has 
been a shift toward causal inference techniques[24]. Bayesian networks and Granger causality 
models attempt to infer causal relationships between services based on observed performance 
degradation[25]. These methods offer valuable insights but are sensitive to noise and lag 
effects, and they require careful tuning to avoid incorrect attribution in densely connected 
systems[26]. 

Graph-based modeling has emerged as a promising alternative, particularly for representing 
the complex interdependencies inherent in microservice architectures[27]. By viewing the 
system as a service dependency graph, where nodes represent services and edges represent 
inter-service communications or logical dependencies, it becomes possible to incorporate 
structural information directly into the fault localization process[28]. Early graph-based 
methods relied on PageRank-like algorithms or traversal heuristics to trace probable paths of 
failure propagation. While effective in small-scale settings, such methods do not scale well and 
often fail to capture non-local effects or nuanced interactions. 

The development of GNNs introduced a powerful mechanism for learning over graph-
structured data[29]. GNNs, including variants like Graph Convolutional Networks (GCNs), 
Graph Attention Networks (GATs), and GraphSAGE, iteratively aggregate information from 
neighboring nodes to compute context-aware embeddings[30]. This feature makes them 
particularly suitable for fault localization, as they can encode both local and global system 
behaviors without manual feature engineering. GNNs have already demonstrated success in 
areas such as recommendation systems, molecular property prediction, and traffic forecasting, 
motivating their application to system reliability and fault detection. 

In the context of distributed systems, several recent works have employed GNNs for anomaly 
detection. For example, systems like RADAR and DeepGraph utilize temporal service graphs 
constructed from tracing data to identify anomalous nodes or edges. Other research has focused 
on integrating GNNs with attention mechanisms to highlight influential paths and services 
during abnormal events. These approaches significantly improve interpretability and 
localization accuracy but often lack integration with real-time telemetry streams or 
generalization to new system topologies. 

Despite these advances, there remains a gap in unifying temporal graph modeling, service-level 
telemetry, and deep learning for end-to-end fault localization. Existing solutions often address 
only specific failure types, rely on batch processing, or lack real-time responsiveness. Our work 
builds upon the strengths of graph-based deep learning while introducing a unified framework 
that integrates dynamic telemetry data with service topology for robust, real-time fault 
inference in complex systems. 

3. Methodology 

This study proposes a graph-based deep learning framework to identify and localize faults in 
complex service dependency networks. The methodology integrates service topology 
modeling, feature embedding, and supervised learning to achieve precise fault localization. 

3.1. Service Dependency Graph Construction 

To begin with, we model the microservice system as a directed graph, where each node 
represents a service and each directed edge represents a service dependency. This graph 
captures the flow of calls and data between components, enabling us to understand the 
potential propagation of faults throughout the system. 
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Figure 1. Graph Topology 

 

The graph topology in Figure 1 not only reflects operational interdependencies but also forms 
the basis for neighborhood aggregation and topological feature engineering. 

3.2. Feature Extraction and Embedding 

We extracted operational metrics such as latency, error rates, request volume, and resource 
utilization for each service. These metrics are then transformed into a high-dimensional feature 
vector. To reduce dimensionality and visualize the separability of faulty and normal services, 
we apply PCA. 

 

 
Figure 2. Service Feature Embeddings via PCA 

 

This projection in Figure 2 reveals clustering tendencies among services under similar fault 
conditions, confirming the feasibility of learning-based fault detection. 
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3.3. Fault Classification Using Supervised Learning 

To identify the most relevant indicators of service faults, we train a Random Forest classifier 
on the feature set. This model helps assess the predictive importance of various metrics in 
determining fault occurrences. 

 

 
Figure 3. Feature Importance for Fault Localization 

 

The results in Figure 3 show that response time variability and error rate fluctuations are 
strong indicators of underlying faults. These features are integrated into the final fault 
localization model using a graph neural network trained on the service dependency structure 
and metric embeddings. 

4. Results and Discussion 

4.1. Fault Localization Performance in Complex Service Graphs 

The proposed graph-based deep learning model demonstrated strong performance in fault 
localization tasks across both synthetic and real-world microservice environments. On 
synthetic graphs with varying dependency depths and topological complexities, the model 
consistently identified the root cause of faults with high accuracy. This performance was 
validated by F1-scores exceeding 0.90 in most scenarios. When applied to real-world datasets 
such as the TrainTicket microservice benchmark, the model maintained reliable accuracy in 
identifying both direct and indirect faults, showcasing its ability to generalize across practical 
system conditions. 

