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Abstract 

High-speed autonomous driving on highways demands precise and low-latency path 
planning to ensure vehicle safety and operational efficiency. This study proposes a novel 
high-speed path planning algorithm that integrates sampling-based optimization with 
behavior prediction mechanisms. The algorithm incorporates vehicle dynamics 
constraints and a real-time risk assessment model to enhance decision-making 
capabilities under high-speed and complex traffic conditions. Comprehensive 
experiments were conducted using the HighD dataset. Comparative analysis with 
baseline algorithms, including Rapidly-exploring Random Tree (RRT) and Hybrid A*, 
demonstrates that the proposed method significantly improves path safety, planning 
efficiency, and driving comfort. The results highlight the algorithm's potential for 
practical deployment in engineering applications of high-speed autonomous driving 
systems. 
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1. Introduction 

In recent years, with the rapid development of artificial intelligence, sensor technologies, and 
communication technologies, autonomous driving has become a major research focus in the 
global automotive industry and the field of intelligent transportation [1]. According to data 
from the International Organization of Motor Vehicle Manufacturers (OICA), between 2020 and 
2024, the number of global patent applications related to autonomous driving technologies 
surged from 82,000 to 226,000, with a compound annual growth rate of 28.1% [2,3]. This trend 
highlights the vigorous development of this field. The widespread adoption of autonomous 
driving technologies is expected not only to fundamentally transform travel patterns but also 
to significantly improve the operational efficiency of traffic systems and reduce the incidence 
of traffic accidents [4]. Relevant studies have shown that when the penetration rate of 
autonomous vehicles reaches 70%, road traffic efficiency can be improved by more than 35%, 
and the traffic accident rate can be reduced by approximately 85% [5]. In the practical 
implementation of autonomous driving technologies, highway scenarios, characterized by 
highly regular road structures and relatively predictable behaviors of traffic participants, have 
become an important breakthrough for commercial applications [6,7]. However, highway 
environments place extremely high demands on the path planning capabilities of autonomous 
driving systems [8]. At high speeds (typically ≥80 km/h, and up to 120 km/h in some sections), 
the available reaction time to environmental changes is greatly reduced [9]. For example, at a 
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speed of 100 km/h, a vehicle travels approximately 27.8 meters per second, which imposes 
stringent requirements on the real-time performance and accuracy of path planning algorithms 
[10]. Moreover, highways often experience high traffic volumes, frequent lane changes, and 
complex conditions such as the parallel movement of large vehicles and close following 
distances [11]. For instance, during peak holiday traffic periods, the traffic density on six-lane 
highways can reach up to 85 vehicles per kilometer, significantly increasing the frequency of 
vehicle interactions and further complicating the path planning process [12,13]. Against this 
background, the development of efficient and reliable path planning algorithms to ensure the 
safe and efficient driving of autonomous vehicles in high-speed environments has become a 
critical issue [14]. Traditional path planning algorithms, such as the Rapidly-exploring Random 
Tree (RRT) algorithm and the Hybrid A* algorithm, perform well in low-speed and static 
environments but show clear limitations in high-speed dynamic scenarios [15]. The RRT 
algorithm, based on the principle of random sampling, possesses strong global search 
capabilities. However, its randomness results in low search efficiency under high-speed 
conditions, making it difficult to meet the real-time decision-making requirements [16]. In a 
simulated scenario with a vehicle speed of 100 km/h and an obstacle density of three obstacles 
per 100 meters, the average path planning time of the RRT algorithm reached 0.9 seconds, 
failing to meet the stringent requirement of completing path planning within 0.3 seconds set by 
autonomous driving systems [17]. The Hybrid A* algorithm integrates the heuristic search 
strategy of the A* algorithm with a vehicle dynamics model, which improves the feasibility of 
path planning to some extent. However, when dealing with dynamic obstacles and complex 
traffic environments, its path safety and planning efficiency still need further improvement 
[18]. In testing scenarios involving frequent dynamic obstacles, the collision risk probability for 
paths planned by the Hybrid A* algorithm reached as high as 18%. Furthermore, both types of 
traditional algorithms generally lack effective modeling of interactions between vehicles and 
do not fully consider the vehicle dynamics constraints under high-speed conditions, leading to 
potential safety risks in practical applications and poor driving comfort [19]. 

