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Abstract 

Dynamic and complex traffic scenarios in urban environments impose stringent 
requirements on the perception capability of autonomous driving systems. In this study, 
we develop a perception model that integrates data from LiDAR, cameras and 
millimeter-wave radar through multimodal sensor fusion and employs a large-scale 
Transformer-based architecture. By adopting the Bird’s Eye View (BEV) representation 
and a multi-scale feature enhancement mechanism, the proposed model significantly 
improves the accuracy of 3D object detection and semantic interpretation. At the 
architectural level, we introduce a cross-modal attention mechanism and a sparse 
attention module, which enhance the model’s perception performance in challenging 
situations such as occlusion, drastic lighting changes, and densely clustered targets. 
Experiments on the nuScenes and KITTI datasets show that the proposed model 
outperforms existing approaches such as BEVFormer and VoxelNet in terms of mean 
Average Precision (mAP), Intersection over Union (IoU), and stability. The model 
consistently achieves high recognition accuracy and robust adaptability across various 
urban driving scenarios. 
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1. Introduction 

Urbanization is progressing at an unprecedented rate across the globe. According to data from 
the United Nations, by 2023, more than 55% of the world’s population resided in urban areas 
and this figure is expected to rise to nearly 70% by 2050 [1]. As large populations continue to 
concentrate in cities, urban traffic volumes have increased rapidly, resulting in worsening 
congestion problems [2]. For example, data released by the Beijing Transportation 
Development Research Institute in 2024 show that during weekday evening peak hours, the 
average congestion index in central Beijing reached 2.0. On certain road segments, the average 
vehicle speed dropped to just 15 kilometers per hour and the annual economic loss caused by 
traffic congestion was estimated at approximately 30 billion [3]. A similar situation has been 
observed in Shanghai. According to transportation data from 2024, during weekday morning 
and evening peak periods, 25% of roads in the city center experienced congestion, leading to 
annual economic losses exceeding 25 billion RMB. At the same time, traffic safety remains a 
pressing concern. Frequent urban traffic accidents pose serious threats to public safety and 
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property [4]. Based on the 2024 Traffic Accident Statistical Yearbook issued by the National 
Bureau of Statistics, deaths from urban road traffic accidents accounted for 62.3% of all traffic 
fatalities nationwide and the overall accident rate continues to increase annually. In this 
context, autonomous driving technology is regarded as a promising solution that could 
significantly improve current traffic conditions [5]. 

Over the past decade, autonomous driving technology has advanced considerably [6]. It has 
evolved from basic driver-assistance functions, such as adaptive cruise control and automatic 
emergency braking, to more advanced stages approaching high and full automation [7]. Some 
companies have already implemented relatively mature autonomous systems in constrained 
environments such as mining sites and ports [8]. For example, an autonomous transport fleet 
deployed by a mining company has safely delivered over five million tons of ore since its launch 
in 2022 [9]. Compared to traditional manual operations, transport efficiency has increased by 
30%. However, in dynamic and unstructured urban environments, autonomous driving 
systems still face numerous challenges, and the road to full-scale commercial deployment 
remains long [10]. The complexity of urban environments can be observed across multiple 
dimensions. First, urban roads are characterized by a high density of traffic participants, 
including pedestrians, bicycles and motor vehicles, all exhibiting diverse and unpredictable 
behaviors. According to traffic monitoring data, pedestrian volumes during peak hours in major 
commercial areas can reach several thousand people per hour [11]. Mixed traffic involving 
bicycles and vehicles is also common [12]. Sudden pedestrian crossings, random lane changes 
by cyclists and frequent merging by vehicles introduce significant uncertainty, making 
perception tasks more difficult for autonomous systems [13,14]. Second, urban road networks 
contain numerous complex structures such as intersections, roundabouts and sharp curves 
[15]. These segments often follow different traffic rules and require context-specific driving 
behaviors, thereby demanding strong scene understanding and decision-making capabilities. 
Third, lighting conditions in cities change rapidly. Low visibility caused by sunrise and sunset 
glare, building shadows, or poor night lighting can significantly impair sensor performance 
[16]. Studies have indicated that under low-light conditions, image contrast from cameras can 
drop by 30%–40%, and object detection accuracy can fall by approximately 25% [17,18]. 
Additionally, harsh weather conditions—such as heavy rain, fog and dust—occur frequently in 
urban areas, further undermining sensor reliability [19]. For instance, in foggy weather, the 
effective detection range of LiDAR may be reduced to 50%–60% of its normal performance and 
the accuracy of millimeter-wave radar is also considerably affected [20]. 