What differentiates the proposed method from traditional approaches is its capacity to model 
the intricate relationships in service dependency graphs through learned embeddings. Unlike 
static rule-based systems or simple anomaly thresholds, the GNN-based architecture 
dynamically adapts to structural variations and can infer fault propagation paths, even when 
intermediate nodes do not exhibit obvious symptoms. This capability proved particularly useful 
in scenarios where the origin of performance degradation was several hops away from the 
observed anomaly. 

4.2. Comparative Evaluation and Interpretability Insights 

In comparative evaluations, the model was tested against baseline methods such as threshold-
based monitoring, statistical anomaly detection, and standard graph convolutional networks 
without attention mechanisms. The results indicated a clear performance advantage for the 



Frontiers in Artificial Intelligence Research Volume 2 Issue 1, 2025 

ISSN: 3079-6342  

 

 156 

proposed model, particularly in terms of root cause identification speed and precision. For 
instance, in fault injection scenarios involving cascading failures, the average time to locate the 
correct faulty service was significantly reduced, confirming the practical benefits of 
incorporating both temporal service metrics and graph attention mechanisms. 

Beyond quantitative accuracy, interpretability was a major strength of the model. The 
integrated attention layers enabled the identification of key nodes and edges that contributed 
most to the anomaly classification. These attention scores, when visualized as part of the 
service graph, provided intuitive explanations for fault pathways, allowing system operators to 
quickly grasp not just the location but also the context of each failure. This interpretability is 
critical for real-time operational decision-making in production environments. 

4.3. Deployment Considerations and Observed Limitations 

During performance evaluation, the model demonstrated low inference latency, making it 
suitable for real-time or near-real-time deployment in active monitoring systems. In typical 
service graphs with hundreds of nodes and edges, the end-to-end processing time remained 
below 150 milliseconds, including data ingestion, graph construction, and model inference. This 
level of responsiveness ensures that operators can take immediate remedial action when faults 
occur. 

However, certain limitations were also observed. The model’s accuracy slightly degraded when 
monitoring incomplete dependency graphs, where key service relationships were missing or 
misreported. Additionally, in cases of simultaneous multi-node failures with complex causal 
relationships, the attention mechanism occasionally distributed weights diffusely across 
unrelated nodes, diluting the clarity of the root cause analysis. Addressing these issues may 
require integration with external system logs or control plane data to enhance the fidelity of 
the input graph. 

In conclusion, the results affirm the proposed model's effectiveness for accurate, interpretable, 
and responsive fault localization in microservice-based systems. Its practical applicability and 
potential for integration into production-level monitoring tools position it as a promising 
approach to modern service reliability engineering. 

5. Conclusion 

In this paper, we proposed a graph-based deep learning framework for fault localization in 
complex service dependency networks, addressing the challenges posed by the dynamic and 
distributed nature of modern microservice systems. By leveraging GNNs enhanced with 
temporal metrics and attention mechanisms, our approach models both the topological and 
behavioral aspects of service interactions to accurately identify the root cause of anomalies. 

The experimental results demonstrated that the model significantly outperforms traditional 
threshold-based and statistical methods in both accuracy and interpretability. Through 
extensive evaluations on synthetic datasets and real-world microservice benchmarks, we 
confirmed that the proposed method can handle intricate fault propagation patterns, infer 
indirect root causes, and provide intuitive, human-understandable explanations for system 
anomalies. 

Moreover, the low inference latency and scalability of our model make it a practical solution for 
real-time deployment in production environments. Despite its strengths, we also observed 
limitations, especially in incomplete or noisy service graphs, suggesting that future work could 
explore the integration of complementary data sources such as trace logs or configuration 
metadata to improve fault localization fidelity. 

Overall, this study contributes a unified, interpretable, and scalable solution for automated fault 
detection and root cause analysis in service-oriented architectures. As microservice ecosystems 
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continue to grow in complexity, such intelligent and adaptive fault management tools will be 
essential for maintaining system reliability and operational efficiency. 
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