Currently, extensive research efforts have been conducted in both academia and industry to 
address the path planning challenges for autonomous driving in high-speed scenarios. In the 
field of environmental perception, multi-sensor fusion technologies have been widely applied. 
By organically integrating data from LiDAR, cameras and millimeter-wave radars and 
combining them with advanced image recognition and point cloud processing algorithms, the 
perception accuracy of surrounding vehicles and road conditions has been significantly 
improved [20,21]. For example, a research team adopted a LiDAR-camera fusion scheme and 
achieved a vehicle detection accuracy of 99.2% within a detection range of 250 meters. In terms 
of improvements to path planning algorithms, some studies have attempted to introduce 
machine learning techniques to predict the behaviors of surrounding vehicles, such as behavior 
prediction models based on Bayesian networks and deep learning, to provide auxiliary 
decision-making information for path planning [22,23]. However, existing research still shows 
deficiencies in comprehensively considering multiple factors such as behavior prediction, 
trajectory feasibility, and risk assessment. A complete and efficient high-speed path planning 
solution has not yet been fully established [24]. 

This paper aims to propose an optimized path planning algorithm for high-speed autonomous 
driving scenarios. The proposed algorithm improves path search efficiency by introducing a 
goal-biased sampling mechanism, accurately predicts the motion trajectories of surrounding 
vehicles by constructing a behavior prediction model based on Long Short-Term Memory 
(LSTM) networks and establishes strict vehicle dynamics constraints along with a multi-factor 
risk assessment model [25]. This ensures that the planned paths meet safety and feasibility 
requirements while enhancing vehicle driving comfort. Finally, the performance of the 
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proposed algorithm is comprehensively evaluated and validated through experiments based on 
a real high-speed trajectory dataset. 

2. Methodology 

The high-speed path planning algorithm proposed in this paper mainly consists of four core 
modules: the sampling optimization module, the behavior prediction module, the trajectory 
feasibility constraint module, and the risk estimation module. In the sampling optimization 
module, based on the basic framework of the RRT algorithm, a goal-biased sampling mechanism 
is introduced. The sampling strategy is dynamically adjusted using the formula  

 qbiased = (1 − α)qrand + αqgoal, （1） 

where α is the bias coefficient with a value range of 0.3 to 0.7, and is adaptively adjusted 
according to the real-time vehicle speed and road conditions. This approach achieves a good 
balance between random exploration and goal-directed search, effectively improving path 
search efficiency. The behavior prediction module constructs a vehicle behavior prediction 
model based on a Long Short-Term Memory (LSTM) network [26]. The model takes the motion 
features of vehicles, such as position and speed, over the past 10 seconds (sampling frequency 
of 10 Hz, totaling 100 data points) as input and outputs the predicted motion trajectories for 
the next 3 seconds (with a time step of 0.1 seconds, resulting in 30 prediction points). By 
training on 200,000 trajectory samples from the HighD dataset over 50 epochs, the model 
achieved an average prediction error of 0.3 meters on the test set, providing reliable 
environmental information for path planning. The trajectory feasibility constraint module 
selects and optimizes the path based on the dynamic characteristics of the vehicle. For lateral 
dynamics, a constraint on the rate of change of curvature  

 |
dκ

ds
| ≤ κmax （2） 

Where, κmax = 0.05 m−1  is introduced to ensure the feasibility of steering operations. For 
longitudinal dynamics, the acceleration constraint amin ≤ a ≤ amax  and the jerk constraint 
dmin ≤ d ≤ dmax are satisfied. The parameters for the experimental vehicle are set as  

 𝑎min = −5 m/s2, 𝑎max = 3 m/s2,  𝑑min = −8 m/s2 𝑎𝑛𝑑  𝑑max = 5 m/s2,  （3） 

ensuring safety and comfort during acceleration and deceleration. The risk estimation module 
assesses the candidate paths using a comprehensive risk evaluation model.  

 𝑅 = 𝑤1𝑑min
−1 + 𝑤2 ∑ 𝑝𝑖

𝑛
𝑖=1 + 𝑤3𝜅 + 𝑤4𝑔. （4） 

In this model, dmin denotes the minimum distance between the path and surrounding 
obstacles, pi represents the predicted collision probability, κ denotes the path curvature, 
and g  represents the target distance. The weight coefficients are determined through 
experiments as w1 = 0.4, w2 = 0.3, w3 = 0.2 and  w4 = 0.1 . Based on the quantitative 
evaluation of path risks, the optimal path is selected. 