Most conventional autonomous driving perception systems rely on a single type of sensor. 
Taking cameras as an example, although they can capture detailed visual information, their 
performance deteriorates significantly under extreme conditions such as low illumination, 
strong backlight or severe weather [21]. Due to limitations in imaging principles, image quality 
declines sharply in these scenarios, resulting in a notable decrease in object detection and 
recognition accuracy. For instance, a mainstream camera model achieves only a 30% detection 
accuracy for targets located 100 meters away at night without auxiliary lighting, compared to 
85% under sufficient daylight conditions [22]. LiDAR provides accurate 3D spatial information, 
but it shows limited capability in detecting small or distant targets [23]. Moreover, its high cost 
and performance instability in complex environments remain challenges. For example, a high-
resolution LiDAR unit from a well-known brand is priced in the hundreds of thousands of RMB 
and under rainy conditions, it can miss up to 15% of targets smaller than 0.5 meters in diameter 
at a distance of 50 meters [24]. Millimeter-wave radar also has clear shortcomings in capturing 
the precise position and shape of objects, making it difficult to meet the stringent precision 
requirements of high-level autonomous driving [25]. Its typical ranging error ranges from 0.2 
to 0.5 meters. To address the limitations of individual sensors, multimodal sensor fusion has 
become a growing area of interest. This approach integrates data from LiDAR, cameras and 
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millimeter-wave radar, taking full advantage of the strengths of each sensor [26]. Specifically, 
cameras provide rich texture and semantic content, which supports accurate object 
classification and recognition; LiDAR delivers high-precision distance and spatial positioning, 
enabling the construction of accurate 3D maps; and millimeter-wave radar is effective at 
measuring velocity and motion and can still function reliably in adverse weather conditions 
[27]. The integrated use of these heterogeneous sensing modalities substantially enhances the 
system’s perception capability in complex environments. In parallel, large-scale Transformer 
architectures have achieved major breakthroughs in both natural language processing and 
computer vision [28]. Due to their self-attention mechanism, Transformer models can 
efficiently capture long-range dependencies in sequence data and exhibit superior performance 
in complex scene processing tasks. In natural language processing, Transformer-based models 
such as the GPT series have achieved remarkable results in text generation and question 
answering. In the field of computer vision, Transformer models have shown outstanding 
performance in image classification, object detection and semantic segmentation [29]. Applying 
Transformer models to multimodal sensor fusion and perception tasks in autonomous driving 
holds great potential [30]. Their powerful feature extraction and relational reasoning 
capabilities are expected to further improve the accuracy and robustness of perception in 
complex urban environments. 

This study proposes an innovative perception model that combines multimodal sensor fusion 
with a large-scale Transformer architecture. The goal is to address the core challenges of 
perception in complex urban environments and enhance the overall performance of 
autonomous driving systems. By deeply integrating data from multiple sensors and leveraging 
the strengths of the Transformer framework, the proposed model aims to achieve accurate 
detection and recognition of various objects in traffic scenes, thereby providing reliable and 
precise input for decision-making modules in autonomous vehicles. This work lays a technical 
foundation for the safe and efficient deployment of autonomous driving in urban areas. 

2. Methods 

2.1. Multimodal Sensor Data Acquisition and Fusion Basis 

This study employs the AT128 LiDAR sensor developed by Hesai Technology to obtain high-
resolution 3D point cloud data. The device provides a vertical resolution of 0.1°, a horizontal 
resolution of 0.2°, and a maximum detection range of 200 meters, enabling accurate and 
efficient acquisition of spatial information about the surrounding environment. In parallel, the 
Sony IMX586 camera is used to capture texture and color information, offering a resolution of 
4000 × 3000 pixels and a frame rate of 60 frames per second, which ensures detailed visual 
data collection. Additionally, the Bosch ARS408 millimeter-wave radar is used to measure 
object velocity and distance variation, with a velocity accuracy of ±0.1 m/s and a distance 
accuracy of ±0.2 m. Before experiments, all sensors were carefully time-synchronized and 
spatially calibrated to ensure consistency in both temporal and spatial dimensions. The time 
synchronization error was controlled within ±10 microseconds, and the spatial calibration 
error was kept within ±5 centimeters. 