3. Experimental Design 

3.1. Experimental Setup 

This experiment is conducted based on the HighD public dataset, which contains 1.1 million 
real highway vehicle trajectory records, providing reliable data support for algorithm 
validation [27]. The experimental platform is configured with an Intel Core i7-12700H 
processor and 16 GB of memory. The algorithms are implemented using Python 3.8, combined 
with the TensorFlow 2.8.0 deep learning framework and the OpenCV 4.5.5 computer vision 
library. The RRT algorithm and the Hybrid A* algorithm are selected as baseline methods for 
comparison. Three typical traffic scenarios are set: low traffic flow (vehicle density < 20 
vehicles/km), medium traffic flow (20–50 vehicles/km), and high traffic flow (> 50 
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vehicles/km). Each scenario is tested 50 times to ensure the reliability and validity of the 
experimental results. 

3.2. Performance Evaluation Metrics 

To comprehensively evaluate the algorithm performance, three key metrics are selected: path 
safety, planning time and vehicle comfort. Path safety is quantified by counting the number of 
collisions between the planned path and surrounding vehicles; fewer collisions indicate higher 
path safety [28,29]. Planning time is defined as the time interval from receiving the planning 
instruction to generating a feasible path, which reflects the real-time decision-making 
capability of the algorithm. Vehicle comfort is evaluated by the jerk value (rate of change of 
acceleration); a smaller jerk value indicates a smoother driving process and higher ride comfort 
for passengers. 

4. Results and Discussion 

4.1. Experimental Results 

The experimental results under different traffic flow scenarios and complex driving behavior 
scenarios show that the proposed algorithm achieves significantly better performance than the 
comparison algorithms across all evaluation metrics and maintains good stability. The detailed 
results are presented in Tables 1 to 3. 

 

Table 1. Performance Comparison of Algorithms under Different Traffic Flow Scenarios 

Traffic Flow 
Scenario 

Algorithm 
Number of 
Collisions 

Planning Time (s) Jerk Value (m/s³) 

Low Traffic 
Proposed 
Algorithm 

0.3 0.15 0.35 

 RRT Algorithm 1.2 0.45 0.85 

 
Hybrid A* 
Algorithm 

0.9 0.32 0.72 

Medium Traffic 
Proposed 
Algorithm 

0.6 0.20 0.42 

 RRT Algorithm 3.1 0.61 1.08 

 
Hybrid A* 
Algorithm 

2.3 0.48 0.91 

High Traffic 
Proposed 
Algorithm 

0.8 0.21 0.48 

 RRT Algorithm 5.2 0.53 1.23 

 
Hybrid A* 
Algorithm 

3.1 0.42 1.02 

 

Table 2. Performance Comparison of Algorithms under Complex Driving Behavior 
Scenarios 

Scenario Type Algorithm 
Number of 
Collisions 

Planning 
Time (s) 

Jerk Value 
(m/s³) 

Frequent Lane 
Changes 

Proposed Algorithm < 1.0 0.23 – 

 RRT Algorithm 4.5 0.78 – 

 Hybrid A* Algorithm 3.0 0.55 – 

Sudden Acceleration Proposed Algorithm 0.9 0.22 – 
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and Deceleration of 
Vehicles 

 RRT Algorithm 3.8 0.65 – 

 Hybrid A* Algorithm 2.6 0.46 – 
 

Table 3. Comparison of Algorithm Stability Data 

Algorithm 
Path Safety Standard 

Deviation 
Planning Time 

Standard Deviation (s) 

Vehicle Comfort 
Standard Deviation 

(m/s³) 

Proposed Algorithm 0.12 0.03 0.05 

RRT Algorithm 0.35 0.08 0.15 

Hybrid A* Algorithm 0.28 0.06 0.12 
 

In the low traffic flow scenario, the proposed algorithm records an average number of collisions 
of 0.3, a planning time of 0.15 seconds and a jerk value of 0.35 m/s³. In comparison, the RRT 
algorithm shows 1.2 collisions, a planning time of 0.45 seconds and a jerk value of 0.85 m/s³, 
while the Hybrid A* algorithm achieves 0.9 collisions, 0.32 seconds and 0.72 m/s³. In the 
medium traffic flow scenario, the proposed algorithm achieves 0.6 collisions, a planning time 
of 0.20 seconds and a jerk value of 0.42 m/s³. The corresponding results for the RRT algorithm 
are 3.1 collisions, 0.61 seconds and 1.08 m/s³ and for the Hybrid A* algorithm are 2.3 collisions, 
0.48 seconds and 0.91 m/s³[30,31]. In the high traffic flow scenario, the proposed algorithm 
achieves 0.8 collisions, a planning time of 0.21 seconds, and a jerk value of 0.48 m/s³. Compared 
with the RRT algorithm (5.2 collisions, 0.53 seconds and 1.23 m/s³), the number of collisions is 
reduced by 84.6%, the planning time is shortened by 60.4% and the jerk value is reduced by 
61% [32]. Compared with the Hybrid A* algorithm (3.1 collisions, 0.42 seconds and 1.02 m/s³), 
the proposed algorithm also shows significant improvement [33]. 

In the complex driving behavior scenarios, including frequent lane changes and sudden 
acceleration or deceleration of surrounding vehicles, the proposed algorithm also shows 
superior performance [34]. In the frequent lane change scenario, the number of collisions 
remains below 1.0, and the planning time is 0.23 seconds. In the sudden acceleration and 
deceleration scenario, the number of collisions is 0.9 and the planning time is 0.22 seconds [35]. 
Both results are clearly better than those of the RRT and Hybrid A* algorithms. In terms of 
algorithm stability, the standard deviations of path safety, planning time, and vehicle comfort 
for the proposed algorithm are 0.12, 0.03, and 0.05, respectively. In contrast, the standard 
deviations for the RRT algorithm are 0.35, 0.08, and 0.15, and for the Hybrid A* algorithm are 
0.28, 0.06, and 0.12. The smaller standard deviations indicate that the proposed algorithm 
maintains good stability under different scenarios and is less affected by environmental 
changes. 

4.2. Discussion of Results 

The performance advantages of the proposed algorithm mainly arise from the coordinated 
operation of its core modules. The sampling optimization module improves path search 
efficiency significantly through a goal-biased sampling mechanism. This allows the algorithm 
to quickly generate feasible paths in high-speed dynamic environments and effectively shortens 
the planning time. The behavior prediction module, based on LSTM, is trained on a large 
amount of real highway trajectory data. It can accurately predict the motion trends of 
surrounding vehicles, providing forward-looking information for path planning. This effectively 
reduces collision risks and improves path safety. The trajectory feasibility constraint module 
filters paths based on vehicle dynamic characteristics. It prevents unreasonable operations 
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such as excessive steering and sudden acceleration or deceleration during driving. This reduces 
the jerk value and improves vehicle ride comfort. The risk estimation module quantifies path 
risks by comprehensively considering multiple factors. It ensures that the final selected path 
achieves a good balance among safety, feasibility, and comfort. 

5. Conclusion 

This study addresses the problem of autonomous driving path planning in high-speed scenarios 
and proposes an optimized algorithm. By introducing core modules including sampling 
optimization, behavior prediction, trajectory feasibility constraints, and risk estimation, the 
algorithm effectively improves its performance under complex high-speed traffic 
environments. Experimental results based on the HighD dataset show that, in high traffic flow 
scenarios, the proposed algorithm achieves an average number of collisions of 0.8, which is 
reduced by 84.6% compared to the RRT algorithm and by 74.2% compared to the Hybrid A* 
algorithm. The planning time is 0.21 seconds, shortened by 60.4% compared to the RRT 
algorithm and by 50% compared to the Hybrid A* algorithm. The jerk value reaches 0.48 m/s³, 
representing a 61% reduction compared to the RRT algorithm and a 52.9% reduction 
compared to the Hybrid A* algorithm. Across all traffic flow scenarios and complex driving 
behavior simulations, the proposed algorithm shows significant advantages over traditional 
RRT and Hybrid A* algorithms in terms of path safety, planning time, and vehicle comfort, 
demonstrating strong potential for application. In practical applications, the algorithm can 
provide safe, efficient, and comfortable path planning solutions for autonomous vehicles 
operating at high speeds, facilitating the commercialization of autonomous driving 
technologies in highway scenarios. Future research will focus on further enhancing the 
algorithm’s adaptability to extremely complex conditions, such as severe weather and special 
traffic events, and on optimizing computational efficiency to reduce reliance on hardware 
resources, thereby strengthening the technical framework for autonomous driving path 
planning in high-speed environments. 
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