2.2. Multi-Scale Feature Fusion Based on BEV Representation 

In this work, we adopt the Bird’s Eye View (BEV) representation framework, projecting data 
from different sensors into a unified BEV coordinate system. Specifically, LiDAR point clouds 
are projected onto the BEV plane to generate feature maps such as density and height maps 
[31]. Camera images are processed using depth estimation algorithms to calculate pixel-wise 
depth values, which are then transformed into the BEV coordinate system and fused with the 
LiDAR-based features [32]. For the millimeter-wave radar, velocity and distance data are used 
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to construct a velocity map within the BEV domain. On top of this projection framework, a 
multi-scale feature extraction network is constructed. Convolution and pooling layers are used 
to extract features at various scales from the raw data. These features are then fused for object 
detection tasks. During the extraction process, the resolution of low-scale feature maps is set to 
one-quarter of the original input, while high-scale feature maps are set to one-sixteenth. 
Feature maps of different scales are combined using a weighted fusion strategy, where the 
weights are optimized through experiments to achieve the best fusion performance. 

2.3. Cross-Modal Attention Mechanism 

To improve the effectiveness of multimodal data fusion, this study introduces a cross-modal 
attention mechanism based on the self-attention structure of the Transformer. Specifically, 
feature representations from LiDAR, camera and millimeter-wave radar are input into the 
cross-modal attention module. By computing attention scores across different modalities, the 
model determines the relative contribution of each modality during the fusion process [33]. In 
implementation, features from each modality are first projected into query (Q), key (K), and 
value (V) spaces. The attention score is calculated by performing dot products between queries 
and keys, followed by normalization. These scores are then used to weight the corresponding 
values. The resulting weighted sum yields the fused feature representation. In the attention 
computation, a scaling factor of 8 is applied to balance computational efficiency and attention 
expressiveness, enabling effective and efficient multimodal fusion. 

2.4. Transformer-Based Large-Scale Model Architecture 

A Transformer model composed of encoder and decoder components is constructed to process 
the fused multimodal features. The encoder includes multiple Transformer blocks, each 
consisting of a multi-head self-attention layer and a feedforward neural network layer, which 
together enhance the model’s ability to capture complex dependencies among features. The 
decoder receives as input both the encoder’s output and the features refined by the cross-modal 
attention mechanism. The final output is processed by fully connected layers to perform 
classification and regression tasks, resulting in object detection outputs. The model is trained 
in an end-to-end manner, where parameters are optimized by minimizing a combination of 
cross-entropy loss and mean squared error loss. To prevent overfitting, dropout regularization 
is applied and a cosine annealing learning rate schedule is adopted to improve training stability 
[34]. During training, the initial learning rate is set to 0.001, the dropout rate is set to 0.2, and 
the number of training epochs is set to 100, ensuring that the model fully learns the features 
and patterns within the data. 

3. Results and Discussion 

3.1. Experimental Setup 

To thoroughly verify the performance of the proposed model, experiments were conducted on 
the nuScenes and KITTI datasets. The nuScenes dataset is a large-scale benchmark for 
autonomous driving, encompassing a diverse range of urban traffic scenarios, including 
variations in weather, lighting conditions, and traffic density. It provides LiDAR point clouds, 
camera images, and precise annotation information such as object categories, positions, and 
dimensions. In total, the dataset includes 1,000 scenes, each lasting 20 seconds, covering 10 
different object types. The KITTI dataset is a classical and widely adopted dataset in the field of 
autonomous driving, primarily focused on object detection and scene understanding in urban 
road environments. It contains extensive real-world driving data, including 7,481 images in the 
training set and 7,518 images in the test set. During the experiments, each dataset was divided 
into training, validation, and test sets in a ratio of 7:2:1. The Adam optimizer was used for model 
training, with an initial learning rate of 0.001, dynamically adjusted using a cosine annealing 



Frontiers in Artificial Intelligence Research Volume 2 Issue 1, 2025 

ISSN: 3079-6342  

 

 88 

schedule. The training process was carried out for 100 epochs. In each epoch, the training set 
was shuffled to improve the generalization ability of the model. For performance evaluation, 
mean Average Precision (mAP) and Intersection over Union (IoU) were adopted as the primary 
metrics [35,36]. The mAP metric reflects the average precision under different recall 
thresholds, while IoU measures the overlap ratio between predicted and ground-truth 
bounding boxes. These metrics provide a comprehensive evaluation of the model’s detection 
capability. 

3.2. Model Performance Evaluation 

On the nuScenes dataset, the proposed model achieved an mAP of 0.78, which represents a 
significant improvement compared to mainstream methods such as BEVFormer (0.72) and 
VoxelNet (0.68). The detailed comparison results are summarized in Table 2. In terms of the 
IoU metric for vehicle detection, the proposed model achieved an average IoU of 0.75, again 
outperforming BEVFormer (0.70) and VoxelNet (0.65). On the KITTI dataset, the proposed 
model also demonstrated strong performance in 3D object detection tasks, achieving an mAP 
of 0.82. This result surpasses the performance of BEVFormer (0.78) and VoxelNet (0.75), 
indicating the effectiveness of the model in diverse urban driving environments. 

 

Table 1. mAP Comparison of Different Models on the nuScenes and KITTI Datasets 

Model mAP on nuScenes mAP on KITTI 

Proposed Model 0.78 0.82 

BEVFormer 0.72 0.78 

VoxelNet 0.68 0.75 

 

A thorough analysis of the experimental results indicates that the proposed model 
demonstrates clear advantages in handling complex scenarios. For example, in occlusion 
settings, the cross-modal attention mechanism effectively captures the complementary 
features among different sensor modalities, allowing the model to accurately detect partially 
obscured objects [37]. In scenes with significant illumination changes, the model maintains a 
high detection accuracy by leveraging the multi-scale feature enhancement mechanism and 
image enhancement preprocessing [38]. Furthermore, in high-density traffic scenarios, the 
strong relational modeling capability of the Transformer structure enables the model to clearly 
distinguish between multiple objects, thereby reducing target confusion and significantly 
improving detection accuracy and stability. 

3.3. Comparative Analysis with Other Methods 

Compared with BEVFormer, the proposed model achieves an innovative improvement in the 
method of multimodal sensor data fusion. BEVFormer mainly focuses on BEV feature 
integration based on attention mechanisms. In contrast, this study not only adopts the BEV 
representation paradigm but also introduces a cross-modal attention mechanism, which allows 
for a deeper exploration of the internal correlations between different sensor modalities. This 
design enables the proposed model to achieve better object detection performance under 
complex conditions. Compared with VoxelNet, which primarily performs object detection based 
on voxelized point cloud data and relies heavily on the spatial structure of the input, the 
proposed model integrates multimodal data and a Transformer-based architecture. This 
combination allows the model to extract features from more diverse sources of information 
while reducing its dependence on rigid spatial structures. As a result, the proposed model 
demonstrates stronger adaptability in various application scenarios. However, the proposed 
model also presents certain aspects that require improvement. For instance, the computational 
complexity of the model is relatively high, which may impose more demanding hardware 



Frontiers in Artificial Intelligence Research Volume 2 Issue 1, 2025 

ISSN: 3079-6342  

 

 89 

requirements in real-world deployment. According to our measurements, when processing a 
single frame containing 10,000 LiDAR points, an image with a resolution of 4000×3000 pixels, 
and millimeter-wave radar data, the inference time of the proposed model is approximately 
0.15 seconds. In comparison, the inference time for BEVFormer is 0.10 seconds, and for 
VoxelNet, it is 0.08 seconds. Detailed results are shown in Table 3. This higher inference time is 
primarily attributed to the substantial computational overhead of the Transformer 
architecture, especially when processing large-scale data inputs. Future research may explore 
model compression and acceleration techniques—such as pruning and quantization—to 
reduce the model's computational complexity and improve its inference speed. These 
optimizations would facilitate the practical deployment of the model in real-world autonomous 
driving scenarios. 

 

Table 2. Inference Time Comparison of Different Models 

Model Inference Time (per frame) 

Proposed Model 0.15 s 

BEVFormer 0.10 s 

VoxelNet 0.08 s 
 

4. Conclusion 

This work proposes a multimodal perception framework that combines LiDAR, camera, and 
millimeter-wave radar with a Transformer-based architecture to improve object detection in 
urban autonomous driving environments. The integration of cross-modal attention 
mechanisms and Bird’s Eye View (BEV) representation enables the model to effectively fuse 
heterogeneous sensor data and capture complex spatial dependencies. Experimental validation 
on nuScenes and KITTI datasets indicates consistent improvements over established baselines, 
including BEVFormer and VoxelNet, in both mAP and IoU metrics. The model demonstrates 
robustness in challenging scenarios such as occlusion, low illumination, and high-density 
traffic, suggesting its suitability for complex urban contexts. Nonetheless, the relatively high 
inference time—mainly attributed to the computational load of the Transformer layers—
remains a constraint for deployment in latency-sensitive applications. Future research should 
consider model compression techniques to mitigate computational costs while maintaining 
detection performance. Overall, the proposed framework contributes a technically sound and 
empirically validated approach to advancing perception capabilities in autonomous driving 
systems. 
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